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Abstract: Intuitionistic fuzzy rough sets are constructed by combining intuitionistic fuzzy sets
with rough sets. Recently, Huang et al. proposed the definition of an intuitionistic fuzzy (IF)
β-covering and an IF covering rough set model. In this paper, some properties of IF β-covering
approximation spaces and the IF covering rough set model are investigated further. Moreover,
we present a novel methodology to the problem of multiple criteria group decision making. Firstly,
some new notions and properties of IF β-covering approximation spaces are proposed. Secondly,
we study the characterizations of Huang et al.’s IF covering rough set model and present a new IF
covering rough set model for crisp sets in an IF environment. The relationships between these two
IF covering rough set models and some other rough set models are investigated. Finally, based on
the IF covering rough set model, Huang et al. also defined an optimistic multi-granulation IF rough
set model. We present a novel method to multiple criteria group decision making problems under
the optimistic multi-granulation IF rough set model.

Keywords: intuitionistic fuzzy; covering; neighborhood system; decision making

1. Introduction

Rough set theory was proposed by Pawlak [1,2] in 1982 as a tool to conceptualize, organize
and analyze various types of data in data mining. There are other generalizations of his original
concepts, for example by general binary relations [3], multi-granulations [4] and coverings [5]. Aiming
at covering-based rough sets [6,7], they have been applied to decision rule synthesis [8,9], knowledge
reduction [10,11] and other fields [12,13]. In theory, covering-based rough set theory has been
connected with other theories. For example, it has been connected with lattice theory [14,15], matroid
theory [16,17] and fuzzy set theory [18–23].

Zadeh’s fuzzy set theory [24] addresses the problem of how to understand and manipulate
imperfect knowledge. Recent investigations have shown that rough set and fuzzy set theories can be
combined into various models, which are used for incomplete information in information systems.
Dübois and Prade [25] first presented a fuzzy rough set model. Based on their work, some extended
models and corresponding applications have been investigated in [26,27]. As far as fuzzy covering
rough sets, D’eer et al. [28] discussed some fuzzy covering-based rough set models. Ma [18] proposed
two new types of fuzzy covering rough set models. Inspired by Ma’s work, Yang and Hu [29]
investigated some types of fuzzy covering-based rough sets. Then, Yang and Hu studied other
problems in fuzzy covering-based rough sets [30].

Intuitionistic fuzzy set (IFS) theory, as a straightforward extension of fuzzy set theory, was
proposed by Atanassov [31]. The combination of IFS and rough set theories has attracted more
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interesting studies. For example, Zhang et al. [32] studied a general frame of IF rough sets.
Huang et al. [33] presented an IF rough set model by combining β-neighborhoods induced by an IF
β-covering. There are also other new notions and properties in Huang et al.’s IF rough set model, so it
is necessary to investigate the IF rough set model further in this paper.

Recently, many researchers have studied decision making problems by rough set models [19,34],
especially multiple criteria group decision making [20,23]. Multiple criteria group decision making
(MCGDM) involves ranking from all feasible alternatives in conflicting and interactive criteria. After
presenting the IF covering rough set model, Huang et al. also defined an optimistic multi-granulation
IF rough set model. By investigation, multi-granulation IF rough set models have not been used
for MCGDM problems. According to the characterizations of MCGDM problems, we construct the
multi-granulation IF decision information systems and present a novel approach to MCGDM problems
based on the optimistic multi-granulation IF rough set model in this paper.

The rest of this paper is organized as follows. Section 2 recalls some notions about covering-based
rough sets and intuitionistic fuzzy sets. In Section 3, some properties of IF β-covering approximation
space are investigated further. In Section 4, we investigate two IF covering rough set models. Among
these two models, one is presented by Huang et al. [33], which concerns the IF sets; and the other is
proposed by us, which concerns the crisp sets in an IF environment. In Section 5, we present a novel
approach to MCGDM problems based on Huang et al.’s optimistic multi-granulation IF rough set
model. This paper is concluded and further work is indicated in Section 6.

2. Basic Definitions

This section reviews some fundamental notions related to covering-based rough sets and
intuitionistic fuzzy sets. Suppose U is a nonempty and finite set called a universe.

Definition 1. (Covering [35,36]) Let U be a universe and C a family of subsets of U. If none of the subsets in
C are empty and

⋃
C = U, then C is called a covering of U.

Definition 2. (Neighborhood [35]) Let C be a covering of U. For any x ∈ U,

NC(x) =
⋂{K ∈ C : x ∈ K}

is called the neighborhood of x with respect to C. When the covering is clear, we omit the lowercase C in the
neighborhood.

Definition 3. (Approximation operators [37]) Let C be a covering of U. For any X ⊆ U,

SHC(X) = {x ∈ U : N(x) ∩ X 6= ∅},

SLC(X) = {x ∈ U : N(x) ⊆ X}.

SHC(X) and SLC(X) are called the upper and lower approximation operators with respect to C.

Definition 4. (Intuitionistic fuzzy set [31]) Let U be a fixed set. An intuitionistic fuzzy set (IFS) A in U is
defined as:

A = {〈x, µA(x), νA(x)〉 : x ∈ U},

where µA : U → [0, 1] is called the degree of membership of the element x ∈ U to A and νA : U → [0, 1]
is called the degree of non-membership. They satisfy µA(x) + νA(x) ≤ 1 for all x ∈ U. The family of all
intuitionistic fuzzy sets in U is denoted by IF(U).

We call 〈a, b〉 with 0 ≤ a, b ≤ 1 and a + b ≤ 1 an IF value. As is well known, for two IF values
α = 〈a, b〉 and β = 〈c, d〉, α ≤ β⇔ a ≤ c and b ≥ d.
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For any family γi ∈ [0, 1], i ∈ I, I ⊆ N+ (N+ is the set of all positive integers), we write ∨i∈Iγi for
the supremum of {γi : i ∈ I} and ∧i∈Iγi for the infimum of {γi : i ∈ I}. Some basic operations on
IF(U) are shown as follows [31]: for any A, B ∈ IF(U),

1. A ⊆ B iff µA(x) ≤ µB(x) and νB(x) ≤ νA(x) for all x ∈ U;
2. A = B iff A ⊆ B and B ⊆ A;
3. A ∪ B = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉 : x ∈ U};
4. A ∩ B = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉 : x ∈ U};
5. A′ = {〈x, νA(x), µA(x)〉 : x ∈ U}.

3. Some Properties of IF β-Covering Approximation Space

In this section, we introduce the notions of intuitionistic fuzzy (IF) β-covering approximation
space. There are two concepts presented by Huang et al. in [33], which are IF β-covering and IF
β-neighborhood in this approximation space. We mainly investigate some of their properties, and
some new notions are presented.

3.1. IF β-Neighborhood and IF β-Neighborhood System

Definition 5. ([33]) Let U be a universe and β = 〈a, b〉 be an IF value. Then, we call Ĉ = {C1, C2, ..., Cm},
with Ci ∈ IF(U)(i = 1, 2, ..., m), an IF β-covering of U, if for any x ∈ U, there exists Ci ∈ Ĉ, such that
Ci(x) ≥ β. We also call (U, Ĉ) an IF β-covering approximation space.

Let Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}. If any Ĉi (i = 1, 2, ..., n) is an IF β-covering of U, then we call (U, Γβ)

a n-IF β-covering approximation space.

Definition 6. ([33]) Let Ĉ be an IF β-covering of U and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U, the IF
β-neighborhood Ñβ

x of x induced by Ĉ can be defined as:

Ñβ
x = ∩{Ci ∈ Ĉ : Ci(x) ≥ β}.

Note that Ci(x) is an IF value 〈µCi (x), νCi (x)〉 in Definitions 5 and 6. Hence, Ci(x) ≥ β means
µCi (x) ≥ a and νCi (x) ≤ b where IF value β = 〈a, b〉.

Remark 1. Let Ĉ be an IF β-covering of U, β = 〈a, b〉 and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U:

Ñβ
x = ∩{Ci ∈ Ĉ : µCi (x) ≥ a, νCi (x) ≤ b}.

Example 1. Let U = {x1, x2, x3, x4, x5} and Ĉ = {C1, C2, C3, C4}, where:

C1 = (0.7,0.2)
x1

+ (0.5,0.3)
x2

+ (0.4,0.5)
x3

+ (0.6,0.1)
x4

+ (0.3,0.2)
x5

,

C2 = (0.6,0.2)
x1

+ (0.3,0.2)
x2

+ (0.2,0.3)
x3

+ (0.4,0.5)
x4

+ (0.7,0.3)
x5

,

C3 = (0.4,0.1)
x1

+ (0.4,0.5)
x2

+ (0.5,0.2)
x3

+ (0.3,0.6)
x4

+ (0.6,0.3)
x5

,

C4 = (0.1,0.5)
x1

+ (0.6,0.1)
x2

+ (0.6,0.3)
x3

+ (0.5,0.3)
x4

+ (0.8,0.1)
x5

.
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According to Definition 5, we know Ĉ is an IF β-covering of U (β = 〈a, b〉 with 0 ≤ a ≤ 0.6, 0.3 ≤ b ≤ 1).
Let β = 〈0.5, 0.3〉. Then, the IF β-neighborhoods are shown as follows:

Ñβ
x1 = C1 ∩ C2 = (0.6,0.2)

x1
+ (0.3,0.3)

x2
+ (0.2,0.5)

x3
+ (0.4,0.5)

x4
+ (0.3,0.3)

x5
,

Ñβ
x2 = C1 ∩ C4 = (0.1,0.5)

x1
+ (0.5,0.3)

x2
+ (0.4,0.5)

x3
+ (0.5,0.3)

x4
+ (0.3,0.2)

x5
,

Ñβ
x3 = C3 ∩ C4 = (0.1,0.5)

x1
+ (0.4,0.5)

x2
+ (0.5,0.3)

x3
+ (0.3,0.6)

x4
+ (0.6,0.3)

x5
,

Ñβ
x4 = C1 ∩ C4 = (0.1,0.5)

x1
+ (0.5,0.3)

x2
+ (0.4,0.5)

x3
+ (0.5,0.3)

x4
+ (0.3,0.2)

x5
,

Ñβ
x5 = C2 ∩ C3 ∩ C4 = (0.1,0.5)

x1
+ (0.3,0.5)

x2
+ (0.2,0.3)

x3
+ (0.3,0.6)

x4
+ (0.6,0.3)

x5
.

Theorem 1. ([33]) Let Ĉ be an intuitionistic fuzzy β-covering of U and Ĉ = {C1, C2, . . . , Cm}.
Then, the following statements hold:

1. Ñβ
x (x) ≥ β for any x ∈ U;

2. For x, y, z ∈ U, if Ñβ
x (y) ≥ β, Ñβ

y (z) ≥ β, then Ñβ
x (z) ≥ β;

3. For two IF values β1, β2, if β1 ≤ β2 ≤ β, then Ñβ1
x ⊆ Ñβ2

x for all x ∈ U.

For two different IF β-neighborhoods, a relationship between them is presented.

Proposition 1. Let Ĉ be an IF β-covering of U. For any x, y ∈ U, Ñβ
x (y) ≥ β if and only if Ñβ

y ⊆ Ñβ
x .

Proof. Suppose the IF value β = 〈a, b〉.
(⇒): Since Ñβ

x (y) ≥ β, so

µ
Ñβ

x
(y) = µ ⋂

µCi
(x)≥a

νCi
(x)≤b

Ci (y) =
∧

µCi
(x)≥a

νCi
(x)≤b

µCi (y) ≥ a, ν
Ñβ

x
(y) = ν ⋂

µCi
(x)≥a

νCi
(x)≤b

Ci (y) =
∨

µCi
(x)≥a

νCi
(x)≤b

νCi (y) ≤ b.

Hence,

{Ci ∈ Ĉ : µCi (x) ≥ a, νCi (x) ≤ b} ⊆ {Ci ∈ Ĉ : µCi (y) ≥ a, νCi (y) ≤ b}.

Therefore, for each z ∈ U,

µ
Ñβ

x
(z) =

∧
µCi

(x)≥a

νCi
(x)≤b

µCi (z) ≥
∧

µCi
(y)≥a

νCi
(y)≤b

µCi (z) = µ
Ñβ

y
(z),

ν
Ñβ

x
(z) =

∨
µCi

(x)≥a

νCi
(x)≤b

νCi (z) ≤
∨

µCi
(y)≥a

νCi
(y)≤b

νCi (z) = ν
Ñβ

y
(z).

Hence, Ñβ
y ⊆ Ñβ

x .

(⇐): For any x, y ∈ U, since Ñβ
y ⊆ Ñβ

x , so µ
Ñβ

x
(y) ≥ µ

Ñβ
y
(y) ≥ a, ν

Ñβ
x
(y) ≤ ν

Ñβ
y
(y) ≤ b.

Therefore Ñβ
x (y) ≥ β.

By the notion of IF β-neighborhood, we propose the following definition of the IF β-neighborhood
system of x ∈ U.

Definition 7. Let Ĉ be an IF β-covering of U and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U, the IF
β-neighborhood system Ñ β

Ĉ
(x) of x induced by Ĉ is defined as:

Ñ β

Ĉ
(x) = {Ci ∈ Ĉ : Ci(x) ≥ β}.
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According to Definition 6, we know Ñβ
x = ∩Ñ β

Ĉ
(x) for each x ∈ U. Let Ĉ1, Ĉ2 be two IF

β-coverings of U. The statement does not hold: if Ñ β

Ĉ1
(x) = Ñ β

Ĉ2
(x) for each x ∈ U, then Ĉ1 = Ĉ2.

The following example can illustrate it.

Example 2. (Continued from Example 1) Let β = 〈0.5, 0.3〉, Ĉ1 = Ĉ∪ {C5}, where C5 = (0.2,0.5)
x1

+ (0.5,0.4)
x2

+
(0.4,0.6)

x3
+ (0.3,0.4)

x4
+ (0.3,0.5)

x5
. Then, Ñ β

Ĉ
(xi) and Ñ β

Ĉ1
(xi) (i = 1, 2, 3, 4, 5) are listed in Table 1.

Table 1. Ñ β

Ĉ
(xi) and Ñ β

Ĉ1
(xi) (i = 1, 2, 3, 4, 5).

U x1 x2 x3 x4 x5

Ñ β

Ĉ
{C1, C2} {C1, C4} {C3, C4} {C1, C4} {C2, C3, C4}

Ñ β

Ĉ1
{C1, C2} {C1, C4} {C3, C4} {C1, C4} {C2, C3, C4}

Hence, Ñ β

Ĉ
(xi) = Ñ

β

Ĉ1
(xi) for any i = 1, 2, 3, 4, 5, but Ĉ 6= Ĉ1.

Inspired by this statement, we consider in which conditions two IF β-coverings generate the same
β-neighborhood system for any element of the universe. In order to find the conditions, we introduce
two new concepts in IF β-covering approximation space firstly.

Definition 8. Let Ĉ be an IF β-covering of U and C ∈ Ĉ. If there exists x ∈ U such that C(x) ≥ β, then C is
called an IF β-dependent element of Ĉ; otherwise, C is called an IF β-independent element of Ĉ. If every element
in Ĉ is an IF β-dependent element, then Ĉ is IF β-dependent; otherwise, Ĉ is IF β-independent.

Example 3. (Continued from Example 2) Let β = 〈0.5, 0.3〉. Then, C5 is an IF β-independent element of
Ĉ1 and Ci (i = 1, 2, 3, 4) are IF β-dependent elements of Ĉ1. Hence, Ĉ1 is IF β-independent and Ĉ is IF
β-dependent.

Proposition 2. Let Ĉ be an IF β-covering of U and C ∈ Ĉ. If C is an IF β-independent element of Ĉ,
then Ĉ− {C} is still an IF β-covering of U.

Proof. According to Definitions 5 and 8, it is straightforward.

Proposition 3. Let Ĉ be an IF β-covering of U, C be an IF β-independent element of Ĉ and C1 ∈ Ĉ− {C}.
Then, C1 is an IF β-independent element of Ĉ iff C1 is an IF β-independent element of Ĉ− {C}.

Proof. According to Definitions 5 and 8, it is straightforward.

According to Propositions 2 and 3, it is still an IF β-covering after deleting all IF β-independent
elements of an IF β-covering.

Definition 9. Let Ĉ be an IF β-covering of U and B̂ ⊆ Ĉ. If B̂ is the set of all IF β-dependent elements of Ĉ,
then B̂ is called the IF β-base of Ĉ and is denoted as ∆β(Ĉ).

Proposition 4. Let Ĉ be an IF β-covering of U. For any x ∈ U,

Ñ β

Ĉ
(x) = Ñ β

∆β(Ĉ)
(x).

Proof. According to Definitions 8, 9 and Proposition 2, it is straightforward.

Theorem 2. Let Ĉ1, Ĉ2 be two IF β-coverings of U. For any x ∈ U,
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Ñ β

Ĉ1
(x) = Ñ β

Ĉ2
(x) iff ∆β(Ĉ1) = ∆β(Ĉ2).

Proof. By Proposition 4 and Definition 7, it is straightforward.

Corollary 1. Let Ĉ1, Ĉ2 be two IF β-coverings of U. For any x ∈ U, if ∆β(Ĉ1) = ∆β(Ĉ2), then Ñβ
x = Ñ′

β

x ,

where Ñβ
x and Ñ′

β

x are the β-neighborhoods induced by Ĉ1 and Ĉ2, respectively.

Proof. According to Theorem 2, ∆β(Ĉ1) = ∆β(Ĉ2)⇒ Ñ
β

Ĉ1
(x) = Ñ β

Ĉ2
(x)⇒ ∩Ñ β

Ĉ1
(x) = ∩Ñ β

Ĉ2
(x)⇒

Ñβ
x = Ñ′

β

x .

3.2. β-Neighborhood

In this subsection, the definition of β-neighborhood is presented by the IF β-neighborhood.

Definition 10. Let (U, Ĉ) be an IF β-covering approximation space and Ĉ = {C1, C2, . . . , Cm}. For each
x ∈ U, we define the β-neighborhood Nβ

x of x as:

Nβ
x = {y ∈ U : Ñβ

x (y) ≥ β}.

Note that Ñβ
x (y) is an IF value 〈µ

Ñβ
x
(y), ν

Ñβ
x
(y)〉 in Definition 10. Based on this,

the β-neighborhood can be represented by the following remark.

Remark 2. Let Ĉ be an IF β-covering of U, β = 〈a, b〉 and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U,

Nβ
x = {y ∈ U : µ

Ñβ
x
(y) ≥ a, ν

Ñβ
x
(y) ≤ b}.

Example 4. (Continued from Example 1) Let β = 〈0.5, 0.3〉, then we have:

Nβ
x1

= {x1}, Nβ
x2

= {x2, x4}, Nβ
x3

= {x3, x5},

Nβ
x4

= {x2, x4}, Nβ
x5

= {x5}.

The following theorem shows the basic properties of β-neighborhoods.

Theorem 3. Let Ĉ be an IF β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then:

1. x ∈ Nβ
x for any x ∈ U;

2. For any x, y, z ∈ U, if x ∈ Nβ
y , y ∈ Nβ

z , then x ∈ Nβ
z .

Proof. (1) According to the first statement in Theorem 1, we know Ñβ
x (x) ≥ β for each x ∈ U.

Hence, x ∈ {y ∈ U : Ñβ
x (y) ≥ β} = Nβ

x for each x ∈ U.
(2) For any x, y, z ∈ U, x ∈ Nβ

y ⇔ Ñβ
y (x) ≥ β ⇔ Ñβ

x ⊆ Ñβ
y , and y ∈ Nβ

z ⇔ Ñβ
z (y) ≥ β ⇔ Ñβ

y ⊆ Ñβ
z .

Hence, Ñβ
x ⊆ Ñβ

z . By Proposition 1, we have Ñβ
z (x) ≥ β, i.e., x ∈ Nβ

z .

The following proposition shows a relationship between Nβ
x and Nβ

y .

Proposition 5. Let Ĉ be an IF β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then, for any x ∈ U, x ∈ Nβ
y iff

Nβ
x ⊆ Nβ

y .
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Proof. (⇒): For any z ∈ Nβ
x , we know Ñβ

x (z) ≥ β. Since x ∈ Nβ
y , so Ñβ

y (x) ≥ β. According to (2) in

Theorem 1, we have Ñβ
y (z) ≥ β. Hence, z ∈ Nβ

y . Therefore, Nβ
x ⊆ Nβ

y .

(⇐): According to (1) in Theorem 3, x ∈ Nβ
x for all x ∈ U. Since Nβ

x ⊆ Nβ
y , so x ∈ Nβ

y .

A relationship between IF β-neighborhoods and β-neighborhoods is proposed in the
following proposition.

Proposition 6. Let Ĉ be an IF β-covering of U. For any x, y ∈ U, Ñβ
x ⊆ Ñβ

y iff Nβ
x ⊆ Nβ

y .

Proof. For any x, y ∈ U, Ñβ
x ⊆ Ñβ

y ⇔ Ñβ
y (x) ≥ β⇔ x ∈ Nβ

y ⇔ Nβ
x ⊆ Nβ

y .

4. Two Intuitionistic Fuzzy Covering Rough Set Models

In this section, we investigate two IF covering rough set models on the basis of the IF
β-neighborhoods and the β-neighborhoods, respectively. Firstly, one model is presented by Huang
et al., and we study the properties of the IF lower and upper approximations of each IF set further.
Secondly, we propose another new model, which concerns crisp sets in an IF environment. Moreover,
some properties of the approximations are investigated. Finally, the relationships between these two
IF covering rough set models with other rough set models are revealed.

4.1. Characterizations of Huang et al.’s Intuitionistic Fuzzy Covering Rough Set Model

Huang et al. [33] presented an IF covering rough set model.

Definition 11. ([33]) Let (U, Ĉ) be an IF β-covering approximation space. For each A ∈ IF(U) where
A = {〈x, µA(x), νA(x)〉 : x ∈ U}, we define the intuitionistic fuzzy (IF) covering upper approximation C̃(A)

and lower approximation C
∼
(A) of A as:

C̃(A) = {〈x,∨y∈U [µÑβ
x
(y) ∧ µA(y)],∧y∈U [νÑβ

x
(y) ∨ νA(y)]〉 : x ∈ U},

C
∼
(A) = {〈x,∧y∈U [νÑβ

x
(y) ∨ µA(y)],∨y∈U [µÑβ

x
(y) ∧ νA(y)]〉 : x ∈ U}.

If C̃(A) 6= C
∼
(A), then A is called the first type of IF covering rough set.

Example 5. (Continued from Example 1) Let β = 〈0.5, 0.3〉, A = (0.6,0.3)
x1

+ (0.4,0.5)
x2

+ (0.3,0.2)
x3

+ (0.5,0.3)
x4

+
(0.7,0.2)

x5
.

C̃(A) = {〈x1, 0.6, 0.3〉, 〈x2, 0.5, 0.2〉, 〈x3, 0.6, 0.3〉, 〈x4, 0.5, 0.2〉, 〈x5, 0.6, 0.3〉},

C
∼
(A) = {〈x1, 0.4, 0.3〉, 〈x2, 0.4, 0.5〉, 〈x3, 0.3, 0.4〉, 〈x4, 0.4, 0.5〉, 〈x5, 0.3, 0.3〉}.

Some characterizations of Huang et al.’s IF covering rough set model are shown in the
following proposition.

Proposition 7. ([33]) Let (U, Ĉ) be an IF β-covering approximation space. Then, for all A, B ∈ IF(U),

1. C
∼
(U) = U, C̃(∅) = ∅;

2. C̃(A′) = (C
∼
(A))′, C

∼
(A′) = (C̃(A))′;

3. If A ⊆ B, then C
∼
(A) ⊆ C

∼
(B), C̃(A) ⊆ C̃(B);

4. C
∼
(A

⋂
B) = C

∼
(A)

⋂
C
∼
(B), C̃(A

⋃
B) = C̃(A)

⋃
C̃(B);
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5. C
∼
(A

⋃
B) ⊇ C

∼
(A)

⋃
C
∼
(B), C̃(A

⋂
B) ⊆ C̃(A)

⋂
C̃(B).

Besides these characterizations shown in Proposition 7, there are other characterizations that
should be investigated.

Example 6. (Continued from Example 1) Let β = 〈0.5, 0.3〉.

C̃(U) = {〈x1, 0.6, 0.2〉, 〈x2, 0.5, 0.2〉, 〈x3, 0.6, 0.3〉, 〈x4, 0.5, 0.2〉, 〈x5, 0.6, 0.3〉},

C
∼
(∅) = {〈x1, 0.2, 0.6〉, 〈x2, 0.2, 0.5〉, 〈x3, 0.3, 0.6〉, 〈x4, 0.2, 0.5〉, 〈x5, 0.3, 0.6〉}.

According to Example 6, we know C̃(U) 6= U and C
∼
(∅) 6= ∅ in an IF β-covering approximation

space. However, there are C̃(U) = U and C
∼
(∅) = ∅ based on some conditions.

Proposition 8. Let (U, Ĉ) be an IF β-covering approximation space with β = 〈a, b〉 and
Ĉ = {C1, C2, . . . , Cm}. C

∼
(∅) = ∅ iff ∨y∈Uµ

Ñβ
x
(y) = 1,∧y∈Uν

Ñβ
x
(y) = 0 for any x ∈ U.

Proof.

C
∼
(∅) = ∅ ⇔ C̃(U) = U

⇔ ∨y∈U [µÑβ
x
(y) ∧ µU(y)] = 1,∧y∈U [νÑβ

x
(y) ∨ νU(y)] = 0, (∀x ∈ U)

⇔ ∨y∈Uµ
Ñβ

x
(y) = 1,∧y∈Uν

Ñβ
x
(y) = 0, (∀x ∈ U).

Remark 3. Let (U, Ĉ) be an IF β-covering approximation space. The IF covering approximation operators
C
∼

and C̃ in Definition 11 do not satisfy the following statements: for all A, B ∈ IF(U),

1. C
∼
(C
∼
(A)) = C

∼
(A), C̃(C̃(A)) = C̃(A);

2. C
∼
((C

∼
(A))′) = (C

∼
(A))′, C̃((C̃(A))′) = (C̃(A))′;

3. For any C ∈ Ĉ, C
∼
(C) = C and C̃(C) = C;

In order to illustrate this remark, the following example is introduced.

Example 7. (Continued from Example 1) Let β = 〈0.5, 0.3〉, and:

A = (0.6,0.3)
x1

+ (0.4,0.5)
x2

+ (0.3,0.2)
x3

+ (0.5,0.3)
x4

+ (0.7,0.2)
x5

,

C1 = (0.7,0.2)
x1

+ (0.5,0.3)
x2

+ (0.4,0.5)
x3

+ (0.6,0.1)
x4

+ (0.3,0.2)
x5

,
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then:

C̃(A) = {〈x1, 0.6, 0.3〉, 〈x2, 0.5, 0.2〉, 〈x3, 0.6, 0.3〉, 〈x4, 0.5, 0.2〉, 〈x5, 0.6, 0.3〉},

C
∼
(A) = {〈x1, 0.4, 0.3〉, 〈x2, 0.4, 0.5〉, 〈x3, 0.3, 0.4〉, 〈x4, 0.4, 0.5〉, 〈x5, 0.3, 0.3〉},

C̃(C̃(A)) = {〈x1, 0.6, 0.3〉, 〈x2, 0.5, 0.3〉, 〈x3, 0.6, 0.3〉, 〈x4, 0.5, 0.3〉, 〈x5, 0.6, 0.3〉},

C
∼
(C
∼
(A)) = {〈x1, 0.3, 0.4〉, 〈x2, 0.3, 0.5〉, 〈x3, 0.3, 0.4〉, 〈x4, 0.3, 0.5〉, 〈x5, 0.3, 0.3〉},

C̃(C1) = {〈x1, 0.6, 0.2〉, 〈x2, 0.5, 0.2〉, 〈x3, 0.4, 0.3〉, 〈x4, 0.5, 0.2〉, 〈x5, 0.3, 0.3〉},

C
∼
(C1) = {〈x1, 0.3, 0.3〉, 〈x2, 0.3, 0.4〉, 〈x3, 0.3, 0.5〉, 〈x4, 0.3, 0.4〉, 〈x5, 0.3, 0.3〉},

(C̃(A))′ = {〈x1, 0.3, 0.6〉, 〈x2, 0.2, 0.5〉, 〈x3, 0.3, 0.6〉, 〈x4, 0.2, 0.5〉, 〈x5, 0.3, 0.6〉},

(C
∼
(A))′ = {〈x1, 0.3, 0.4〉, 〈x2, 0.5, 0.4〉, 〈x3, 0.4, 0.3〉, 〈x4, 0.5, 0.4〉, 〈x5, 0.3, 0.3〉},

C̃((C̃(A))′) = {〈x1, 0.3, 0.5〉, 〈x2, 0.3, 0.5〉, 〈x3, 0.3, 0.5〉, 〈x4, 0.3, 0.5〉, 〈x5, 0.3, 0.5〉},

C
∼
((C

∼
(A))′) = {〈x1, 0.3, 0.4〉, 〈x2, 0.3, 0.4〉, 〈x3, 0.3, 0.4〉, 〈x4, 0.3, 0.4〉, 〈x5, 0.3, 0.3〉}.

Hence, C
∼
(C
∼
(A)) 6= C

∼
(A), C̃(C̃(A)) 6= C̃(A), C

∼
((C

∼
(A))′) 6= (C

∼
(A))′, C̃((C̃(A))′) 6= (C̃(A))′,

C
∼
(C1) 6= C1 and C̃(C1) 6= C1.

A condition for C
∼
(A) ⊆ A ⊆ C̃(A) is proposed in the following proposition.

Proposition 9. Let (U, Ĉ) be an IF β-covering approximation space with β = 〈a, b〉 and Ĉ =

{C1, C2, . . . , Cm}. Then, the following statements are equivalent:

1. µCi (x) ≥ a, νCi (x) ≤ b⇒ µCi (x) = 1, νCi (x) = 0 for any x ∈ U, i ∈ {1, 2, . . . , m};
2. C

∼
(A) ⊆ A for any A ∈ IF(U);

3. A ⊆ C̃(A) for any A ∈ IF(U).

Proof. (1) ⇒ (2): According to (1), we know µ
Ñβ

x
(x) = 1 and ν

Ñβ
x
(x) = 0 for each x ∈ U. For each

A ∈ IF(U),
µC

∼
(A)(x) = ∧y∈U [νÑβ

x
(y) ∨ µA(y)]

= (∧y∈U−{x}[νÑβ
x
(y) ∨ µA(y)]) ∧ [ν

Ñβ
x
(x) ∨ µA(x)]

≤ ν
Ñβ

x
(x) ∨ µA(x)

= µA(x).

νC
∼
(A)(x) = ∨y∈U [µÑβ

x
(y) ∧ νA(y)]

= (∨y∈U−{x}[µÑβ
x
(y) ∧ νA(y)]) ∨ [µ

Ñβ
x
(x) ∧ νA(x)]

≥ µ
Ñβ

x
(x) ∧ νA(x)

= νA(x).

Hence, C
∼
(A) ⊆ A.

(2)⇒ (3): According to (2) and the duality, it is immediate.

(3) ⇒ (1): For any x ∈ U, let µ1x (x) = 1, ν1x (x) = 0, elsewhere µ1x (y) = 0, ν1x (y) = 1 for all
y ∈ U − {x}. Hence, 1x ∈ IF(U). Since A ⊆ C̃(A) for any A ∈ IF(U), so:

µ
Ñβ

x
(x) = µC̃(1x)

(x) ≥ µ1x (x) = 1, ν
Ñβ

x
(x) = νC̃(1x)

(x) ≤ ν1x (x) = 0.

Therefore, µCi (x) ≥ a, νCi (x) ≤ b⇒ µCi (x) = 1, νCi (x) = 0 for each x ∈ U, i ∈ {1, 2, . . . , m}.
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4.2. An Intuitionistic Fuzzy Covering Rough Set Model for Crisp Subsets

In [18], Ma presented a fuzzy covering rough set model for crisp subsets. Inspired by his work,
we propose an IF covering rough set model for crisp subsets.

Definition 12. Let (U, Ĉ) be an IF β-covering approximation space. For each crisp subset X ∈ P(U) (P(U)

is the power set of U), the IF covering upper approximation C(X) and lower approximation C(X) of X are
defined as:

C(X) = {x ∈ U : Nβ
x ∩ X 6= ∅},

C(X) = {x ∈ U : Nβ
x ⊆ X}.

If C(X) 6= C(X), then X is called the second type of IF covering rough set.

Example 8. (Continued from Example 4) Let β = 〈0.5, 0.3〉, X = {x1, x2}, Y = {x2, x4, x5}. Then:

C(X) = {x1, x2, x4}, C(X) = {x1},

C(Y) = {x2, x3, x4, x5}, C(Y) = {x2, x4, x5},

C(U) = U, C(U) = U, C(∅) = ∅, C(∅) = ∅.

The basic characterizations of the IF covering rough set model for crisp subsets are investigated
in the following proposition.

Proposition 10. Let (U, Ĉ) be an IF β-covering approximation space. Then, for all X, Y ∈ P(U),

1. C(U) = U, C(∅) = ∅;
2. C(∅) = ∅, C(U) = U;
3. C(X′) = (C(X))′, C(X′) = (C(X))′;
4. If X ⊆ Y, then C(X) ⊆ C(Y), C(X) ⊆ C(Y);
5. C(X

⋂
Y) = C(X)

⋂
C(Y), C(X

⋃
Y) = C(X)

⋃
C(Y);

6. C(X
⋃

Y) ⊇ C(X)
⋃

C(Y), C(X
⋂

Y) ⊆ C(X)
⋂

C(Y);
7. C(X) ⊆ X ⊆ C(X);
8. C(C(X)) ⊆ C(X), C(C(X)) ⊇ C(X);
9. X ⊆ Y or Y ⊆ X ⇔ C(X ∩Y) = C(X) ∩ C(Y), C(X ∪Y) = C(X) ∪ C(Y).

Proof. According to Definitions 10 and 12, it is immediate.

4.3. Relationships between These Two Models and Some Other Rough Set Models

These two types of IF covering rough set models introduced above can be viewed as a bridge
linking intuitionistic fuzzy sets and covering-based rough sets. In these models, C̃, C

∼
are IF

approximation operators, and C, C are crisp approximation operators in the IF environment. Firstly,
we present the relationship between the IF covering rough set model defined in Section 4.1 and the
generalized IF rough set model proposed by Zhou et al. in [38].

Definition 13. ([38]) Let U be a universe of discourse and R ∈ IFR(U ×U). For any A ∈ IF(U), the upper
approximation R̃(A) and lower approximation R

∼
(A) of A are defined as:

R̃(A) = {〈x,∨y∈U [µR(x, y) ∧ µA(y)],∧y∈U [νR(x, y) ∨ νA(y)]〉 : x ∈ U},

R
∼
(A) = {〈x,∧y∈U [νR(x, y) ∨ µA(y)],∨y∈U [µR(x, y) ∧ νA(y)]〉 : x ∈ U}.
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For an IF β-covering Ĉ of U, one can define an IF relation R on the universe U as:

µR(x, y) = µ
Ñβ

x (y)
, νR(x, y) = ν

Ñβ
x (y)

for any x, y ∈ U.

The induced IF relation R is related to all C ∈ Ĉ. Hence, the IF covering rough set model defined
in Section 4.1 can be viewed as a generalized IF rough set model presented by Zhou and Wu in
Definition 13: for each A ∈ IF(U),

C̃(A) = {〈x,∨y∈U [µR(x, y) ∧ µA(y)],∧y∈U [νR(x, y) ∨ νA(y)]〉 : x ∈ U} = R̃(A),

C
∼
(A) = {〈x,∧y∈U [νR(x, y) ∨ µA(y)],∨y∈U [µR(x, y) ∧ νA(y)]〉 : x ∈ U} = R

∼
(A).

Then, we present the relationship between the IF covering rough set model defined in Section 4.2
and a covering-based rough set model in Definition 3 proposed by Samanta and Chakraborty in [37].

Proposition 11. Let (U, Ĉ) be an IF β-covering approximation space and Ĉ = {C1, C2, . . . , Cm}.

1. If Ki = {x ∈ U : Ci(x) ≥ β} (i = 1, 2, . . . , m), then C = {K1, K2, . . . , Km} is a covering of U;

2. If (1) holds, then NC(x) = Nβ
x .

Proof. (1) Since Ĉ = {C1, C2, . . . , Cm} is an IF β-covering on U, so for any x ∈ U, there exists Ci ∈ Ĉ
such that Ci(x) ≥ β. Thus, x ∈ Ki. Hence, C = {K1, K2, . . . , Km} is a covering of U.

(2) Since C = {K1, K2, . . . , Km} is a covering of U with Ki = {x ∈ U : Ci(x) ≥ β}, so:

Nβ
x = {y ∈ U : Ñβ

x (y) ≥ β}
= {y ∈ U : (

⋂
Ci(x)≥β

Ci)(y) ≥ β}

= {y ∈ U : (
⋂

x∈Ki

Ci)(y) ≥ β}

= {y ∈ U : x ∈ Ki ⇒ y ∈ Ki, i = 1, 2, . . . , m}
= ∩{Ki ∈ C : x ∈ Ki}
= NC(x).

According to Proposition 11, for any fixed β = 〈a, b〉 (0 ≤ a, b ≤ 1 and a + b ≤ 1), an IF β-covering
Ĉ of U induces a covering C of U. Then, the second type of intuitionistic fuzzy covering rough set
model defined in Subsection 4.2 can be viewed as a covering-based rough set model in Definition 3:
for each X ∈ P(U),

C(X) = {x ∈ U : Nβ
x ∩ X 6= ∅} = {x ∈ U : NC(x) ∩ X 6= ∅} = SHC(X),

C(X) = {x ∈ U : Nβ
x ⊆ X} = {x ∈ U : NC(x) ⊆ X} = SLC(X).

5. An Application to Multiple Criteria Group Decision Making

In [33], Huang et al. also defined an optimistic multi-granulation IF rough set model. In this
section, we present a novel approach to MCGDM based on the optimistic multi-granulation IF rough
set model. We investigate the basic description of an MCGDM problem under the framework of
multi-granulation spaces. Then, we put forth a general decision making methodology for MCGDM
problems by means of the optimistic multi-granulation IF rough set model in the case of patient ranking.
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5.1. An Optimistic Multi-Granulation IF Rough Set Model

Let Ĉ be an IF β-covering of U. For each x ∈ U,

Ñβ
x = ∩{Ci ∈ Ĉ : Ci(x) ≥ β}.

Ñβ

Ĉ
= {Ñβ

x : x ∈ U}, where µ
Ñβ

Ĉ

(x, y) = µ
Ñβ

x
(y) and ν

Ñβ

Ĉ

(x, y) = ν
Ñβ

x
(y) for any y ∈ U.

Definition 14. ([33]) Let U = {x1, x2, · · · , xm} be a universe, (U, Γβ) be a n-IF β-coverings approximation
space with Γβ = {Ĉ1, Ĉ2, · · · , Ĉn} and (U,NΓβ

) be the IF β-neighborhood (graded neighborhood)
approximation space induced by the n-IF β-covering approximation space (U, Γβ). For each A ∈ IF(U)

where A = {〈xj, µA(xj), νA(xj)〉 : 1 ≤ j ≤ m}, the optimistic upper approximation NΓβ

(o)
(A) and lower

approximation NΓβ
(o)(A) of A are defined as:

NΓβ

(o)
(A) = {〈xi, µ

NΓβ

(o)
(A)

(xi), ν
NΓβ

(o)
(A)

(xi)〉 : 1 ≤ i ≤ m},

NΓβ
(o)(A) = {〈xi, µ

NΓβ
(o)(A)

(xi), ν
NΓβ

(o)(A)
(xi)〉 : 1 ≤ i ≤ m},

where:
µ
NΓβ

(o)
(A)

(xi) =
n∧

k=1

m∨
j=1

[µ
Ñβ

Ĉk

(xi, xj) ∧ µA(xj)](1 ≤ i ≤ m),

ν
NΓβ

(o)
(A)

(xi) =
n∨

k=1

m∧
j=1

[ν
Ñβ

Ĉk

(xi, xj) ∨ νA(xj)](1 ≤ i ≤ m),

µ
NΓβ

(o)(A)
(xi) =

n∨
k=1

m∧
j=1

[ν
Ñβ

Ĉk

(xi, xj) ∨ µA(xj)](1 ≤ i ≤ m),

ν
NΓβ

(o)(A)
(xi) =

n∧
k=1

m∨
j=1

[µ
Ñβ

Ĉk

(xi, xj) ∧ νA(xj)](1 ≤ i ≤ m).

5.2. The Problem of Multiple Criteria Group Decision Making

Let U = {xk : k = 1, 2, · · · , l} be the set of patients and V = {yj|j = 1, 2, · · · , m} be the m main
symptoms (for example, fever, cough, and so on) for a disease B. Assume that the duty doctor X
invites n experts Ri (i = 1, 2, · · · , n) to evaluate every patient xk (k = 1, 2, · · · , l).

Assume that every expert Ri (i = 1, 2, · · · , n) believes each patient xk ∈ U (k = 1, 2, · · · , l) has a
symptom value Cij (j = 1, 2, · · · , m), denoted by Cij(xk) = 〈µCij(xk), νCij(xk)〉, where µCij(xk) ∈ [0, 1] is
the degree that expert Ri confirms patient xk has symptom yj, νCij(xk) ∈ [0, 1] is the degree that expert
Ri confirms patient xk does not have symptom yj and µCij(xk) + νCij(xk) ≤ 1.

Let β = 〈a, b〉 be the critical value. If any patient xk ∈ U, there is at least one symptom yj ∈ V
such that the symptom value Cij for the patient xk, which is diagnosed by the expert Ri, is not less than
β, respectively, then Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}, where Ĉi = {Ci1, Ci2, · · · , Cim}, for all 1 ≤ i ≤ n, is a n-IF
β-coverings of U for some IF value β.

The IF β-neighborhood Ñβ
x of x induced by Ĉi (1 ≤ i ≤ n) is an IFS:

Ñβ
x = ∩{Cij ∈ Ĉi : Cij(x) ≥ β, j = 1, 2, · · · , m}.

Ñβ

Ĉi
= {Ñβ

x : x ∈ U}, where µ
Ñβ

Ĉi

(x, xt) = µ
Ñβ

x
(xt) and ν

Ñβ

Ĉi

(x, xt) = ν
Ñβ

x
(xt) for any t = 1, 2, · · · , l.

µ
Ñβ

Ĉi

(x, xt) denotes the minimum value among the degree of sickness of every patient

xt (t = 1, 2, · · · , l) according to the diagnoses of the expert Ri (i = 1, 2, · · · , n), respectively. ν
Ñβ

Ĉi

(x, xt)

denotes the maximum value among the degree of non-sickness of every patient xt (t = 1, 2, · · · , l)
according to the diagnoses of the expert Ri (i = 1, 2, · · · , n), respectively.

If c is a possible degree and d is an impossible degree of the disease B of every patient xk ∈ U
that is diagnosed by the duty doctor X, denoted by A(xk) = 〈c, d〉, then the decision maker (the duty
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doctor X) for the MCGDM problem needs to know how to evaluate whether or not the patients xk ∈ U
have the disease B.

5.3. Decision Making Methodology and Process

In this subsection, we give an approach to decision making for the problem of MCGDM with the
above characterizations by means of the optimistic multi-granulation IF rough set model. According
to the characterizations of the MCGDM problem in Subsection 5.2, we construct the multi-granulation
intuitionistic fuzzy decision information systems and present the process of decision making under
the framework of optimistic multi-granulation IF rough set model.

• Input: Multi-granulation fuzzy decision information systems (U, β, Γβ, A).
• Output: The score ordering for all alternatives.

• Step 1: Computing the IF β-neighborhood Ñβ
x of x induced by Ĉi ∈ Γβ, for all x ∈ U and

i = 1, 2, · · · , n.
• Step 2: Computing the optimistic upper approximation NΓβ

(o)
(A) and the optimistic lower

approximation NΓβ
(o)(A).

• Step 3: Giving the right weight value of ζ, where ζ ∈ [0, 1].
• Step 4: Computing:

n
∑

i=1
R̃i(A) = ζNΓβ

(o)(A) + (1− ζ)NΓβ

(o)
(A).

• Step 5: Computing:

s(x) = µ n
∑

i=1
R̃i(A)

(x)− ν n
∑

i=1
R̃i(A)

(x) for any x ∈ U.

• Step 6: Obtain the ranking for all s(x) by using the principle of numerical size.

According to the above process, we can get the decision making according to the ranking.
In Step 3, ζ reflects the preference of the decision maker for the risk of decision making problems.

The decision maker can adjust ζ according to the goal in the real world. In Step 4,
n
∑

i=1
R̃i(A) can

be regarded as the compromise rule with the right weight ζ from the view of risk decision making

with uncertainty. We define
n
∑

i=1
R̃i(A) = {〈xk, ζµ

NΓβ
(o)(A)

(xk)+ (1− ζ)µ
NΓβ

(o)
(A)

(xk), ζν
NΓβ

(o)(A)
(xk)+

(1− ζ)ν
NΓβ

(o)
(A)

(xk)〉 : 1 ≤ k ≤ l}.

5.4. An Applied Example

Assume that U = {x1, x2, x3, x4, x5} is a set of patients. According to the patients’ symptoms,
we write V = {y1, y2, y3, y4} to be four main symptoms (fever, cough, sore and headache) for a
disease B. Assume that the duty doctor X invites two experts Ri (i = 1, 2) to evaluate every patient xk
(k = 1, 2, · · · , 5) as in Tables 2 and 3.

Table 2. Symptom values of expert R1 for every patient xk (k = 1, 2, · · · , 5).

U C11 C12 C13 C14

x1 〈0.7, 0.2〉 〈0.6, 0.2〉 〈0.4, 0.1〉 〈0.1, 0.5〉
x2 〈0.5, 0.3〉 〈0.3, 0.2〉 〈0.4, 0.5〉 〈0.6, 0.1〉
x3 〈0.4, 0.5〉 〈0.2, 0.3〉 〈0.5, 0.2〉 〈0.6, 0.3〉
x4 〈0.6, 0.1〉 〈0.4, 0.5〉 〈0.3, 0.6〉 〈0.5, 0.3〉
x5 〈0.3, 0.2〉 〈0.7, 0.3〉 〈0.6, 0.3〉 〈0.8, 0.1〉
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Table 3. Symptom values of expert R2 for every patient xk (k = 1, 2, · · · , 5).

U C21 C22 C23 C24

x1 〈0.6, 0.2〉 〈0.7, 0.2〉 〈0.4, 0.2〉 〈0.2, 0.6〉
x2 〈0.4, 0.2〉 〈0.5, 0.3〉 〈0.5, 0.4〉 〈0.6, 0.3〉
x3 〈0.5, 0.4〉 〈0.3, 0.4〉 〈0.5, 0.2〉 〈0.7, 0.2〉
x4 〈0.6, 0.1〉 〈0.4, 0.5〉 〈0.4, 0.6〉 〈0.5, 0.4〉
x5 〈0.4, 0.2〉 〈0.6, 0.3〉 〈0.5, 0.3〉 〈0.7, 0.2〉

Let β = 〈0.5, 0.3〉 be the critical value. Then, Γβ = {Ĉ1, Ĉ2}, where Ĉi = {Ci1, Ci2, Ci3, Ci4}, for all

i = 1, 2, is a 2-IF β-coverings of U. Ñβ

Ĉi
(i = 1, 2) are shown in Tables 4 and 5, respectively.

Table 4. Ñβ

Ĉ1
.

Ñβ

Ĉ1
x1 x2 x3 x4 x5

Ñβ
x1 〈0.6, 0.2〉 〈0.3, 0.3〉 〈0.2, 0.5〉 〈0.4, 0.5〉 〈0.3, 0.3〉

Ñβ
x2 〈0.1, 0.5〉 〈0.5, 0.3〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.3, 0.2〉

Ñβ
x3 〈0.1, 0.5〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.3, 0.6〉 〈0.6, 0.3〉

Ñβ
x4 〈0.1, 0.5〉 〈0.5, 0.3〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.3, 0.2〉

Ñβ
x5 〈0.1, 0.5〉 〈0.3, 0.5〉 〈0.2, 0.3〉 〈0.3, 0.6〉 〈0.6, 0.3〉

Table 5. Ñβ

Ĉ2
.

Ñβ

Ĉ2
x1 x2 x3 x4 x5

Ñβ
x1 〈0.6, 0.2〉 〈0.4, 0.3〉 〈0.3, 0.4〉 〈0.4, 0.5〉 〈0.4, 0.3〉

Ñβ
x2 〈0.2, 0.6〉 〈0.5, 0.3〉 〈0.3, 0.4〉 〈0.4, 0.5〉 〈0.6, 0.3〉

Ñβ
x3 〈0.2, 0.6〉 〈0.5, 0.4〉 〈0.5, 0.2〉 〈0.4, 0.6〉 〈0.5, 0.3〉

Ñβ
x4 〈0.6, 0.2〉 〈0.4, 0.2〉 〈0.5, 0.4〉 〈0.6, 0.1〉 〈0.4, 0.2〉

Ñβ
x5 〈0.2, 0.6〉 〈0.5, 0.4〉 〈0.3, 0.4〉 〈0.4, 0.6〉 〈0.5, 0.3〉

Assume that the duty doctor X diagnosed the value A = (0.6,0.3)
x1

+ (0.4,0.5)
x2

+ (0.3,0.2)
x3

+ (0.5,0.3)
x4

+
(0.7,0.2)

x5
of the disease B of every patient. Then:

NΓβ

(o)
(A) = (0.6,0.3)

x1
+ (0.5,0.3)

x2
+ (0.5,0.3)

x3
+ (0.5,0.2)

x4
+ (0.5,0.3)

x5
,

NΓβ
(o)(A) = (0.4,0.3)

x1
+ (0.4,0.5)

x2
+ (0.3,0.4)

x3
+ (0.4,0.4)

x4
+ (0.4,0.3)

x5
.

Let ζ = 0.7. Then:

2
∑

i=1
R̃i(A) = 0.7NΓβ

(o)(A) + (1− 0.7)NΓβ

(o)
(A)

= (0.46,0.3)
x1

+ (0.43,0.44)
x2

+ (0.36,0.37)
x3

+ (0.43,0.34)
x4

+ (0.43,0.3)
x5

.

Hence, we can obtain s(xk) (k = 1, 2, · · · , 5) in Table 6.

Table 6. s(xk) (k = 1, 2, · · · , 5).

U x1 x2 x3 x4 x5

s(xk ) 0.16 −0.01 −0.01 0.09 0.13
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According to the principle of numerical size, we have:

s(x2) = s(x3) < s(x4) < s(x5) < s(x1).

Therefore, the doctor X diagnoses the patient x1 as more likely to be sick with the disease B.

6. Conclusions

Covering rough set models are important research topics, which investigate data mining in a more
general manner. Huang et al. [33] presented an IF rough set model and an optimistic multi-granulation
IF rough set model. By investigation, we have found that no one has applied multi-granulation IF
rough set models to MCGDM problems. In this paper, by showing some new notions and properties
of IF β-covering approximation spaces, we mainly study Huang et al.’s models and propose a novel
approach to MCGDM problems. The main conclusions in this paper and the further work are listed
as follows.

1. Some new notions and properties of IF β-covering approximation spaces are proposed. Aiming
at the new notion of β-neighborhood systems, we present a necessary and sufficient condition for
two IF β-coverings to induce the same IF β-neighborhood systems.

2. By introducing Huang et al.’s IF rough set model, some new characterizations of it are investigated.
We present a new IF covering rough set model for crisp subsets, and the relationships between
these two IF covering rough set models and some other rough set models are investigated.
Neutrosophic sets and related algebraic structures [39–43] will be connected with the research
content of this paper in further research.

3. We construct the multi-granulation intuitionistic fuzzy decision information systems and present
a novel approach to MCGDM problems based on the optimistic multi-granulation IF rough set
model. There are many MCGDM technologies by rough set models [20,23]. However, among
these models, the multi-granulation IF rough set models are not used. We first use the optimistic
multi-granulation IF rough set model to solve MCGDM problems.
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