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Abstract: Extreme learning machine (ELM), characterized by its fast learning efficiency and great
generalization ability, has been applied to various object recognition tasks. When extended to
the stacked autoencoder network, which is a typical symmetrical representation learning model
architecture, ELM manages to realize hierarchical feature extraction and classification, which is what
deep neural networks usually do, but with much less training time. Nevertheless, the input weights
and biases of the hidden nodes in ELM are generated according to a random distribution and may
lead to the occurrence of non-optimal and redundant parameters that deteriorate discriminative
features, which will have a bad influence on the final classification effect. In this paper, a novel
sparse autoencoder derived from ELM and differential evolution is proposed and integrated into
a hierarchical hybrid autoencoder network to accomplish the end-to-end learning with raw visible
light camera sensor images and applied to several typical object recognition problems. Experimental
results show that the proposed method is able to obtain competitive or better performance than
current relevant methods with acceptable or less time consumption.

Keywords: autoencoder; hierarchical extreme learning machine; differential evolution

1. Introduction

Images obtained by visible light camera sensors are the carriers of perceptive information and
taken as the indispensable inputs of computer vision algorithms. Among many different types of
computer vision algorithms, object recognition is the fundamental and essential one, and its vital step
is how to extract and identify the latent explanatory factors underlying the low-level sensory images,
which is also called feature extraction. Since object recognition plays an important role in algorithms
such as scene segmentation, object detection and tracking, the performance of practical applications,
for instance, autonomous driving, relies heavily on the extent to which the useful information is
organized and extracted from the images.

The prospect of feature extraction techniques mainly goes towards two directions. One is the
feature engineering, which relies on human wisdom together with prior knowledge and is usually
labor-intensive. The other is feature learning or representation learning, which is data-driven and
enables directly learning and discovering generic priors from data. Due to the fast growth of powerful
computing hardware and the availability of massive data, the community’s interest gradually has
tended to focus on feature learning. The majority of state-of-the-art feature learning methods can be
divided into two main categories, i.e., deep learning-based and extreme learning machine-based.

During the past few decades and nowadays, deep learning (DL [1–4]) has become no doubt the
most popular neural network learning algorithm. The deep neural network is equipped with prominent
representation learning ability and can imitate the visual cortex to learn multi-level features through
layer-by-layer non-linear transformations. It has yielded a large amount of surprising achievement in
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various fields, speech recognition [5], object recognition [6–8] and transfer learning [9,10] included.
Apart from these exciting results, deep learning is still facing several issues. Firstly, deep learning is
computation-consuming because it has to tune iteratively numerous parameters of large-scale neural
networks by gradient descent. Compensating for this gives rise to a desperate dependence on parallel
computing hardware. Secondly, it is unavoidable that gradient descent is likely to get stuck in the local
minimum since the cost function related to training a deep neural network can be extremely complex.
The robustness of the trained network’s generalization performance is often not ensured. Lastly, how to
design and train a proper deep neural network for a specific task accurately and efficiently is tricky,
which demands for specific domain priors and rich engineering experience.

As a promising candidate, extreme learning machine (ELM), proposed by Huang et al. [11–14],
is a simple, but effective algorithm. It is originated from the least squares theory and no longer
optimizes neural network parameters through iterative gradient descent. Instead, the solution of
the parameter optimization is analytically solved by using the Moore-Penrose (MP) generalized
inverse, which ensures that ELM is characterized by a fast learning speed and good generalization
performance. ELM, including its variants as well, is used to optimize the parameters of the single
hidden layer feedforward networks (SLFNs). In most cases, the SLFN trained by ELM is usually fed
by hand-crafted features and works as an outstanding classifier for many computer vision tasks like
traffic sign recognition [15–17], cross-domain visual object detection [18], etc. Inspired by the learning
mechanism of deep neural networks, especially the stacked autoencoder (SAE [4]), which is a typical
symmetrical representation learning model architecture, ELM is promoted to train the multilayer
neural network [19,20], which integrates feature learning and classification into one hierarchical
architecture. Tang et al. replaced the l2 norm constrain to the cost function of training the ELM-based
autoencoder with l1 optimization and made use of the FISTA algorithm [21] proposed by Beck and
Teboulle to train a novel sparse ELM-based autoencoder. When stacked up and then combined with
the conventional ELM classifier, such sparse ELM-based autoencoders form a multilayer network
named hierarchical extreme learning machine (HELM [22]). It is reported that HELM has reached
a higher recognition accuracy and is much faster than both conventional ELM-based methods and
most deep learning methods on the mixed national institute of standards and technology database
(MNIST [23]) and the NORB database [24].

However, the input weights and biases of the hidden nodes in ELM are generated according to
a random distribution, which maps the inputs into the random feature space and may lead to the
occurrence of non-optimal and redundant parameters that deteriorate discriminative features, which
will have a bad influence on the final classification effect. In this paper, a hybrid method called the
evolutionary hierarchical extreme learning network is proposed. Altogether, the main contribution is
two-fold. Firstly, a novel sparse autoencoder is proposed by combining modified differential evolution
with ELM so as to train a superior autoencoder with optimized hidden layer parameters and output
weights, which makes the encoded features more discriminative. Secondly, the proposed evolutionary
sparse ELM autoencoder is further integrated into a hierarchical network and realizes an end-to-end
feature learning for object recognition with raw visible light camera sensor images. Experiments on
two benchmarks (MNIST and NORB) show that the proposed method is able to obtain competitive or
better performance than current relevant methods with acceptable or less time consumption.

The organization of the remaining sections are as follows. The preliminaries and research
background are briefly introduced in Section 2. The details of the proposed method are described in
Section 3. The experimental results and relevant analysis are given in Section 4, and Section 5 draws
the final conclusion.



Symmetry 2018, 10, 474 3 of 13

2. Background and Preliminaries

2.1. Differential Evolution

Differential evolution [25] (DE) was proposed by K. Price and R. Storn in 1997. It is an efficient
heuristic member of the evolution algorithm family. DE shares the pipeline of common evolution
algorithms (i.e., the composition of population initialization, fitness evaluation, individual mutation,
crossover and selection), which is inspired by the natural biological evolution process, but it differs from
other evolution algorithm members mainly in the way of mutating individuals. For any individual in
the population of the k-th generation xk

i , its corresponding mutated individual is given by Equation (1).

mk
i = xk

i + Cm(xk
p − xk

q) (1)

where Cm ∈ [0, 2] is the mutation strength factor, the mutation comes from the weighted difference
between two other randomly-chosen individuals xk

p and xk
q, which makes DE a simple, but powerful

self-organizing algorithm.
In more detail, Figure 1 illustrates the whole flowchart of DE, where there are six steps.

• Initialize the population randomly or according to some specific distribution.
• Pick out two individuals from the population randomly and compute the weighted difference.
• Carry out the mutation according to Equation (1).
• Conduct crossover between the mutated and the original individuals.
• Evaluate the fitness values of all the individuals in both the original population and the one

after crossover.
• Select individuals according to the fitness values to form the population of the next generation.

Figure 1. The illustration of the differential evolution algorithm.

2.2. Hierarchical Extreme Learning Machine

Generally, the proposal of ELM aims to train Single hidden layer feedforward networks (SLFNs).
The universal approximation capability of ELM enables it to work well with a variety of features,
and ELM or its variants usually work as a classifier in most applications. Tang et al. promoted ELM by
proposing the hierarchical extreme learning machine (HELM), which integrates feature extraction and
classification in one multilayer network. As Figure 2 shows, HELM is made up of two parts. One is
the stacked sparse ELM autoencoders for unsupervised hierarchical feature learning, and the other
is the conventional ELM classifier. Suppose that X = {xi ∈ Rd, i = 1, 2, ..., N} is the training dataset;
the sparse ELM autoencoder in HELM tries to minimize the reconstruction error together with the norm
of the output weights.

Fobject = arg min
β

{‖Aβ− X‖2 + ‖β‖l1} (2)
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where A is the random hidden activation matrix given by Equation (3). The constraint on the norm of
the output weights β is l1 instead of the commonly-used l2 optimization. The reason for choosing the
l1 norm instead of the l2 norm is that it is hoped to force the autoencoder to learn more sparse and
compact features and reduce the needed number of hidden nodes.

A =

 a(w1 · x1 + b1) · · · a(wM · x1 + bM)
... a(wj · xi + bj)

...
a(w1 · xN + b1) · · · a(wM · xN + bM)

 (3)

where M is the hidden node number, wj, bj are the corresponding input weight, bias and activation
function of the j-th hidden node and a(·) is the activation function.

Aβ = X (4)

Since it is demonstrated in [26] that ELM has the universal approximation capability once the
inputs are projected into random feature space, the encoding and decoding processing of the sparse
ELM autoencoder in HELM can be treated as a linear system (see Equation (4)), and the expected
output weights β can be solved by following the ELM theory and applying the FISTA algorithm (more
details could be found in [22]). Then, the encoded features are computed below.

Y = a(X · β) (5)

Figure 2. The architecture of the hierarchical extreme learning machine network.

3. Evolutionary Hierarchical Extreme Learning Network

Feature representation is crucial to solving the objection recognition problem. It is able to
extract discriminative information from raw data while removing the irrelevant or reductant data.
The success of HELM lies in that the features encoded by the ELM autoencoder network are sparse and
discriminative. Even though generated randomly, the hidden layer parameters in the ELM autoencoder
network are related to the solution of the output weights (see Equation (1)), which are used for feature
encoding. Zhu et al. [27] stated that random hidden layer parameters are not ideal and will result in the
emergence of non-optimal unnecessary parameters. In [28], singular value decomposition is applied
to optimize the randomly-set hidden layer parameters, and the final performance gets promoted
significantly. Thus, for the purpose of achieving the improvement on the feature encoding and finally
the recognition precision, the hidden layer parameters should be carefully selected and optimized.

In this section, the proposed evolutionary hierarchical extreme learning network (EHELN) is
presented. It can be seen in Figure 3 that there are two main modules composing the whole network,
i.e., the classification module and the feature learning module. The former is actually a conventional
ELM classifier. The latter is made up of two different autoencoders, i.e., the sparse ELM autoencoder
in [22] for primary feature extraction, as well as dimensionality reduction, and the evolutionary sparse
ELM autoencoder for high-level feature learning. During the training of the evolutionary sparse ELM
autoencoder, the hidden layer parameters are searched by using differential evolution other than being
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randomly chosen in order to learn a more complete set of features with satisfactory discriminative
capability. The next subsections will describe the details of the learning procedure of the evolutionary
sparse ELM autoencoder.

Figure 3. The architecture of the proposed evolutionary hierarchical extreme learning network.

3.1. Initialize the Population and Define the Fitness Function

Since the object to be optimized is the hidden layer parameters in the sparse ELM autoencoder,
the definition of the individual in the initial population is direct and simple, i.e., the concatenation of
the input weight and bias of each hidden node.

θ = [w1, w2, wj, ...wN , b1, b2, bj..., bN ] (6)

where wj is the input weight and bj is the bias of the j-th hidden node, which are randomly initialized
within [−1,1], and N is the hidden node number.

Following the ELM theory and HELM [22], each individual can be taken to compute analytically
the sparse output weight with minimum norm by applying the FISTA algorithm [21]. There is no need
to implement any backpropagation-based tuning, which is time-consuming and commonly utilized in
deep learning.

The autoencoder aims to learn the feature space transformation that enables it to realize the
reconstruction of the input data with minimized error. What is more, the learned features are expected
to be discriminative enough, which means in the learned feature space, the data’s inter-distance should
be as large as possible, while the intra-distance should be small. Therefore, the fitness function is
defined to have two opponents, i.e., the reconstruction fitness Fr and the discriminative fitness Fd,
which are given in Equation (7).

Fβ,θ = Fr(β) + Fd(θ, β) (7)

where β refers to the output weight when taking θ as the hidden layer parameters. As shown by
Equation (8), Fd is actually the ratio of the inter-class distance dinter and the intra-class distance dintra.
Apparently, if the learned features are more discriminative, the values of Fd will be higher so that data
from different classes can be separated more easily.

p(β) =
dintra
dinter

=

Nc
∑

i=1
ni‖mi −m‖2

Nc
∑

i=1
∑

x f∈ci

∥∥∥x f −mi

∥∥∥2
(8)

where X f is the encoded feature belonging to the i-th class, which is calculated by Equation (5), ni is
the number of samples in the i-th class, Nc is the number of classes and mi stands for the mean value
of the features in the i-th class.

mi =
1
ni

∑
x f∈ci

x f , m =
1
M

Nc

∑
i=1

nimi (9)
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where m is the mean value of the whole features and M is the total number.
Meanwhile, the reconstruction fitness Fr is defined in Equation (10).

f (θ, β) = 1−

√√√√√ M
∑

j=1

∥∥a(xj � θ)β− xj
∥∥2

2

D×M
= 1−

√√√√√√ M
∑

j=1

∥∥∥∥ N
∑

i=1
a(xj ·wi + bi)β− xj

∥∥∥∥2

2

D×M
(10)

where D is the dimension of xj and � denotes the linear mapping operation of each hidden node.

3.2. Mutate and Crossover the Individuals

According to differential evolution, the mutation is self-organizing, which means the variation
comes from the difference between individuals themselves. For any individual, the corresponding
mutated one is generated by Equation (10).

mθi = θi + Cm(∆θr1 + ∆θr2) (11)

where mθi is the mutated individual, θi is the original individual, ∆θr1 and ∆θr2 represent the difference
of two pairs of other individuals, which are chosen randomly, and Cm is a constant used to control and
adapt the mutation strength.

µθi ,k =

{
θi,k i f frand < Cco

mθi ,k else
(12)

Then, as shown in Equation (12), the crossover is conducted among the attributes of the original
individuals and the mutated ones, where θi,k and mθi ,k are the k-th attribute of the original individual
and its mutated individual, respectively, µθi ,k is the crossover attribute, Cco is the crossover factor and
frand is a function of a random number generator that gives the output within (0,1).

3.3. Select Predominant Individuals

At last, superior individuals from the augmented population, which contains both the original
individuals and their corresponding mutated and crossover ones, will be picked out to form the
population of the new generation. The superiority of the individuals is measured by the fitness function.
The individual owning a larger fitness value has a higher probability to be selected. Moreover, Bartlett
[29] has proven that the norm of weights in neural networks has a specifically important effect on the
generalization performance, and the smaller the better. Taking this into consideration, when there exist
individuals with similar fitness values, the one that leads to the output weight of the smaller norm will
be chosen. Note that the fitness value of each individual is calculated on the basis of a subset of the
whole training set to reduce computation consumption and avoid overfitting.

4. Experimental Results and Discussion

In this section, the proposed method is evaluated and compared with other related methods
when applied to object recognition tasks on several typical benchmarks. The idea of the proposed
evolutionary hierarchical sparse extreme learning autoencoder network was inspired by HELM, but it
differs from HELM in that a hybrid stacked sparse autoencoder module, which is composed of
evolutionary and conventional sparse ELM autoencoders, is integrated into the whole network for
the extraction of more discriminative features oriented toward specific tasks. Firstly, the performance
of the proposed method was evaluated and compared with HELM on five common multiple-class
recognition databases preliminarily. The results are illustrated in Figure 4. The corresponding network
configuration is given by Table 1, where L1 and L2 are the hidden node numbers of each stacked ELM
autoencoder and L3 of the conventional ELM classifier.



Symmetry 2018, 10, 474 7 of 13

Clearly, except achieving the same 100% recognition accuracy on the Iris database, the performance
of the proposed method was almost better than that of HELM. Note that when conducting the training
of networks on each database, the network settings of both the proposed method and HELM were the
same. Therefore, it could be concluded that the evolutional sparse ELM autoencoder whose hidden
layer parameters get optimized by differential evolution outperformed the conventional ones used by
HELM, and compared with HELM, the proposed evolutionary hierarchical sparse extreme learning
autoencoder network was able to extract features equipped with better discriminative capability,
which finally helped to improve the recognition accuracy.

Table 1. Network configuration of the proposed method and HELM on different benchmark datasets.

Benchmark Database Name Number of Hidden Nodes in Each Layer

Letter L1 = L2 = 200, L3 = 2000
Iris L1 = L2 = 20, L3 = 200

Glass L1 = L2 = 20, L3 = 200
Wine L1 = L2 = 20, L3 = 500

Satimage L1 = L2 = 100, L3 = 1000

Next, two representative object recognition benchmarks were used for further performance
comparisons. Comparative methods include the ELM-based ML-ELM [19], HELM [22], as well as the
DL-based SAE [4], SDA [30], DBN [31] and DBM [32]. The learning rate of the DL-based methods was
0.1, and the decay rate was 0.95. As for SDA, the corruption rate was set as 0.5, while the drop rate
was 0.2. In ML-ELM, there were three hidden layers in all, the l2 penalty coefficients of which were
10−1, 103 and 108, respectively. The mutation strength constant and the crossover factor used in the
proposed method were 1 and 0.8 correspondingly. Except that the pixel values of the input raw images
were normalized to [−1,1], no other image preprocessing was conducted.

Recognition performance comparison between the proposed method and HELM

on five multiple-class recognition benchmarks

Letter Iris Glass Wine Satimage

Benchmark database name
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Figure 4. Recognition performance comparison between the proposed method and HELM on five
multiple-class recognition benchmarks.

The MNIST 2D handwritten digit recognition database and NORB 3D object recognition database
were used in comparative experiments, both of which are the representative benchmarks for evaluating
object recognition algorithms. The MNIST consists of 70,000 grayscale 28× 28 images of handwritten
digits collected from 500 people (see Figure 5a). There are 60,000 images in the training set, each of
which contains a digit from 0–9. The MNIST requires nearly no formatting and preprocessing and is a
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practical platform for real-world objection recognition application. Meanwhile, the NORB dataset is
more challenging than the MNIST and oriented toward recognizing 3D objects under different imaging
conditions (see Figure 5b). It comprises 97,200 images of 50 3D toys that belong to five major categories,
such as animals, planes, and so on. All the images were captured by two visible light cameras set at
9 azimuths and 36 angles under 6 different lighting conditions.

(a) MNIST dataset (b) NORB dataset

Figure 5. Part image examples in (a) the Mixed National Institute of Standards and Technology (MNIST)
dataset and (b) the NORBdataset.

4.1. Comparison with HELM and Analysis

At first, the proposed method was compared with the HELM so as to validate that the evolutionary
sparse ELM autoencoder used in the proposed method did help improve the performance. With regards
to this, except for changing the hidden node number of the evolutionary sparse ELM autoencoder,
the other network architectures of the proposed evolutionary hierarchical extreme learning network
were the same as those of the HELM. For the MNIST dataset, the number of hidden nodes of the sparse
ELM autoencoder and ELM classifier was 700 and 12,000, respectively, while 3000 and 15,000 for the
NORB dataset. The regularization parameter C was 2× 10−30. Tables 2 and 3 show the recognition
accuracy varying with the number of hidden nodes in the conventional sparse ELM autoencoder in
HELM and the evolutionary sparse ELM autoencoder in the proposed method on the MNIST dataset
and the NORB dataset, respectively.

Table 2. Recognition accuracy (%) vs. different hidden nodes of the proposed method and HELM on
the MNIST dataset.

Hidden Node Number 300 400 500 600 700 800 900

HELM 0.9895 0.9893 0.9890 0.9899 0.9913 0.9892 0.9891
the proposed method 0.9917 0.9920 0.9919 0.9119 0.9923 0.9919 0.9919

Table 3. Recognition accuracy (%) vs. different hidden nodes of the proposed method and HELM on
the NORB dataset.

Hidden Node Number 1000 1500 2000 2500 3000 3500 4000

HELM 0.9021 0.8984 0.9026 0.9001 0.9128 0.9004 0.9007
the proposed method 0.9123 0.9120 0.9119 0.9136 0.9246 0.9118 0.9117

Apparently, it can be illustrated that with the same number of hidden nodes the recognition
precision of the proposed method was always higher than HELM. Increasing the hidden node number
helps to improve the performance, but overfitting will happen if the hidden node number is too large.
The proposed method could reach the same recognition accuracy as that of HELM, but called for less
hidden nodes. This should benefit from the optimized hidden layer parameters obtained by differential
evolution during the learning procedure of the the evolutionary sparse ELM autoencoder.
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Furthermore, the highest level features encoded by the last sparse ELM autoencoder in HELM
and the evolutionary sparse ELM autoencoder in the proposed method were taken out, and the
discriminative rate given in Equation (8) was adopted to measure how discriminative the features
were quantitatively, which is given in Tables 4 and 5. Clearly, the discriminative rates of the features
encoded by the proposed method (0.9372 on MNIST and 0.4724 on NORB) were higher than those
encoded by HELM (0.9274 on MNIST and 0.4711 on NORB). It can be concluded that the hidden
layer parameters did impact the feature encoding of the ELM-based autoencoder, and the encoded
features of the proposed method were more discriminative and can provide more useful information
for building classifiers with good generalization capability. This could be the clue to explain the results
shown in Tables 2 and 3.

Table 4. Discriminative rate comparison of the features encoded by the proposed method and HELM
on the MNIST dataset.

Method HELM The Proposed Method

Discriminative rate 0.9274 0.9372

Table 5. Discriminative rate comparison of the features encoded by the proposed method and HELM
on the NORB dataset.

Method HELM The Proposed Method

Discriminative rate 0.4711 0.4724

4.2. Comparison with Relevant State-of-the-Art Methods and Analysis

Next, both the performance and the training cost of the proposed method were compared with
those of relevant state-of-the-art methods, which are given by Figures 6 and 7. In terms of recognition
accuracy, the proposed method obtained the best results (i.e., 99.23% on MNIST and 92.46% on
NORB), followed by HELM, DBM and then the ML-ELM and the like. Since it can be inferred from the
aforementioned experimental comparison and analysis that the improved performance of the proposed
method was derived from differential evolution, more computation was needed for searching the
optimized hidden layer parameters such that it required a longer training phase than what other
ELM-based methods do. However, differential evolution was only applied to the evolutionary sparse
ELM autoencoder, which was stacked at higher layers of the whole network for high-level feature
extraction. The learning of other modules in the proposed method still followed the ELM theory.
Hence, the computation cost became larger, but acceptable. Compared with ELM-based methods,
the training period of the proposed method was much longer, but was about at least two- or three-times
faster than the DL-based methods.
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Figure 6. Recognition performance comparison with relevant rival algorithms on (a) the MNIST dataset
and (b) the NORB dataset.
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Figure 7. Training time comparison with relevant rival algorithms on (a) the MNIST dataset and (b) the
NORB dataset.

4.3. Application on a Real Complex Dataset

For the purpose of demonstrating the applicability of the proposed method on a real complex
recognition task, the German traffic sign recognition benchmark (GTSRB [33]) was chosen as the test
dataset, which contains more than 50,000 images of traffic signs captured in various real scenes and
weather situations. The images in GTSRB suffer from issues such as contrast degradation, occlusion,
over exposure, distortion, and so on. All the traffic signs belong to 43 classes in all (see Figure 8),
the size of which ranges from 15× 15 to 250× 250.

Figure 8. Typical sample examples in the GTSRB dataset.
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The network structure of the proposed method here is in accordance with the one used in the
experiments on MNIST and NORB datasets, that is two sparse ELM autoencoders for feature encoding
and one ELM classifier for feature classification. Before applying the proposed method, all the traffic
sign images were resized to 48× 48 and centered to have mean value of zero and scaled to have a
standard deviation of one. The ZCA whiten procedure was conducted to normalize all the image
samples, which were then fed to the proposed method for training and testing. The final results of
recognition rates were recorded. The relevant rival methods that had formal reported results on GTSRB
were also given, including HOG-LDA [33], HOG-random forests [34], BW-ELM [35], HELM [22] and
HOGv-ELM [15]. As is shown in Table 6, the proposed method owned the second highest recognition
accuracy of 98.91%, that is 0.18% lower than the best result of HOGv-ELM. Note that HOGv-ELM is
based on the variant version of HOG features that is specifically designed for representing traffic signs,
while the proposed method learned the feature representation directly from raw inputs. The proposed
method outperformed other methods with a recognition rate that was better than human performance.
Such a result could to some extent demonstrate that the proposed method was meaningful and useful
for real practical application.

Table 6. Recognition performance comparison with relevant rival methods on the GTSRB dataset.

Method HOG-LDA HOG-Random Forests BW-ELM HELM

Accuracy (%) 95.68 96.14 97.19 97.85

Method Human Performance HOGv-ELM Proposed Method

Accuracy (%) 98.84 99.09 98.91

5. Conclusions

In this paper, a novel evolutionary sparse ELM autoencoder was proposed and embedded
in the hierarchical neural network called the evolutionary hierarchical sparse extreme learning
autoencoder network. Due to the training of the whole network being based on least mean squares,
it is faster and requires less computation than rival deep learning methods while maintaining great
performance. Besides, since the parameters in the hidden layer of the sparse ELM autoencoder
are optimized by differential evolution other than being generated randomly, the discriminative
ability of the encoded features get further strengthened, so that the proposed method can outperform
previous ELM-based opponents with acceptable time consumption when applied to object recognition
problems. Experimental results on typical benchmarks have also validated the proposed method’s
utility and capability.

Since it is reported that ELM with a local receptive field and combinational node has achieved
impressive results superior to state-of-the-art methods including convolutional neural networks,
the future work should extend the proposed evolutionary sparse ELM autoencoder to such a new
ELM structure so as to further improve the quality of the feature encoding. In the meantime,
more challenging tasks and data such as the ones perceived by the visible light camera mounted
on real cars will also be used to test the proposed method’s robustness and generalization performance.
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Abbreviations

The following abbreviations are used in this manuscript:

ELM Extreme Learning Machine
HELM Hierarchical Extreme Learning Machine
EHELN Evolutionary Hierarchical Extreme Learning Network
DL Deep Learning
SAE Stacked Autoencoder
SDA Stacked Denoising Autoencoder
DBN Deep Belief Network
DBM Deep Boltzmann Machine
ML-ELM Multi-Layer Extreme Learning Machine
SLFN Single Hidden Layer Feedforward Network
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