
symmetryS S

Article

Optimal Reliable Point-in-Polygon Test and
Differential Coding Boolean Operations on Polygons

Jianqiang Hao * ID , Jianzhi Sun, Yi Chen, Qiang Cai and Li Tan

Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University,
Beijing 100048, China; sunjz@th.btbu.edu.cn (J.S.); chenyi@th.btbu.edu.cn (Y.C.); caiq@th.btbu.edu.cn (Q.C.);
tanli_913@sina.com (L.T.)
* Correspondence: Bshjq@vip.163.com; Tel.: +86-10-6898-5704

Received: 8 August 2018; Accepted: 7 October 2018; Published: 11 October 2018
����������
�������

Abstract: This paper provides a full theoretical and experimental analysis of a serial algorithm for the
point-in-polygon test, which requires less running time than previous algorithms and can handle all
degenerate cases. The serial algorithm can quickly determine whether a point is inside or outside a
polygon and accurately determine the contours of input polygon. It describes all degenerate cases and
simultaneously provides a corresponding solution to each degenerate case to ensure the stability and
reliability. This also creates the prerequisites and basis for our novel boolean operations algorithm
that inherits all the benefits of the serial algorithm. Using geometric probability and straight-line
equation F(P) = (yi − yi+1)(xp − xi)− (yi − yp)(xi+1 − xi), it optimizes our two algorithms that
avoid the division operation and do not need to compute any intersection points. Our algorithms are
applicable to any polygon that may be self-intersecting or with holes nested to any level of depth.
They do not have to sort the vertices clockwise or counterclockwise beforehand. Consequently, they
process all edges one by one in any order for input polygons. This allows a parallel implementation of
each algorithm to be made very easily. We also prove several theorems guaranteeing the correctness of
algorithms. To speed up the operations, we assign each vector a number code and derive two iterative
formulas using differential calculus. However, the experimental results as well as the theoretical
proof show that our serial algorithm for the point-in-polygon test is optimal and the time complexities
of all algorithms are linear. Our methods can be extended to three-dimensional space, in particular,
they can be applied to 3D printing to improve its performance.

Keywords: 3D printing; point-in-polygon; boolean operations; code; probability; parallel

1. Introduction

1.1. The Point-in-Polygon Test

Let P be a point and S a polygon on a plane. In computer graphics, finding whether P is inside,
outside, or on the boundary of S is a fundamental problem, which is called the point-in-polygon
test [1], point in polygon test [2], or inside-outside test [3] in different studies. In this paper, we call
it the point-in-polygon test. Throughout this paper, let S denote a complex polygon that may be
self-intersecting, concave, or have holes nested to any level of depth.

Currently, many algorithms are available for the point-in-polygon test. Jiménez et al. [1] improved
the triangle-based algorithm and did not require any preprocessing, decomposition, or feature
classification. However, they are sensitive to whether a polygon is clockwise or counterclockwise
oriented and cannot be applied to a self-intersecting polygons or efficiently cope with degenerate cases
(see Figure 1).

Symmetry 2018, 10, 477; doi:10.3390/sym10100477 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-6103-0137
http://www.mdpi.com/2073-8994/10/10/477?type=check_update&version=1
http://dx.doi.org/10.3390/sym10100477
http://www.mdpi.com/journal/symmetry

Symmetry 2018, 10, 477 2 of 26

(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. A comparison of several algorithms for the point-in-polygon test. Apart from (b),
the remaining tests, including (c–g), all contain bugs that can be observed by enlarging them: (a) the
initial contour; (b) using Algorithm 1; (c) using the algorithms of Jiménez et al. [1]; (d) using Half-plane
testing; (e) using Barycentric coordinates; (f) using Spackman barycentric; and (g) using Efficient
boundary [2].

Presently, there is no ray-intersection algorithm that can handle all degenerate cases in which the
tested point P is on ∂S (the boundary of S). This includes the eight kinds of degenerate cases of the
26 kinds of positional relationships existing between

−−−→
PiPi+1 and

−→
PQ , as shown in Figure 2a,b,p–u.

Despite many efforts [2,4], these approaches have the same problems as previous algorithms with
degenerate cases (see Figure 1g). A detailed theoretical analysis and the proof of the correctness of
the method for the point-in-polygon test are missing. In addition, apart from [4–6], few algorithms
do not need to perform calculations for intersection points and costly division operations. However,
these algorithms overlook some problems, such as how to identify a point lying on ∂S and apply the
point-in-polygon test for a polygon containing nested holes, as shown in Figure 3a. No attempt to
optimize the algorithms for computing speed has been done.

Based on current knowledge, Haines [4,5] achieved the best performance. This algorithm is based
on the ray intersection algorithm. This paper examines each aspect of the problem, including the
various advantages and disadvantages of the previous algorithms, and provides a complete theoretical
and experimental analysis. Finally, it presents a new algorithm for the point-in-polygon test that can
handle all degenerate cases.

Symmetry 2018, 10, 477 3 of 26

PiPi+1

P Q

(a)
Pi Pi+1

P Q

(b) Pi

Pi+1

P Q

(c)

Pi

Pi+1
P

Q

(d)

Pi Pi+1

P Q

(e)
PiPi+1

P Q

(f)
Pi

Pi+1P Q

(g)

Pi

Pi+1

P Q

(h)

Pi

Pi+1P Q

(i)

Pi

Pi+1

P Q

(j)

Pi
Pi+1

P Q

(k)

Pi

Pi+1

P Q

(l)

Pi

Pi+1
P Q

(m)
Pi

Pi+1
P Q

(n)

Pi

Pi+1

P Q

(o)

Pi

Pi+1
P Q

(p)

Pi

Pi+1(P) Q

(q)

Pi
Pi+1

P Q

(r)

Pi

Pi+1

P
Q

(s)

Pi

Pi+1(P)

Q

(t)

Pi(P)

Pi+1

Q

(u)

PiPi+1

P

Q

(v)

Pi Pi+1

P

Q

(w) Pi

Pi+1
P Q

(x)

Pi

Pi+1

P Q

(y)

Pi

Pi+1

P
Q

(z)

Figure 2. A detailed description of the 26 kinds of positional relationships existing between
−−−→
PiPi+1 and

−→
PQ , and the corresponding processing results. Here, k is the variable to accumulate the total number
of intersections made by

−→
PQ and all edges of S: (a) P is on

−−−→
PiPi+1 ; (b) P is on

−−−→
PiPi+1 ; (c) k = k + 1;

(d) k = k + 1; (e) k does not change; (f) k does not change; (g) k does not change; (h) k does not change;
(i) k = k + 1; (j) k = k + 1; (k) k does not change; (l) k does not change; (m) k does not change; (n) k
does not change; (o) k does not change; (p) P is on

−−−→
PiPi+1 ; (q) P is on

−−−→
PiPi+1 ; (r) P is on

−−−→
PiPi+1 ; (s) P is

on
−−−→
PiPi+1 ; (t) P is on

−−−→
PiPi+1 ; (u) P is on

−−−→
PiPi+1 ; (v) k does not change; (w) k does not change; (x) k does

not change; (y) k does not change; and (z) k does not change.

Symmetry 2018, 10, 477 4 of 26

(a) (b) (c)

Figure 3. The point-in-polygon test for polygon containing nested holes: (a) contour containing nested
holes; (b) using Algorithm 1; and (c) using crossings multiply [5].

1.2. Boolean Operations

In computer graphics, boolean operations [3] on general polygons occur frequently in applications.
The aim of boolean operations on polygons is to extract all contours of the resultant polygons or obtain
all inner regions enclosed by the resultant polygons. If the goal is the latter, after the algorithm has
extracted all contours of the resultant polygons, it would need to perform additional processing steps,
such as scan-conversion or area-filling.

A traditional algorithm should follow the five main steps below: computing, ordering, traversing,
tracking intersection points, and establishing contours. When degenerate cases occur, Weiler [7] would
require special steps to be taken to deal with them. A more detailed discussion about the issue is
beyond the scope of this article. The main problem encountered by boolean operation algorithms is
that, because any two edges from different input polygons may overlap each other, the calculation of
intersection points becomes more complicated and may cause program instability.

This paper considers the point-in-polygon test and the rasterization algorithm, and presents a
novel method that can simultaneously perform both tasks, extracting the polygon boundaries and
obtaining the interior regions. Our method can be applied to 3D printing [8] to improve its performance.
We compare this method with that in [9], and find that there are some commonalities, but they are
actually considerably different.

1.3. The Major Contributors of This Paper

The major contributions of this paper are as follows.

1. For the point-in-polygon test, it provides a full theoretical and experimental analysis and presents
the serial Algorithm 1, which requires less running time than previous algorithms, can handle all
degenerate cases, and can both quickly determine whether a point is inside or outside a polygon
and accurately determine the contours of input polygon (see the example in Figure 3b).

2. It describes all degenerate cases and provides corresponding solutions to ensure the stability
and reliability (see Figure 2). This also creates the prerequisites and basis for our boolean
operations algorithm.

3. It also presents a novel Algorithm 2 for boolean operations, as shown in Figure 4.
4. Our algorithms avoid the division operation and expensive intersection calculations, do not have

to sort the vertices clockwise or counterclockwise beforehand, process all edges one by one in
any order for an input polygon, are parallelizable because their many operations can be done in
parallel, and are applicable to any polygons, including self-intersecting polygons or those with
holes nested to any level of depth (see Figure 3).

Symmetry 2018, 10, 477 5 of 26

5. To speed up boolean operations, it provides each vector a number code (see Figure 2) and derives
two iterative formulas (Equations (4) and (5)) using differential calculus.

6. A detailed theoretical and experimental analysis of Algorithms 1 and 2, including the proofs of
their correctness (see Theorems 1–4), are shown.

7. Using geometric probability and Equation (3), it optimizes all algorithms.

π1 π2

(a)

π1 π2

(b)

π1 π2

(c)

π1 π2

(d)

Figure 4. Boolean operations of two polygons π1 and π2: (a) polydons π1 and π2; and (b) π1 ∪ π2;
(c) π1 ∩ π2; (d) π1 − π2.

2. Related Work

2.1. The Point-in-Polygon Test

By examining theoretical principles and technical features, we can classify the existing algorithms
into the following five categories:

Ray-intersection algorithm

In many studies, this type of algorithm is called the ray–crossing [2], crossings–count [4],
odd–even [3], odd parity [3], or even–odd [2,10] algorithm because the structures and principles
of the different algorithms are all slightly different. However, virtually all of these algorithms evolved
from the ray-intersection algorithm, which works by shooting a ray

−→
PQ in any direction (see Figure 5;

in general, this is done parallel to the x-axis) from the test point P to infinity and counts the number
of intersections between the ray

−→
PQ and all edges of input polygon. Wang et al. [11] classified edges

into layers and calculated the number of intersections, but did not apply to self-intersecting polygons.

Symmetry 2018, 10, 477 6 of 26

Moreover, the time complexities of the preprocessing steps ranges from O(n) to O(n2), depending on
the polygon shape and the test direction.

P
Q

T

Pn−5

Pn−4

Pn−3

Pn−2

Pn−1

Pn

P1

P2

P3

PiPi

Pi+1Pi+1

Figure 5. A polygon S and ray
−→
PQ,
−→
PT.

If the boundary curve is represented as a spline curve, then the ray-intersection algorithm can be
easily modified as one only needs to compute the intersection points with a spline curve and that can
be easily achieved by efficient root-finding algorithms [12–15].

The paper considers the multiplicity of the ray-vs.-edge intersection as shown in Figure 2c–z,
in particular in Figure 2c–j. Further, the proof of Lemma 1 also provides relevant evidence and reasons
in detail.

Sum of angles algorithm

The sum of angles algorithm [1] is equivalent to the angle summation algorithm [2], which needs
to calculate the angle sum of a polygon. Thus, the algorithms carry out trigonometric operations that
lead to floating-point operations and have substantial time and space costs.

Winding number algorithms

The winding number algorithm [2], also called the nonzero winding number algorithm [3],
includes two approaches: the first is an improved algorithm from the sum of angles that introduces the
cross and dot product operations of two vectors and thereby avoids angle calculations [3]. However, if
the two vectors are parallel or vertical, the calculations would fail. In addition, if the input polygon is
self-intersecting or has holes, the results would be incorrect. By improving the even-odd algorithm
step by step, the second approach shows the even-odd and the nonzero winding number algorithms
are identical except in their interpretation of the intersection count [2].

Grid algorithm

Gombos˘i and Žalik [16] considered a polygon as a group of grid cells and used O(n
√

n) time
to first preprocess a given polygon. Following the rule in [16], the quasi-closest point algorithm
must also be preprocessed to subdivide the bounding rectangle of a polygon into uniform-sized
cells [17]. However, this method can only be used on raster-based problems and cannot be used on
self-intersecting polygons.

Symmetry 2018, 10, 477 7 of 26

Decomposition algorithm

The decomposition algorithms with O(n log n) time complexity must perform preprocessing to
partition an input polygon into a series of simpler components, including trapezoids (swaths) [18],
convex sub-polygons, quad meshes, or triangles (tri-cones) [1]. The multi-L-REP [19] and the
EL-REP [20] algorithms extended the L− REP decomposition algorithm. At worst, the latter has time
complexity O(log2 n).

2.2. Boolean Operations

Many available algorithms exist for boolean operations, but some of them have limitations
on the shape of input polygons. For example, Andreev [21] required a rectangular clip polygon,
while Rappoport [22] required a convex clip polygon. Greiner and Hormann [23] handled degenerate
cases by perturbing the position of the vertex, but, by doing so, it required some additional
computational overhead, which makes its running time undeterminable. Weiler [7], Weiler and
Atherton [24], and Andreev [21] permitted any clip or subject polygons to be concave or with holes,
but could not handle self-intersecting polygons. Vatti [25] and Greiner and Hormann [23] could
perform boolean operations for any clip and subject polygons including those that are self-intersecting,
concave, or with holes.

Vatti [25] used the plane sweep technique [9]. Martínez et al. [26] subdivided the edges of
polygons at the points of intersection. Therefore, the algorithm must be modified when it encounters
self-intersecting or unexpected input polygons, such as two edges overlapping.

Based on simple chains [27], Rivero and Feito [28] could avoid the treatment of degenerate cases.
However, the approach is invalid for self-intersecting polygons. The execution time of [29] is less than
one-third of that of [28]. Weiler [7] provided an improvement over [24]. However, Weiler [7] could not
handle self-intersecting polygons.

Graysmith and Shaw [30] performed boolean operations by dividing the geometric shape into
a set of meshes. Although the plane sweep algorithm [9] attempts to do this, it does not satisfy the
necessary conditions.

3. The Point-in-Polygon Test Principle

Definition 1. A polygon S is composed of rings. A ring is a sequence of edges, which link together and form a
closed circuit. A ring containing all other rings is the outer ring of S, while each of the remaining rings is the
inner ring of S, also known as inner hole of S, and referred to as hole of S.

Let S be a closed polygon on a plane with n vertices P1(x1, y1), P2(x2, y2), · · · , Pi(xi, yi), · · · , Pn(xn, yn)

such that there exists an edge between Pi and Pi+1 for all i ∈ {1, 2, · · · , n− 1} and between Pn and P1 (see
Figure 5). Let

−−−→
PiPi+1 be an edge vector of S. Let P(x, y) be a point on the plane. We define a function F(x, y)

as follows:

F(x, y) = (xi+1 − xi)y− (yi+1 − yi)x + xiyi+1 − xi+1yi (1)

= (yi − yi+1)(x− xi)− (yi − y)(xi+1 − xi). (2)

Equation (1) requires one addition, four subtractions, four multiplications, and a total of nine
operations while Equation (2) requires only five subtractions, two multiplications, and a total of seven
operations. In addition, we know that multiplication takes more time than addition or subtraction.
Therefore, to reduce the running times of our algorithms below, we always use Equation (2).

Definition 2. Given an edge vector
−−−→
PiPi+1 whose function F(x, y) = (yi − yi+1)(x− xi)− (yi − y)(xi+1− xi)

with Pi = (xi, yi) and Pi+1 = (xi+1, yi+1).

Symmetry 2018, 10, 477 8 of 26

F(x, y) satisfying the Jordan property means that the edge vector
−−−→
PiPi+1 divides the plane into two half

plane that are disconnected from each other (see Figure 6). Therefore, F(x, y) satisfying the Jordan property can
also be called the vector

−−−→
PiPi+1 satisfies Jordan property.

Pi

Pi+1F(x, y) > 0

F(x, y) = 0

F(x, y) < 0

Figure 6. F(x, y) satisfies Jordan property.

Assume that
−→
PQ is a horizontal ray that starts at P(xp, yp), passes through Q(xq, yq), and extends

infinitely in the +x direction (see Figure 5). We define a variable k = 0 to accumulate the total number
of intersections made by

−→
PQ and all edges of S. By (2) for

−→
PQ , it follows that

F(x, y) = (yp − yp)(x− xp)− (yp − y)(xq − xp)

= (xq − xp)(y− yp) .

because (xq − xp) > 0, F(x, y) and (y− yp) are either all positive or all negative. For Pi(xi, yi) with

i ∈ {1, 2, · · · , n}, if yi > yp, then Pi is on the left side of
−→
PQ (above). Otherwise, if yi < yp, then Pi is on

the right side of
−→
PQ (below). If neither is true, then Pi is on the ray

−→
PQ . By substituting P(xp, yp) into

Equation (2), we establish the following equation.

F(P) = (yi − yi+1)(xp − xi)− (yi − yp)(xi+1 − xi). (3)

Starting from the point P1, we traverse each edge vector
−−−→
PiPi+1 of S exactly once and manage

to determine the positional relationship between
−−−→
PiPi+1 and

−→
PQ . Thus, without calculating

the intersection point, one can accurately determine whether
−−−→
PiPi+1 and

−→
PQ intersect each other.

Furthermore, if
−−−→
PiPi+1 and

−→
PQ intersect each other, we set k = k + 1. By carefully analyzing whether

−→
PQ and

−−−→
PiPi+1 intersect each other, and whether the point P is on

−−−→
PiPi+1 , it can be seen that

−→
PQ with−−−→

PiPi+1 can have the following 26 different positional relationships (see Figure 2).

1. xi+1 ≤ xp ≤ xi ∧ yi+1 = yp = yi, P is on
−−−→
PiPi+1 (see Figure 2a). Thus, P is on ∂S.

2. xi ≤ xp ≤ xi+1 ∧ yi = yp = yi+1, P is on
−−−→
PiPi+1 (see Figure 2b. Thus, P is on ∂S.

3. F(P) > 0 ∧ yi = yp ∧ yp < yi+1, P is on the back-left side of
−−−→
PiPi+1 (the viewing direction is

along the direction of
−−−→
PiPi+1 , which is maintained below. see Figure 2c). Thus,

−−−→
PiPi+1 intersects

−→
PQ and we set k = k + 1.

4. F(P) < 0 ∧ yi > yp ∧ yp = yi+1, P is on the front-right side of
−−−→
PiPi+1 (see Figure 2d).

Thus,
−−−→
PiPi+1 intersects

−→
PQ and we set k = k + 1.

5. yp = yi = yi+1 ∧ xi+1 > xi > xp,
−−−→
PiPi+1 and

−→
PQ have the same direction, and the edge PiPi+1 is

shorter than the edge PQ (see Figure 2e). Although both overlap each other on PiPi+1, we regard
them as having no intersection, and k remains unchanged.

6. yp = yi = yi+1 ∧ xi > xi+1 > xp,
−−−→
PiPi+1 overlaps

−→
PQ , and both have opposite directions

(see Figure 2f). Although both overlap on
−−−→
PiPi+1 , we regard them as having no intersection,

and remain k unchanged.

Symmetry 2018, 10, 477 9 of 26

7. F(P) > 0 ∧ yp = yi+1 ∧ yi+1 > yi, P is on the front-left side of
−−−→
PiPi+1 (see Figure 2g).

Although
−−−→
PiPi+1 intersects

−→
PQ at Pi+1, we regard them as having no intersection, and k

remains unchanged.
8. F(P) < 0 ∧ yp = yi ∧ yi > yi+1, P is on the back-right side of

−−−→
PiPi+1 (see Figure 2h).

Although
−−−→
PiPi+1 intersects

−→
PQ at Pi, we regard them as having no intersection, and k remains

unchanged (similar to Case 7).
9. F(P) > 0 ∧ yi+1 > yp > yi, P is on the left-middle side of

−−−→
PiPi+1 (see Figure 2i).

Thus,
−−−→
PiPi+1 intersects

−→
PQ , and we set k = k + 1.

10. F(P) < 0 ∧ yi > yp > yi+1, P is on the right-middle side of
−−−→
PiPi+1 (see Figure 2j).

Thus,
−−−→
PiPi+1 intersects

−→
PQ , and we set k = k + 1.

11. yp > yi ∧ yp > yi+1,
−−−→
PiPi+1 is on the right side of

−→
PQ (below) (see Figure 2k). Thus, both are

disjoint, and k remains unchanged.

12. F(P) > 0∧ yp < yi ∧ yi+1 < yp,
−→
PQ is also on the left side of

−−−→
PiPi+1 (see Figure 2l). Thus, both are

disjoint, and k remains unchanged.

13. F(P) < 0∧ yp < yi+1 ∧ yp > yi,
−→
PQ is on the right side of

−−−→
PiPi+1 (see Figure 2m). Thus, both are

disjoint, and k remains unchanged.

14. F(P) < 0∧ yp = yi+1 ∧ yp > yi,
−→
PQ is on the right side of

−−−→
PiPi+1 (see Figure 2n). Thus, both are

disjoint, and k remains unchanged.

15. F(P) > 0 ∧ yp = yi ∧ yp > yi+1,
−→
PQ is on the left side of

−−−→
PiPi+1 (see Figure 2o). Thus, both are

disjoint, and k remains unchanged.
16. F(P) = 0∧ yi < yp ∧ yp < yi+1, P is on ∂S

−−−→
PiPi+1 (see Figure 2p).

17. P = Pi+1 ∧ yp > yi, P is on ∂S
−−−→
PiPi+1 (see Figure 2q).

18. P = Pi ∧ yp > yi+1, P is on ∂S
−−−→
PiPi+1 (see Figure 2r).

19. F(P) = 0∧ yi > yp ∧ yp > yi+1, P is on ∂S
−−−→
PiPi+1 (see Figure 2s).

20. P = Pi+1 ∧ yp < yi, P is on ∂S
−−−→
PiPi+1 (see Figure 2t).

21. P = Pi ∧ yp < yi+1, P is on ∂S
−−−→
PiPi+1 (see Figure 2u).

22. yp = yi = yi+1 ∧ xi+1 < xi < xp,
−−−→
PiPi+1 and

−→
PQ are mutually separate, and both have opposite

directions
−−−→
PiPi+1 (see Figure 2v). Thus, they are disjoint, and k remains unchanged.

23. yp = yi = yi+1 ∧ xp > xi+1 > xi,
−−−→
PiPi+1 and

−→
PQ are disjoint

−−−→
PiPi+1 (see Figure 2w), and k

remains unchanged.

24. F(P) < 0 ∧ yi = yp ∧ yp < yi+1, P is on the back-right side of
−−−→
PiPi+1 , and

−−−→
PiPi+1 and

−→
PQ are

disjoint
−−−→
PiPi+1 (see Figure 2x). Thus, k remains unchanged.

25. F(P) > 0 ∧ yi+1 = yp ∧ yp < yi, P is on the front-left side of
−−−→
PiPi+1 , and

−−−→
PiPi+1 and

−→
PQ are

disjoint
−−−→
PiPi+1 (see Figure 2y). Thus, k remains unchanged.

26. yp < yi ∧ yp < yi+1,
−−−→
PiPi+1 is on the left side of

−→
PQ (above), and

−−−→
PiPi+1 and

−→
PQ are disjoint

−−−→
PiPi+1

(see Figure 2z). Thus, k remains unchanged.

Further, we can classify and simplify the 26 positional relationships into three classes:

1. Class 1 includes Cases 3, 4, 9, and 10, for each of which
−−−→
PiPi+1 intersects

−→
PQ . Therefore, we set

k = k + 1.
2. Class 2 includes Cases 1, 2, and 16–21, for each of which P is on ∂S.
3. Class 3 includes the remaining cases, for each of which

−−−→
PiPi+1 and

−→
PQ are disjoint. Therefore, k

remains unchanged.

To facilitate the analysis and processing of the problem, we give each vector involved in these
operations a number code of 1–26 such that each vector

−−−→
PiPi+1 in Figure 2a–z has a number code of

1–26, which is one-to-one correspondence with Cases 1–26.

Symmetry 2018, 10, 477 10 of 26

Definition 3. Let S consist of a set of closed polygons. The minimum bounding box of S, denoted by MBB,
is the smallest box that encloses the entire S and is axis-aligned rather than oriented-aligned.

For the point-in-polygon test and boolean operations, our methodology can be divided into
two steps. The first step performs preprocessing to determine whether a point lies inside or outside the
minimum bounding box MBB of input polygons. If the point lies within the MBB, we then perform
the second step to determine whether the point is inside or outside the polygon.

Occasionally, a user may need to handle polygons with small sizes. Clearly, the occurrence
probability of input polygons with limited sizes, involved in operations, is low. For example, let us
consider the possibility of occurrence that the input polygon has vertices (0,0), (1,1), (1,1− t) with small
t. It is true that this probability is tiny. Furthermore, it follows that the probability of a point lying on
the boundary of a polygon is approximately zero, since the actual width the edge of a polygon in use
is not 0.

To optimize our algorithms, we can let the program automatically calculates the probabilities of
a point lying within and outside a polygon. If the probability of the point lying within the polygon
is greater than the probability of the point lying outside the polygon when the minimum bounding
box MBB has been calculated, we let the program first decide whether the point is within the polygon,
and then decide whether the point is outside the polygon. Conversely, if the probability of the point
lying outside the polygon is greater than the probability of the point lying within the polygon, we let
the program first decide whether the point is outside the polygon, and then decide whether the point
is within the polygon. Since the probability of the point lying on the boundary of the polygon is
approximately zero, we let the program at last decide whether the point is on the polygon. In this
paper, we assume that the probability of a point lying within a polygon is greater than the probability
of the point lying outside the polygon.

Definition 4. Let S be a closed polygon and P a point on the plane. If P is on an edge of S, then we set k = −1.
Otherwise, we set k equal to the number of intersections made by the ray

−→
PQ and all edges of S. We define

the variable k as the point P is odd-even number around S, referred to as the point P is odd-even number,
denoted by S(P).

In addition, when P is inside the outer ring of S (see Definition 1), if the k is even, then we call P outside
S. On the contrary, if the k is odd, then we call P inside S.

Lemma 1. Let S be a closed polygon and P a point on the plane. By Definition 1, assume that Γ is a ring of S,
which intersects with

−→
PQ . Assume that U1, U2, · · · , Ut are all intersections produced by

−→
PQ and all edges of Γ

with t 6= 0. Then, the P is outside Γ if and only if the t is an even.

Proof. By the conditions of Lemma 1, we have that U1(x1, y1), U2(x2, y2), · · · , Ut(xt, yt) are the
intersections produced by

−→
PQ and all edges of Γ. In Figure 2a–z, it can be observed that

−→
PQ and just

the
−−−→
PiPi+1 in Figure 2c,d,i or Figure 2j can have intersections.
Let us first prove the necessity. Suppose the P is outside S.
At first, we let U = U1 and k = 1. For the intersections U, our proof is divided into the following

two main steps.

1. If the intersection of
−→
PQ and the

−−−→
PiPi+1 (denoted by I9 J10) in Figure 2i or Figure 2j is U, then I9 J10

crosses
−→
PQ from one side to another. Since I9 J10 belongs to the closed Γ, there must be another

edge
−−−→
PiPi+1 in Figure 2c,d,i, or Figure 2j that also intersects with

−→
PQ at another different

intersection (denoted by V1). Let us assume that V1 = U2. Therefore, k = k + 1 = 2.

2. Otherwise, if the intersection of
−→
PQ and the

−−−→
PiPi+1 (denoted by C3D4) in Figure 2c or Figure 2d is

U, then the other side connecting to U(denoted by U38) can only be the
−−−→
PiPi+1 in Figure 2c–g, or

Figure 2h.

Symmetry 2018, 10, 477 11 of 26

Besides, our proof for Lemma 1 is divided into the following three main sub-steps.

(a) If U38 is the
−−−→
PiPi+1 (denoted by C1

3D1
4) in Figure 2c or Figure 2d, then

−→
PQ and C1

3D1
4 must

produce a new intersection (denoted by V2), which is equal to U and let us assume that
V2 = U2. U2 increases the number of intersections of Γ and

−→
PQ by 1. Therefore, k = k+ 1 = 2.

(b) Otherwise, if U38 is the
−−−→
PiPi+1 (denoted by E5F6) in Figure 2e or Figure 2f, then E5F6

belongs to the closed Γ of S. Then, next, the other side connecting to E5F6 (denoted by
U381) can only be the

−−−→
PiPi+1 in Figure 2c–g, or Figure 2h.

i. If U381 is the
−−−→
PiPi+1 (denoted by C2

3 D2
4) in Figure 2c or Figure 2d, then

−→
PQ and

C2
3 D2

4 must produce a new intersection, which is different from U (denoted by V3).
Let us assume that V3 = U2. Therefore, k = k + 1 = 2.

ii. Otherwise, if U381 is the
−−−→
PiPi+1 (denoted by E1

3 F1
4) in Figure 2e or Figure 2f,

the procedure returns to Step 2b above. Since the number of edges of Γ is limited,
this iteration will end after finite number of steps.

iii. Otherwise, if U381 is the
−−−→
PiPi+1 (denoted by G7H8) in Figure 2g or Figure 2h,

then the path C3D4 → E5F6 → G7H8 crosses
−→
PQ from one side to another.

Since G7H8 belongs to the closed Γ of, there must be another edge
−−−→
PiPi+1

in Figure 2c,d,i, or Figure 2j that also intersects with
−→
PQ at another different

intersection (denoted by V4). Let us assume that V4 = U2. Therefore, k = k+ 1 = 2.

(c) Otherwise, if U38 is the
−−−→
PiPi+1 (denoted by G7H8) in Figure 2g or Figure 2h, the path

C3D4 → G7H8 crosses
−→
PQ from one side to another. Since G7H8 belongs to the closed

Γ, there must be another edge
−−−→
PiPi+1 in Figure 2c,d,i, or Figure 2j that also intersects

with
−→
PQ at another different intersection (denoted by V5). Let us assume that V5 = U2.

Therefore, k = k + 1 = 2.

From the intersection sequence U1, U2, · · · , Ut, we remove U1 and U2, and let U = U3 and
k = k + 1. Then, we repeat the above Steps 1 and 2 until there is no intersection in the intersection
sequence U1, U2, · · · , Ut. Finally, it can be seen that the conclusion of Lemma 1 holds.

Let us prove the sufficiency in Lemma 1. Suppose the t is even.
We use the induction for m = t/2.
If m = 1, by Figure 2a–z, suppose the pair of intersections are U1 and U2. Further, let us assume

that U = U1, then U2 must belong to an element of S1 = {V1, V2, V3, V4, V5} (see the proof of the
necessity of Lemma 1). Regardless of which element U2 belongs to S1, eventually it can be seen that P
is outside Γ. Therefore, it is established that P is outside Γ for m = 1.

Suppose that P is outside Γ for m = k.
Let us prove that P is outside Γ for m = k + 1.
Suppose that there exists a point that is outside Γ for m = k; it can be asserted that there is always

a point P0(x0, y0) outside Γ such that the number of pairs of intersection points of
−−→
P0Q and Γ is k.

Assume that only the x coordinate of the two intersections U1(x1, y1) and U2(x2, y2) is less than
the x coordinate of any other intersection, and U1(x1, y1) and U2(x2, y2) meet condition x1 ≤ x2.

Further, let us assume that U = U1, then U2 must belong to an element of S1 = {V1, V2, V3, V4,
V5} (see the proof of the necessity of Lemma 1). Regardless of which element U2 belongs to S1, on the
ray
−→
PQ , there is only one pair of intersections U1(x1, y1) and U2(x2, y2) produced by

−→
PP0 and all edges

of Γ. Therefore, it can be inferred that P is outside Γ.
Eventually, it can be seen that P is outside Γ for m = k + 1. Therefore, it is established that P is

outside Γ for m = k + 1.

Symmetry 2018, 10, 477 12 of 26

Lemma 2. Let S be a closed polygon and P a point on the plane. By Definition 1, assume that Γ is a ring of S,
which intersects with

−→
PQ . Assume that U1, U2, · · · , Ut are all intersections produced by

−→
PQ and all edges of Γ

with t 6= 0. Then, P is inside Γ if and only if the t is an odd.

Proof. Let us first prove the necessity. Suppose the P is inside Γ. We now prove the necessity of
Lemma 2 by contradiction. Assume by contradiction that the t is an even.

Then, by the sufficiency of Lemma 1, it follows that the P is outside Γ, leading to a contradiction
with the constraint that the P is inside Γ. Therefore, the assumption that the t is an even does not hold.
The necessity of Lemma 2 immediately follows.

Next, let us prove the sufficiency in Lemma 2. Suppose the t is an odd. We now prove the
sufficiency of Lemma 2 by contradiction. Assume by contradiction that the P is outside Γ.

Then, by the necessity of Lemma 1, it is clear that the t is an even, leading to a contradiction with
the constraint that the t is an odd. Therefore, the assumption that the P is outside Γ does not holds.
The sufficiency of Lemma 2 immediately follows.

Theorem 1. Let S be a closed polygon and P a point on the plane. If P is on the boundary of S, then the point P
is odd-even number S(P) = −1. Otherwise, if P is outside S, then S(P) is 0 or even. Otherwise, if P is inside
S, S(P) is odd.

Proof. Our proof of Theorem 1 is divided into the following four main steps.

1. If P is on the boundary of S, then P is on an edge vector of S. Therefore, by Definition 4, it follows
that the point P is odd-even number S(P) = −1.

2. Otherwise, if P is outside S and
−→
PQ does not intersect any edge of S, then S(P) = 0 by Definition 4.

3. Otherwise, if P is outside the outer ring of S (see Definition 1) and condition the number of
intersections > 0 holds between

−→
PQ and all edges of S, below let us prove that the number of

intersections is even.

Let us assume that
−→
PQ intersects with the rings Γ1, Γ2, · · · , Γl of S. By Lemma 1, it follows that

the number of intersections produced by
−→
PQ and all edges of ring Γi is an even for i = 1, 2, · · · , l.

Therefore, the total number of intersections produced by
−→
PQ and the rings Γ1, Γ2, · · · , Γl of S is

an even and this conclusion that S(P) is even holds.
4. Otherwise, if P is inside the outer ring of S (see Definition 1). Let us assume that Γ1, Γ2, · · · , Γl

are all rings of S each of which the P is outside. Similarly, let us assume that γ1, γ2, · · · , γm are all
rings of S each of which the P is within.

By the necessity of Lemma 1, it follows that the number of intersections between
−→
PQ and Γi is an

even for i = 1, 2, · · · , l. As a result, the total number of intersections produced by
−→
PQ and Γi is an

even with i = 1, 2, · · · , l.

Similarly, by the necessity of Lemma 2, it follows that the number of intersections between
−→
PQ

and γi is an odd(denoted by ti) for i = 1, 2, · · · , m. As a result, the total number of intersections

produced by
−→
PQ and γi with i = 1, 2, · · · , m is

m
∑

i=1
ti whose parity is consistent with the parity of m.

Accordingly, if m is an even, then the k that denotes the number of intersections made by
−→
PQ and

all edges of S is also an even, and vice versa.

Eventually, when P is inside the outer ring of S, by Definition 4, it follows that

(a) If the k is even, then the P is outside S and S(P) is even.
(b) Conversely, if the k is odd, then the P is inside S and S(P) is odd.

Symmetry 2018, 10, 477 13 of 26

Algorithm 1: Determine whether P is inside, outside, or on ∂S. It cannot solve the problem of
instability that can result from the comparison operations of floating-point numbers.

Input : A tested point P = (xp, yp) and the edge sequence (P1P2, P2P3, · · · , PiPi+1, · · · ,
PnPn+1) of a closed polygon S with i = 1, 2, · · · , n.

Output : Return an integer 1, 0, or −1 depending on whether the point P is within, outside,
or on the polygon S, respectively.

1 i← 0; k← 0; f ← 0;

2 u1← 0; v1← 0; u2← 0; v2← 0;

3 for i← 1 to n do

4 v1← yi − yp; v2← yi+1 − yp;

5 if (v1 < 0 and v2 < 0)or(v1 > 0 and v2 > 0) then // Case 11 or 26

6 go back to the beginning of the for-loop;

7 u1← xi − xp; u2← xi+1 − xp;

8 if v2 > 0 and v1 <= 0 then // Case 3, 9, 16, 21, 13, or 24

9 f ← u1 ∗ v2− u2 ∗ v1;

10 if f > 0 then // Case 3 or 9

11 k← k + 1; // Handle Case 3 or 9

12 else if f ==0 then // Case 16 or 21.The rest are Case 13 or 24

13 return −1; // Handle Case 16 or 21

14 else if v1 > 0 and v2 <= 0 then// Case 4, 10, 19, 20, 12, or 25

15 f ← u1 ∗ v2− u2 ∗ v1 ;

16 if f < 0 then // Case 4 or 10

17 k← k + 1; // Handle Case 4 or 10

18 else if f ==0 then // Case 19 or 20.The rest are Case 12 or 25
19 return −1; // Handle Case 19 or 20

20 else if v2 == 0 and v1 < 0 then// Case 7, 14, or 17

21 f ← u1 ∗ v2− u2 ∗ v1;

22 if f == 0 then return −1; // Case 17.The rest are Case 7 or 14

23 else if v1 == 0 and v2 < 0 then// Case 8, 15, or 18

24 f ← u1 ∗ v2− u2 ∗ v1;

25 if f == 0 then return −1; // Case 18.The rest are Case 8 or 15

26 else if v1 == 0 and v2 == 0 then // Case 1, 2, 5, 6, 22, or 23

27 if u2 <= 0 and u1 >= 0 then // Case 1

28 return −1; // Handle Case 1

29 else if u1 <= 0 and u2 >= 0 then // Case 2.The rest are Case 5, 6, 22, or 23

30 return −1; // Handle Case 2

31 if k%2 == 0 then return 0;

32 else return 1;

Symmetry 2018, 10, 477 14 of 26

4. A Serial Algorithm for the Point-in-Polygon Test

In this section, we show the serial Algorithm 1 for the point-in-polygon test that uses many
comparison operations of floating-point numbers. One may worry that the comparison operations
of floating-point numbers can lead to the floating point errors, which would cause the program to
run incorrectly. The results of the experiment show that this worry is superfluous (see the conclusion
of Section 7).

Now, let us present the serial Algorithm 1 in detail. By using calculated values from previous
Steps 4 and 7 in Algorithm 1, Steps 9, 15, 21, and 24 calculate the variable f that corresponds to the
function F in Equation (3). The for-loop in Steps 3–30 handles each edge PiPi+1 in turn and determines
which case the positional relationship between

−−−→
PiPi+1 and P belongs to, as shown in Figure 2.

Steps 5–6 deal with Cases 11 and 26, as shown in Figure 2k,z.
Steps 8–13 handle Cases 3, 9, 16, 21, 13, and 24 (see Figure 2c,i,p,u,m,x). Furthermore, Step 11

corresponds to Case 3 or 9, while Step 13 corresponds to Case 16 or 21. The rest correspond to Case 13
or 24.

Steps 14–19 handle Cases 4, 10, 19, 20, 12, and 25 (see Figure 2d,j,s,t,l,y). Furthermore, Step 17
corresponds to Case 4 or 10, while Step 19 corresponds to Case 19 or 20. The rest correspond to Case 12
or 25.

Steps 20–22 handle Cases 7, 14, and 17 (see Figure 2g,n,q). Furthermore, Step 22 corresponds to
Case 17. The rest correspond to Case 7 or 14.

Steps 23–25 handle Cases 8, 15, and 18 (see Figure 2h,o,r). Furthermore, Step 25 corresponds to
Case 18. The rest correspond to Case 8 or 15.

Steps 26–30 handle Cases 1, 2, 5, 6, 22, and 23 (see Figure 2a,b,e,f,v,w). Furthermore, Step 28
corresponds to Case 1. Step 30 corresponds to Case 2. The rest correspond to Case 5, 6, 22, or 23.

Algorithm 1 does not clearly indicate how to deal with the remaining cases,
including Cases 5–8, 12–15, and 22–25 (see Figure 2e–h,l–o,v–y). However, no matter which
of them appears, k does not change and P is not on

−−−→
PiPi+1 , therefore Algorithm 1 does not require any

additional process step.
From the above discussion, it follows that Algorithm 1 can operate correctly under any condition

and has been optimized for speed and robustness. Finally, using k, by Steps 31–32 Algorithm 1 can
determine whether P is within, outside, or on S. Algorithm 1 is parallelizable because many of its
operations can be done in parallel.

5. Boolean Operations Principle and Algorithm

In this section, we show the basic principle for boolean operations by deriving Theorems 2
and 3. Furthermore, we present a new Algorithm 2 for boolean operations. Let π1 be a polygon
with m vertices P1, P2, · · · , Pm and m corresponding edges P1P2, P2P3, · · · , Pm−1Pm, PmP1. Let π2 be a
polygon with n vertices Q1, Q2, · · · , Qn and n corresponding edges Q1Q2, Q2Q3, · · · , Qn−1Qn, QnQ1.
Let S = π1 or π2.

First, Algorithm 2 calculates the minimum bounding box of π1 and π2 denoted by MBB.
Then, starting from the top-left corner of the MBB, Algorithm 2 scans the MBB point by point,
from left to right and from top to bottom until reaching the bottom-right corner. For each point
involved, Algorithm 2 determines the positional relationship between P(∈ MBB) and π1 and between
P(∈ MBB) and π2.

Using differential calculus, we will derive two iterative formulas by which Algorithm 2 can
quickly determine the positional relationships between a set of points and a set of polygons. For this
purpose, assume that Algorithm 2 sweeps across an intermediate point Rk = (xk, yk) (Rk ∈ MBB and
see Figure 7), and the meaning of Q (below) is the same as the previous definition of Q. Suppose that
Algorithm 2 already knows if Rk = (xk, yk) is inside, outside, or on the boundary of S. Let Tk =

(xmin, yk)(Tk ∈ MBB and see Figure 7), Rk+1 = (xk+1, yk+1) = (xk +∆x, yk), and Tk+1 = (xmin, yk+1) =

Symmetry 2018, 10, 477 15 of 26

(xmin, yk + ∆y) where xmin is the smallest x-coordinate of the MBB. For the point Rk, the following
situations may occur:

1. Rk is in the top-left corner of MBB (see Figure 8).
2. Rk is on the left border of MBB (see Figure 9).
3. Rk is inside the MBB (see Figure 7).

Q1

Q2

Q3

Qk

Qk+1

QmP2

P3

Pi

Pi+1

Pn

P1

Tk Rk Rk+1

Tk+1

∆x = 1, ∆y = −1, Rk = (xk, yk)
Rk+1 = (xk + 1, yk), Tk+1 = (xmin, yk − 1)

π1

π2

Figure 7. Point Rk is inside MBB.

Q1

Q2

Q3

Qk

Qk+1

QmP2

P3

Pi

Pi+1

Pn

P1

Rk = Tk Rk+1

Tk+1

∆x = 1, ∆y = −1
Rk+1 = (xk + 1, yk), Tk+1 = (xmin, yk − 1)

π1

π2

Figure 8. Point Rk = Tk, and Rk is at the top-left corner.

Q1

Q2

Q3

Qk

Qk+1

QmP2

P3

Pi

Pi+1

Pn

P1

Tk = Rk Rk+1

Tk+1

∆x = 1, ∆y = −1
Rk+1 = (xk + 1, yk), Tk+1 = (xmin, yk − 1)

π1

π2

Figure 9. Point Rk = Tk, and Rk is on the left border of MBB.

Symmetry 2018, 10, 477 16 of 26

Algorithm 2: Performing boolean operations on two polygons.

Input : Parameter t (the type of Boolean operation) and two closed polygons S1 and S2.
They are defined by an edge array of double type. S1 and S2 may be arbitrarily
complex. They may be convex or concave, self-intersecting, contain holes, or be
comprised of various contours.

Output : Return integer t equal to 0 or 1. If Boolean operation is successful, return integer 1;
otherwise, return integer 0.

1 k1 ← 0 ;// Store the number of intersections of
−→
PQ with S1.

2 k2 ← 0 ;// Store the number of intersections of
−→
PQ with S2.

3 T ← (0, 0) ; R← (0, 0) ;// T and R are Tk and Rk, respectively.

4 top_Le f t← (0, 0); bottom_Right← (0, 0) ;

5 Compute the top-left and the bottom-right point of S1 and S2;

6 T ← top_Le f t ;

7 for T.y = top_Le f t.y to bottom_Right.y do

8 R← T ;

9 for R.x = T.x to bottom_Right.x do

10 Determine whether R is inside, outside, or on the boundary of S1 and S2, respectively;

11 According to the result of Step 10 and value t, display R;

12 if R! = T then

13 if R is inside, or outside S1 or S2 then

//
−−−→
PiPi+1 =

−−−−−−−−−−−→
(xi, yi)(xi+1, yi+1)

14 forall
−−−→
PiPi+1 of S1 or S2 do

15 code← the coding of
−−−→
PiPi+1 ;

16 if 3 ≤ code ≤ 10 then

17 F(R)← F(R) + (yi − yi+1);

18 else if k1 == 0 or k2 == 0 then

19 forall
−−−→
PiPi+1 of S1 or S2 do

20 if 5 ≤ code ≤ 8 then

21 F(R)← F(R) + (yi − yi+1);

22 else if R is on the boundary of S1 or S2 then

23 forall
−−−→
PiPi+1 of S1 or S2 do

24 if 1 ≤ code ≤ 10 then

25 F(R)← F(R) + (yi − yi+1);

26 else

27 if R is inside, or outside S1 or S2 then

28 forall
−−−→
PiPi+1 of S1 or S2 do

29 if 7 ≤ code ≤ 15 then

30 F(T)← F(T) + (xi − xi+1);

31 else if 3 ≤ code ≤ 10 then

32 F(R)← F(R) + (yi − yi+1);

Symmetry 2018, 10, 477 17 of 26

33 else if k1 == 0 or k2 == 0 then

34 forall
−−−→
PiPi+1 of S1 or S2 do

35 if 7 ≤ code ≤ 15 then
36 F(T)← F(T) + (xi − xi+1);

37 else if 5 ≤ code ≤ 8 then
38 F(R)← F(R) + (yi − yi+1);

39 else if R is on the boundary of S1 or S2 then

40 forall
−−−→
PiPi+1 of S1 or S2 do

41 if 7 ≤ code ≤ 19 then
42 F(T)← F(T) + (xi − xi+1);

43 else if 1 ≤ code ≤ 10 then
44 F(R)← F(R) + (yi − yi+1);

In Case 1, the equalities Rk = Tk = (xk, yk) = (xmin, ymax) hold, where xmin is the smallest
x-coordinate of MBB and ymax is the largest y-coordinate of MBB. Thus, we have Rk+1 =

(xk+1, yk+1) = (xk + ∆x, yk) = (xk + ∆x, ymax), Tk+1 = (xmin, and yk + ∆y).
In Case 2, the equalities Rk = Tk = (xk, yk) = (xmin, yk) hold, where xmin is the smallest

x-coordinate of MBB. Therefore, we have Rk+1 = (xk+1, yk+1) = (xk + ∆x, yk) = (xmin + ∆x, yk),
Tk+1 = (xmin, and yk + ∆y).

In Case 3, with Rk = (xk, yk), Tk = (xmin, yk), the condition Rk 6= Tk holds, where xmin is the
smallest x-coordinate of MBB. Therefore, we have Rk+1 = (xk+1, yk+1) = (xk + ∆x, yk), Tk+1 = (xmin,
and yk + ∆y).

In Figure 7, assume that ∆x = 1 and ∆y = −1. Then, Rk+1 = (xk + ∆x, yk) = (xk + 1, yk) and
Tk+1 = (xmin, yk + ∆y) = (xmin, yk − 1). If Rk (P in Figure 2) is outside S and the variable k is 0,
then

−−→
RkQ does not intersect

−−−→
PiPi+1 for any i = 1, 2, · · · , m. Thus, the positional relationships between

−−→
RkQ and

−−−→
PiPi+1 belong to Cases 5–8, 11–15, or 22–26 (see Figure 2). Therefore, to determine the

positional relationships between
−−−→
Rk+1Q and

−−−→
PiPi+1 , Algorithm 2 only must recheck those edges whose

positional relationships with
−−→
RkQ belong to Cases 5–8. Likewise, if Tk (P in Figure 2) is outside S and

the variable k is 0, to determine the positional relationships between
−−−→
Tk+1Q and

−−−→
PiPi+1 , Algorithm 2

only must recheck those edges whose positional relationships with
−−→
TkQ belong to Cases 7–15.

If the variable k is even or odd, then the positional relationships between
−−→
RkQ (Rk corresponds to

P in Figure 2) and
−−−→
PiPi+1 do not belong to Cases 1, 2, and 16–21. Therefore, to determine the positional

relationships between
−−−→
Rk+1Q and

−−−→
PiPi+1 , Algorithm 2 only must recheck those edges whose positional

relationships with
−−→
RkQ belong to Cases 3–10. Likewise, if the variable k is even or odd, the positional

relationships between
−−→
TkQ (Tk corresponds to P in Figure 2) and

−−−→
PiPi+1 do not belong to Cases 1, 2,

and 16–21, to determine the positional relationships between
−−−→
Tk+1Q (Tk+1 corresponds to P in Figure 2)

and
−−−→
PiPi+1 , Algorithm 2 only must recheck those edges whose positional relationships with

−−→
TkQ

belong to Cases 7–15.
If Rk (P in Figure 2) is on the boundary of S, then the positional relationships between

−−→
RkQ and−−−→

PiPi+1 belong to Cases 1, 2, or 16–21. Therefore, to determine the positional relationships between
−−−→
Rk+1Q and

−−−→
PiPi+1 , Algorithm 2 only must recheck those edges whose positional relationships with

−−→
RkQ belong to Case 1–10. Likewise, if Tk (P in Figure 2) is on the boundary of S, to determine the

Symmetry 2018, 10, 477 18 of 26

positional relationships between
−−−→
Tk+1Q and

−−−→
PiPi+1 , Algorithm 2 only must recheck those edges whose

positional relationships with
−−→
TkQ belong to Cases 7–19.

From the above comparative analysis, it can be seen that to determine the positional relationship
between Rk+1 and S, Algorithm 2 does not need to recheck all edges of S and usually needs only to
recheck a small number of the edges whose number depends on the positional relationship between
Rk+1 and S. Summarizing these findings, we get the following Theorem 2 by Definition 4.

Theorem 2. Suppose that π1 and π2 are two polygons. Assume that MBB is the minimum bounding
box of π1 and π2. Let Rk = (xk, yk) be a point inside MBB or on the boundary of MBB, and assume
Tk = (xmin, yk) is a point on the left border of MBB, where xmin is the smallest x-coordinate of MBB
(see Figure 8). Let Rk+1 = (xk+1, yk+1) = (xk + ∆x, yk) and Tk+1 = (xmin, yk+1) = (xmin, yk + ∆y).
Let S = π1 or S = π2. Assume that ∆x = 1, and ∆y = −1.

1. If the odd-even number S(Rk) = 0, to calculate S(Rk+1) one needs only to recheck the edges of S belonging
to Cases 5–8 (see Figure 2). Likewise, if the odd-even number S(Tk) = 0, to calculate S(Tk+1), one needs
only to recheck the edges of S belonging to Cases 7–15 (see Figure 2).

2. If the odd-even number S(Rk) is even or odd, to calculate S(Rk+1) one needs only to recheck the edges of S
belonging to Cases 3–10 (see Figure 2). Likewise, if the odd-even number S(Tk) is even or odd, to calculate
S(Tk+1), one needs only to recheck the edges of S belonging to Cases 7–15 (see Figure 2).

3. If the odd-even number S(Rk) = −1, to calculate S(Rk+1), one needs only to recheck the edges of S
belonging to Cases 1–10 (see Figure 2). Likewise, if the odd-even number S(Tk) = −1, to calculate
T(Rk+1), one needs only to recheck the edges of S belonging to Cases 7–19 (see Figure 2).

Proof. 1. If the odd-even number S(Rk) = 0, then Rk (P in Figure 2) is outside S and
−−→
RkQ does not

intersect
−−−→
PiPi+1 for any i = 1, 2, · · · , m. Thus, the positional relationships between

−−→
RkQ and

−−−→
PiPi+1 only

belong to Cases 5–8, 11–15, or 22–26 (see Figure 2). Therefore, to determine the positional relationships
between

−−−→
Rk+1Q and

−−−→
PiPi+1 for calculating S(Rk+1), one needs only to recheck the edges of S belonging

to Cases 5–8 (see Figure 2). Likewise, if the odd-even number S(Tk) = 0, then Tk (P in Figure 2) is
outside S. Thus, the positional relationships between

−−→
TkQ and

−−−→
PiPi+1 only belong to Cases 5–8, 11–15,

or 22–26. Therefore, to determine the positional relationships between
−−−→
Tk+1Q and

−−−→
PiPi+1 for calculatint

S(Tk+1), one needs only to recheck the edges of S belonging to Cases 7–15 (see Figure 2).
2. If the odd-even number S(Rk) is even or odd, then the positional relationships between

−−→
RkQ (Rk

corresponds to P in Figure 2) and
−−−→
PiPi+1 do not belong to Cases 1, 2, and 16–21. Therefore, to determine

the positional relationships between
−−−→
Rk+1Q and

−−−→
PiPi+1 for calculating S(Rk+1), one needs only to

recheck the edges of S belonging to Cases 3–10 (see Figure 2). Likewise, if the odd-even number S(Tk)

is even or odd, then the positional relationships between
−−→
TkQ (Tk corresponds to P in Figure 2) and−−−→

PiPi+1 also do not belong to Cases 1, 2, and 16–21. Therefore, to determine the positional relationships
between

−−−→
Tk+1Q (Tk+1 corresponds to P in Figure 2) and

−−−→
PiPi+1 for calculating S(Tk+1), one needs only

to recheck the edges of S belonging to Cases 7–15 (see Figure 2).
3. If the odd-even number S(Rk) = −1, then Rk (P in Figure 2) is on the boundary of S, then the

positional relationships between
−−→
RkQ and

−−−→
PiPi+1 only belong to Cases 1, 2, or 16–21. Therefore, to

determine the positional relationships between
−−−→
Rk+1Q and

−−−→
PiPi+1 for calculating S(Rk+1), one needs

only to recheck the edges of S belonging to Cases 1–10 (see Figure 2). Likewise, if the odd-even number
S(Tk) = −1, then Tk (P in Figure 2) is on the boundary of S. Thus, the positional relationships between
−−→
TkQ and

−−−→
PiPi+1 only belong to Cases 1, 2, or 16–21. Therefore, to determine the positional relationships

between
−−−→
Tk+1Q and

−−−→
PiPi+1 for calculating T(Rk+1), one needs only to recheck the edges of S belonging

to Cases 7–19 (see Figure 2).

Theorem 3. Suppose that π1 and π2 are two polygons. Assume that MBB is the minimum bounding box of
π1 and π2. Let Rk = (xk, yk) be a point inside or on the edges of MBB, and Tk = (xmin, yk) is a point on the

Symmetry 2018, 10, 477 19 of 26

left border of MBB, where xmin is the smallest x-coordinate of MBB. Let Rk+1 = (xk+1, yk+1) = (xk +∆x, yk)

and Tk+1 = (xmin, yk+1) = (xmin, yk + ∆y) (see Figures 7–9). Let S = π1 or S = π2. Suppose that PiPi+1 is
an edge of S = π1 or S = π2 with Pi = (xi, yi) and Pi+1 = (xi+1, yi+1). Assume that ∆x = 1 and ∆y = −1.
If F(Rk) and F(Tk) satisfy Equation (1), then the following two iterative formulas hold.

F(Rk+1) = F(Rk) + (yi − yi+1) . (4)

F(Tk+1) = F(Tk) + (xi − xi+1) . (5)

By Equations (4) and (5), if Algorithm 2 already knows F(RK) and F(TK), Algorithm 2 can quickly
calculate F(Rk+1) and F(Tk+1). Therefore, using Equations (4) and (5), one can simplify the calculation
and improve processing speed significantly.

By Theorems 2 and 3, and Algorithm 1, vertex by vertex, Algorithm 2 determines the positional
relationship between Rk and π1, yet between Rk and π2. Furthermore, according to the types of
boolean operations, if Rk is simultaneously inside π1 and π2 (also including on their border), then Rk ∈
(π1 ∩ π2). Otherwise, if Rk is inside π1 or π2(also including on their border), then Rk ∈ (π1 ∪ π2).
Otherwise, if Rk is both inside π1 (also including on its border) and outside π2, then Rk ∈ (π1 − π2).
Otherwise, if Rk is both outside π1 and inside π2 (also including on their border), then Rk ∈ (π2 − π1).
Step-by-step, Algorithm 2 is well able to complete the corresponding boolean operations. Algorithm 2 is
a comprehensive presentation and summary for all preceding discussion.

Proof. By Equation (1), for Rk+1 and Tk+1 we have

F(Rk+1) = F(xk+1, yk+1) = F(xk + 1, yk)

= (yi − yi+1)(xk + 1) + (xi+1 − xi)yk + xiyi+1 − xi+1yi

= (yi − yi+1)xk + (xi+1 − xi)yk + xiyi+1 − xi+1yi + (yi − yi+1)

= F(Rk) + (yi − yi+1) .

F(Tk+1) = F(xk+1, yk+1) = F(xmin, yk+1) = F(xmin, yk − 1)

= (yi − yi+1)xmin + (xi+1 − xi)(yk − 1) + xiyi+1 − xi+1yi

= (yi − yi+1)xmin + (xi+1 − xi)yk + xiyi+1 − xi+1yi − (xi+1 − xi)

= F(Tk) + (xi − xi+1) .

6. Complexity Analysis of Algorithms

In this section, we analyze the time and space complexities of our algorithms. First, let us
consider Algorithm 1. Assume that the number of edges of a polygon is n. The for-loop in
Steps 3–30 determines the positional relationship between point P and the n edge vectors

−−−→
PiPi+1 with

i = 1, 2, · · · , n. Steps 4 and 7 each perform two subtractions. One subtraction and two multiplication
calculations are performed in function f in Steps 9, 15, 21, and 24. Step 5 performs at most seven
operations, including four comparison operations and three logical operations. Steps 8, 14, 20, 23, 26, 27,
and 29 each perform at most two comparison operations and one logical operation.

In the worst case, the for-loop must perform Steps 4–7, 8, 14, 20, 23, 26, 27, 29, and 30
simultaneously. Thus, the number of operations in the for-loop is equal to 2 + 7 + 2 + 3× 7 + 1 = 33.
Therefore, the total number of operations required is 33n + 11. Conversely, in the best case, the point P
is on ∂S, and the for-loop must only perform Steps 4–10, 12, and 13 one time. As a result, the number
of operations required is 7 + 2 + 7 + 2 + 3 + 3 + 3 = 27.

Furthermore, let us compute the average running time of Algorithm 1. Algorithm 1 includes
many branch statements whose execution probabilities are all different. From the previous discussions,

Symmetry 2018, 10, 477 20 of 26

we know that the probability of a point lying on the boundary is far less than the probability of
the point not lying on the boundary. Therefore, to calculate the average running time required by
Algorithm 1, we only must consider the case in which the point is not on ∂S. Furthermore, we only
must consider the paths that the for-loop most likely performs, 4→5→6, 4→5→7→8→9→10→11,
or 4→5→7→8→14→15→16→17.

For an edge, the average number of operations required is

(1/3)× (3× 2 + 3× 7 + 2× 2 + 3× 2 + 2× 3 + 2× 1 + 3 + 2)

= (1/3)× (50) = (50/3) = 16.7.

Because the number of polygon edges is n, the total average number of operations required is
16.7n for Steps 3–30. Steps 31–32 require at most two logical operations, and one modulo operation.
Therefore, the total average number of operations required is 16.7n + 3. Because Algorithm 1 uses an
array to store the edge information, including the end nodes of each edge, its space complexity is also
O(n). The time and space complexities of Algorithm 1 are the same as Algorithm 1.

Second, let us consider Algorithm 2. Assume that the numbers of edges of two input polygons
are n, m respectively. In addition, assume that execution probability of each branch is different for
the for-loop in Algorithm 1. Step 5 requires at most 4(n + m) operations. For R, on average, Step 10
requires 16.7(n + m) + 6 operations. Step 11 requires at most three operations. In the worst case,
Steps 12–44 require at most 10 + 4(n + m) operations. Therefore, in the worst case, the time complexity
of Algorithm 2 is O((n + m)l), where

l = (Bottom_Right.x− Top_Le f t.x)× (Top_Le f t.y− Bottom_Right.y). (6)

Under normal circumstances, because the numbers of operations for Steps 10 and 12–44 are far
less than 16.7(n + m) + 6 and 10 + 4(n + m), the average time complexity of Algorithm 2 is far less
than O((n + m)l). No matter how complex the input polygons are, it can be seen that l is nearly
constant. Thus, Algorithm 2 has an average time complexity of O(n + m), reconfirmed through the
experimental results in Section 7.

7. Experiment and Comparison

We have completed experimental tests to evaluate the performances of Algorithms 1 and 2.
Our computing environment used an Intel(R) Core(TM)2 Quad CPU Q6600 @2.40 GHz with 4.00 GB
of RAM. The operating system is Microsoft Windows 10 Professional Edition. The graphics card is an
NVIDIA GeForce 9800 GT. The display resolution is 1024× 768× 32 bits (RGB). The internal hard drive
is 1TB. We used Microsoft Visual C++ 2017 compiler as our programming environment. The testing
program randomly generates vertices of a polygon using the methodology in [31].

7.1. The Point-in-Polygon Test

From the online library [5], we select 11 algorithms for testing. In addition, we test [1,6] and
efficient boundary methods [2], and CGAL4.2 [31] with a 2D Kernel. Thus, the algorithms tested
include a total of 16 algorithms (see Table 1).

Figure 10 shows the performance comparison of the 10 algorithms in running time. We can see
that, although the running times of the 10 algorithms changed almost linearly as the number of vertices
of input polygons increase, Algorithm 1 increases more slowly than the other algorithms. From the
top-left corner to the bottom-right corner of the MBB, the testing program determines point-by-point
whether a point is inside, outside, or on the boundary of the polygons. For all points in the MBB,
the algorithm tested uses a timer to record the total execution time of the program. Finally, the results
of the executions were used to plot the curves with the number o f vertices = 522, 569, 1020, 1505,
2023, 2529, 3019, 3515, 4000, 4499, 5003, 5570, and 6021 (see Figure 10). The x-axis denotes the number

Symmetry 2018, 10, 477 21 of 26

of vertices of an input polygon and the y-axis denotes the running time of an algorithm in seconds
(same as below) as shown in Figure 10. Because the implementations of half-plane testing, Spackman
barycentric, Trapezoid testing, Grid testing, and Efficient boundary [2] all contain bugs, we do not plot
their corresponding graphs.

Table 1. Performance comparison of the different algorithms for the point-in-polygon test.
CROSS indicates that an algorithm can handle self-intersecting polygons. HOLE denotes that an
algorithm can deal with polygons with holes(not nested). NHOLE denotes that an algorithm can
deal with polygons with nested holes at any depth. KHOLE denotes that an algorithm can deal with
polygons with keyhole edges formed by single contours. DIR indicates that an algorithm must specify
whether each contour of input polygons is oriented clockwise or counterclockwise. SENS indicates that
an algorithm is sensitive to whether a polygon is oriented clockwise or counterclockwise. ON indicates
that an algorithm can determine whether a point is on the polygon boundary. BUG denotes that an
algorithm has bugs.

Library

Result Properties
CROSS HOLE NHOLE KHOLE DIR SENS ON BUG

1 Algorithm 1 X X X X × × X ×
2 Crossings × X × × × × × ×
3 Crossings-multiply [4,5] X X × X × × × ×
4 Angle summation X X × X × × × ×
5 Weiler angle summation × X × × × × × ×
6 Half-plane testing X X × X × × × X
7 Barycentric coordinates X X × X × × × X
8 Spackman barycentric X X × X × × × X
9 Trapezoid testing × X × × × × × X

10 Grid testing X X × X × × × X
11 Exterior test × X × × × × × ×
12 Inclusion test × X × × × × × ×
13 Jiménez et al. [1] × X × × X X × X
14 Galacticomm [6] X X × X × × × ×
15 Efficient boundary [2] × × × × X X × X
16 CGAL4.2 [31] X X X X × × X ×

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00
0

500

1,000

1,500

number o f vertices

ru
nn

in
g

ti
m

e(
se

c)

Algorithm 1
Crossings-multiply [5]
Crossings
Weiler angle summation
Barycentric coordinates
Exterior test
Inclusion test
Angle summation
the algorithms of Jiménez et al. [1]
and the algorithm of Galacticomm [6]

Figure 10. Run time comparison of different algorithms for the point-in-polygon test. The figure can
be enlarged enough to show in full the differences of different algorithms.

Symmetry 2018, 10, 477 22 of 26

Half-plane testing, Barycentric coordinates, and Spackman barycentric algorithms sometimes
misjudge internal points as external points (see Figure 1). To store the number of trapezoids,
the implementation of Trapezoid algorithm uses the global variable Trapezoid_Bins that has initial
value 20. The performance of Trapezoid algorithm changes as the value of the variable Trapezoid_Bins
changes. To keep the value of resolution, the implementation of Grid testing algorithm uses the
global variable Grid_Resolution that has initial value 20. The performance of Grid testing algorithm
changes as Grid_Resolution changes. According to the resolution of the screen, Grid testing algorithm
partitions the bounding box into grids, the number of which varies as the screen resolution varies.
Grid testing consumes more memory and time to the extent that it frequently causes the program to
crash. Jiménez et al. [1] were sensitive to whether a polygon is clockwise or counterclockwise oriented
and do not apply to a self-intersecting polygons (see Figure 1). In addition, it cannot efficiently deal
with degenerate cases.

From the comparison results, it can be seen that, although Algorithm 1 uses many comparison
operations of floating-point numbers, this does not cause the program to run incorrectly. Performance
of Algorithm 1 is only subject to the number of vertices of tested polygon, rather than the number
of floating point operations involved. Therefore, introducing errors ε for comparison operation of
floating point numbers is not essential for Algorithm 1. Of course, if people want “fat edges”, they can
enlarge the bounds by an epsilon.

7.2. Boolean Operations Test

From the online library, we selected three algorithms for testing of boolean operations. Thus, the
comparison includes a total of four algorithms (see Table 2).

All algorithms except Algorithm 2 perform boolean operations to generate the corresponding
resultant polygons. They then use crossings-multiplication [4,5] to fill the interior regions of the
resultant polygons. For the input polygons, Algorithm 2 takes only a calculation step to fill the interior
regions of the resultant polygons. For measuring the running times of the algorithms, each algorithm
uses a timer to record the total execution time. Finally, based on the results of the operations, we plot
the curves with number o f vertices = 501, 1015, 1569, 2084, 2503, 3050, 3454, 4029, 4549, 4998, 5494,
and 6070 in Figures 11–13.

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00

0

1,000

2,000

3,000

4,000

number o f vertices

ru
nn

in
g

ti
m

e(
se

c)

Algorithm 2
CGAL4.2 [31]
GPC [32]
and Clipper4.6.3 [33]

Figure 11. Run time comparison of different algorithms for the union operation of boolean operations.
The figure can be enlarged enough to show in full details.

Symmetry 2018, 10, 477 23 of 26

Table 2. Performance comparison of the different algorithms for boolean operations. The meanings of
symbols below are the same as those in Table 1.

Library

Result Properties
CROSS HOLE NHOLE KHOLE DIR SENS BUG

1 Algorithm 2 X X X X × × ×
2 CGAL4.2 [31] × X × × X X X
3 GPC [32] X X X X × × ×
4 Clipper4.6.3 [33] X X X X × × ×

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00

0

1,000

2,000

3,000

4,000

number o f vertices

ru
nn

in
g

ti
m

e(
se

c)

Algorithm 2
CGAL4.2 [31]
GPC [32]
and Clipper4.6.3 [33]

Figure 12. Run time comparison of different algorithms for the intersection operation of boolean
operations. The figure can be enlarged enough to show in full details.

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00

0

1,000

2,000

3,000

4,000

number o f vertices

ru
nn

in
g

ti
m

e(
se

c)

Algorithm 2
CGAL4.2 [31]
GPC [32]
and Clipper4.6.3 [33]

Figure 13. Run time comparison of different algorithms for difference operation of boolean operations.
The figure can be enlarged enough to show in full details.

Symmetry 2018, 10, 477 24 of 26

It is clear in Figures 11–13 that the execution time of Algorithm 2 is minimal and approximately
proportional to the number of vertices in input polygons. It can be seen in Table 2 that Algorithm 2,
GPC [32], and Clipper4.6.3 [33] all have excellent performance under the same test conditions.

8. Results and Discussion

In Figure 10, it can be seen that, with the increase of the number of vertices, the computation time
of Algorithm 1 is getting less and less than the computational time of any other algorithm needed for
the point-in-polygon test. This means that, with the increase of the number of points, the processing
speed of Algorithm 1 is faster than any other algorithm.

Theorem 4. Let S be a closed polygon. The performance of Algorithm 1 is optimal for the point-in-polygon test
on S.

Proof. By Section 6, it follows that, because the total average number of operations required is 16.7n+ 3,
the time complexity of Algorithm 1 is O(n) where n is the number of polygon edges. Clearly, the
space complexity of Algorithm 1 is also O(n).

In Figure 10, it can be seen that the run time of Algorithm 1 for the point-in-polygon test is
minimal. Therefore, the computational performances of Algorithm 1 is better than that of the other
algorithms. Observe that the related performances of Algorithms 1 described in Table 1 go beyond
that of the other algorithms except CGAL4.2 [31].

Although the time and space complexities of Algorithm 1 are the same as the state-of-the-art
methods for the point-in-polygon test, Algorithm 1 is optimal. Further, we present the following facts
to support our view:

1. It handles all degenerate cases and simultaneously provides a corresponding solution to
each degenerate case (see Figure 2). These tactics both ensure its robustness and creates the
prerequisites and basis for Algorithm 2.

2. It uses Equation (3) to reduce the running time.
3. It uses the Jordan property of a vector to determine the positional relationship between a point

and an edge, which avoids computing the intersection point and division operations.
4. It involves only addition, subtraction, multiplication, comparison, and logical operations such

that it is unnecessary to compute any angle. In addition, It eliminates other time-consuming
operations such as preprocessing.

5. It does not impose any restrictions on the shape of input polygons, and is applicable to any
polygons, including self-intersecting polygons or polygons with holes nested to any level of
depth (see Figure 3a). Therefore, It can both quickly determine whether a point is inside or
outside a polygon and accurately determine the contours of input polygon (see Figure 3b).

6. It does not need to sort the vertices clockwise or counterclockwise beforehand. Therefore, it
processes all edges one by one in any order for each input polygon.

7. It is parallelizable because its many operations can be done in parallel.
8. A detailed theoretical analysis and the proof of the correctness of Algorithm 1 (see Theorems 1)

for the point-in-polygon test are shown.
9. It considers the execution probability of each conditional branch and uses these probabilities to

optimize the program flow.

Therefore, it follows that the conclusion of Theorem 4 holds.

Although the comparison operations of floating point numbers introduced in Algorithm 1 increase
the running time of the program and reduce its computing speed, the speed reduction is limited and
would not cause the program significantly reduced operating speed. Although Algorithm 1 uses many
comparison operations of floating-point numbers, this does not cause the program to run incorrectly.

Symmetry 2018, 10, 477 25 of 26

Performance of Algorithm 1 is only subjected to the number of vertices of tested polygon, rather than
the number of floating point operations involved.

Based on Algorithm 1, Algorithm 2 inherits all of its advantages, including the simple data
structure, low running time, high stability, and reliability. Algorithm 2 assigns each vector

−−−→
PiPi+1 in

Figure 2a–z a number code corresponding to Cases 1–26. In addition, Algorithm 2 uses two iterative
formulas (Equations (4) and (5)) to calculate F(R) and F(T). Results from experiments show that the
use of the two strategies increase processing speed and can accurately solve the given problem.

Our method can be applied to 3D printing [8] to improve the 3D printing performance.
The mechanism that we conceive for 3D printing is as follows: When performing 3D printing, we first
use the planes z = z0, z = z0 + 1, · · · , z = z0 + n to intercept object in the size of the z-axis from small
to large, and then we apply Algorithm 2 on the plane z = z0, z = z0 + 1, · · · , z = z0 + n. This will
enable 3D printing.

9. Conclusions and Future Works

In summary, we draw the following conclusions. Algorithm 1 with time complexity O(n),
is optimal for the point-in-polygon test. Algorithm 2, with worst case time complexity O((n + m)l),
is a novel algorithm for boolean operations. Algorithms 1 and 2 are stable and reliable and can be
extended to three-dimensional space. In particular, our method can be applied to 3D printing to
improve the 3D printing performance.

We will explore how to extend Algorithms 1 and 2 into 3D space and how to improve reliability
and efficiency of the point-in-polyhedral test and boolean operations on 3D objects. We will discuss
and show how to solve the related problems in other articles.

Author Contributions: Conceptualization, J.H., J.S., Y.C., Q.C. and L.T.; Methodology, J.H.; Software, J.H.;
Validation, J.H., J.S., Y.C., Q.C. and L.T.; Writing—original draft, J.H.; and Writing—review and editing, J.H.

Funding: The work described in this paper was supported by the open funding project of State Key Laboratory of
Virtual Reality Technology and Systems, Beihang University (grant number BUAA-VR-17KF-07); Beijing Science
and Technology Project (grant number Z151100001615041); and Basic Research Project of the Ministry of Science
and Technology(grant number 2015FY111200).

Acknowledgments: We would also like to thank all anonymous reviewers for their inspiring and constructive
comments which helped to improve the presentation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiménez, J.J.; Feito, F.R.; Segura, R.J. Robust and Optimized Algorithms for the Point-in-Polygon Inclusion
Test without Pre-processing. Comput. Graph. Forum 2009, 28, 2264–2274. [CrossRef]

2. Hormann, K.; Agathos, A. The point in polygon problem for arbitrary polygons. Comput. Geom. 2001,
20, 131–144. [CrossRef]

3. DonaldHearn. Computer Graphics C Version; Prentice Hall: Upper Saddle River, NJ, USA, 1997.
4. Haines, E. Point in polygon strategies. Graph. Gems IV 1994, 994, 24–46.
5. Haines, E. Graphics Gems Repository. Available online: http://tog.acm.org/resources/GraphicsGems/

(accessed on 7 August 2018).
6. Galacticomm. A Point about Polygons (Article in 3/97 Linux Journal). Available online: http://www.

visibone.com/inpoly/ (accessed on 7 August 2018).
7. Weiler, K. Polygon comparison using a graph representation. SIGGRAPH Comput. Graph. 1980, 14, 10–18.

[CrossRef]
8. Hoy, M.B. 3D Printing: Making Things at the Library. Med. Ref. Serv. Q. 2013, 32, 93–99. [CrossRef]

[PubMed]
9. Nievergelt, J.; Preparata, F.P. Plane-sweep algorithms for intersecting geometric figures. Commun. ACM

1982, 25, 739–747. [CrossRef]
10. Galetzka, M.; Glauner, P.O. A correct even-odd algorithm for the point-in-polygon (PIP) problem for complex

polygons. arXiv 2012, arXiv:1207.3502.

http://dx.doi.org/10.1111/j.1467-8659.2009.01481.x
http://dx.doi.org/10.1016/S0925-7721(01)00012-8
http://tog.acm.org/resources/GraphicsGems/
http://www.visibone.com/inpoly/
http://www.visibone.com/inpoly/
http://dx.doi.org/10.1145/965105.807462
http://dx.doi.org/10.1080/02763869.2013.749139
http://www.ncbi.nlm.nih.gov/pubmed/23394423
http://dx.doi.org/10.1145/358656.358681

Symmetry 2018, 10, 477 26 of 26

11. Wang, W.; Li, J.; Wu, E. 2D point-in-polygon test by classifying edges into layers. Comput. Graph. 2005,
29, 427–439. [CrossRef]

12. Sederberg, T.W.; Nishita, T. Curve intersection using Bézier clipping. Comput. Aided Des. 1990, 22, 538–549.
[CrossRef]

13. Bartoň, M.; Jüttler, B. Computing roots of polynomials by quadratic clipping. Comput. Aided Geom. Des.
2007, 24, 125–141. [CrossRef]

14. Aizenshtein, M.; Bartoň, M.; Elber, G. Global solutions of well-constrained transcendental systems using
expression trees and a single solution test. Comput. Aided Geom. Des. 2012, 29, 265–279. [CrossRef]

15. Van Sosin, B.; Elber, G. Solving piecewise polynomial constraint systems with decomposition and a
subdivision-based solver. Comput. Aided Des. 2017, 90, 37–47. [CrossRef]

16. Gombos˘i, M.; Žalik, B. Point-in-polygon tests for geometric buffers. Comput. Geosci. 2005, 31, 1201–1212.
[CrossRef]

17. Yang, S.; Yong, J.H.; Sun, J.; Gu, H.; Paul, J.C. A point-in-polygon method based on a quasi-closest point.
Comput. Geosci. 2010, 36, 205–213. [CrossRef]

18. Lorenzetto, G.P.; Datta, A.; Thomas, R.C. A fast trapezoidation technique for planar polygons. Comput. Graph.
2002, 26, 281–289. [CrossRef]

19. Martínez, F.; Rueda, A.J.; Feito, F.R. The multi-L-REP decomposition and its application to a point-in-polygon
inclusion test. Comput. Graph. 2006, 30, 947–958. [CrossRef]

20. Rueda, A.J.; Feito, F.R. EL-REP: A New 2D Geometric Decomposition Scheme and Its Applications.
IEEE Trans. Vis. Comput. Graph. 2011, 17, 1325–1336. [CrossRef] [PubMed]

21. Andreev, R.D. Algorithm for Clpping Arbitrary Polygons. Comput. Graph. Forum 1989, 8, 183–191. [CrossRef]
22. Rappoport, A. An efficient algorithm for line and polygon clipping. Vis. Comput. 1991, 7, 19–28. [CrossRef]
23. Greiner, G.; Hormann, K. Efficient clipping of arbitrary polygons. ACM Trans. Graph. 1998, 17, 71–83.

[CrossRef]
24. Weiler, K.; Atherton, P. Hidden surface removal using polygon area sorting. SIGGRAPH Comput. Graph.

1977, 11, 214–222. [CrossRef]
25. Vatti, B.R. A generic solution to polygon clipping. Commun. ACM 1992, 35, 56–63. [CrossRef]
26. Martínez, F.; Rueda, A.J.; Feito, F.R. A new algorithm for computing Boolean operations on polygons.

Comput. Geosci. 2009, 35, 1177–1185. [CrossRef]
27. Feito, F.R.; Rivero, M. Geometric modelling based on simplicial chains. Comput. Graph. 1998, 22, 611–619.

[CrossRef]
28. Rivero, M.; Feito, F.R. Boolean operations on general planar polygons. Comput. Graph. 2000, 24, 881–896.

[CrossRef]
29. Peng, Y.; Yong, J.H.; Dong, W.M.; Zhang, H.; Sun, J.G. A new algorithm for Boolean operations on general

polygons. Comput. Graph. 2005, 29, 57–70. [CrossRef]
30. Graysmith, J.; Shaw, C. Automated procedures for Boolean operations on finite element meshes. Eng. Comput.

1997, 14, 702–717. [CrossRef]
31. CGAL4.2. CGAL—Computational Geometry Algorithms Library. Available online: http://www.cgal.org/

(accessed on 7 August 2018).
32. GPC, A.M. GPC General Polygon Clipper Library from The University of Manchester. Available online:

http://www.cs.man.ac.uk/toby/alan/software/ (accessed on 7 August 2018).
33. Clipper4.6.3. Clipper—An Open Source Freeware Polygon Clipping Library. Available online: http://www.

angusj.com/delphi/clipper.php (accessed on 7 August 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cag.2005.03.001
http://dx.doi.org/10.1016/0010-4485(90)90039-F
http://dx.doi.org/10.1016/j.cagd.2007.01.003
http://dx.doi.org/10.1016/j.cagd.2011.07.002
http://dx.doi.org/10.1016/j.cad.2017.05.023
http://dx.doi.org/10.1016/j.cageo.2005.03.009
http://dx.doi.org/10.1016/j.cageo.2009.06.008
http://dx.doi.org/10.1016/S0097-8493(01)00180-7
http://dx.doi.org/10.1016/j.cag.2006.08.015
http://dx.doi.org/10.1109/TVCG.2010.246
http://www.ncbi.nlm.nih.gov/pubmed/21041872
http://dx.doi.org/10.1111/j.1467-8659.1989.tb00484.x
http://dx.doi.org/10.1007/BF01994114
http://dx.doi.org/10.1145/274363.274364
http://dx.doi.org/10.1145/965141.563896
http://dx.doi.org/10.1145/129902.129906
http://dx.doi.org/10.1016/j.cageo.2008.08.009
http://dx.doi.org/10.1016/S0097-8493(98)00067-3
http://dx.doi.org/10.1016/S0097-8493(00)00090-X
http://dx.doi.org/10.1016/j.cag.2004.11.001
http://dx.doi.org/10.1108/02644409710188600
http://www.cgal.org/
http://www.cs.man.ac.uk/toby/alan/software/
http://www.angusj.com/delphi/clipper.php
http://www.angusj.com/delphi/clipper.php
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Point-in-Polygon Test
	Boolean Operations
	The Major Contributors of This Paper

	Related Work
	The Point-in-Polygon Test
	Boolean Operations

	The Point-in-Polygon Test Principle
	A Serial Algorithm for the Point-in-Polygon Test
	Boolean Operations Principle and Algorithm
	Complexity Analysis of Algorithms
	Experiment and Comparison
	The Point-in-Polygon Test
	Boolean Operations Test

	Results and Discussion
	Conclusions and Future Works
	References

