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Abstract: In the present paper, we find sufficient conditions for starlikeness and convexity of
normalized Lommel functions of the first kind using the admissible function methods. Additionally,
we investigate some inclusion relationships for various classes associated with the Lommel functions.
The functions belonging to these classes are related to the starlike functions, convex functions,
close-to-convex functions and quasi-convex functions.
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1. Introduction

Let A denote the family of functions f of the form:

f (z) = z +
∞

∑
n=2

anzn

which are analytic in the open unit disk D and satisfy the usual normalization condition
f (0) = f ′(0)− 1 = 0. Let S denote the subclass of A which are univalent in D. Also let S∗(α) and
C(α) denote the subclasses of A consisting of functions which are starlike of order α and convex of
order α in D, respectively. Analytically, these classes are characterized by the equivalence:

f ∈ S∗(α)⇐⇒ R

{
z f ′(z)

f (z)

}
> α (0 ≤ α < 1, z ∈ D)

and

f ∈ C(α)⇐⇒ R

{
1 +

z f ′′(z)
f ′(z)

}
> α (0 ≤ α < 1, z ∈ D).

For convenience, let S∗(0) = S∗ and C(0) = C which are the classes of starlike functions and
convex functions, respectively. Furthermore, let C(β, α) and C∗(β, α) be the subclasses of A defined by

C(β, α) =

{
f ∈ A : ∃g ∈ S∗(α) s.t. R

{
z f ′(z)
g(z)

}
> β (0 ≤ α, β < 1; z ∈ D)

}
and

C∗(β, α) =

{
f ∈ A : ∃g ∈ K(α) s.t. R

{
(z f ′(z))′

g′(z)

}
> β (0 ≤ α, β < 1; z ∈ D)

}
,
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respectively. The functions in the classes C(β, α) and C∗(β, α) are known as close-to-convex functions
and quasi-convex functions, respectively.

The Lommel function of the first kind sµ,ν which is expressed in terms of a hypergeometric series

sµ,ν(z) =
zµ+1

(µ− ν + 1)(µ + ν + 1) 1F2

(
1;

µ− ν + 3
2

,
µ + ν + 3

2
;− z2

4

)
,

where µ± ν are not negative odd integers, is a particular solution of the following inhomogeneous
Bessel differential equation [1]:

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = zµ+1.

It is observed that the function sµ,ν does not belong to the class A. Recently, Yağmur [2] and
Baricz et al. [3] considered the following function hµ,ν defined by:

hµ,ν(z) = (µ− ν + 1)(µ + ν + 1)z(1−µ)/2sµ,ν(
√

z)

and they obtained some geometric properties of the function hµ,ν. For another interesting properties of
Lommel function, we can refer to [4,5].

The above function hµ,ν belongs to A and is expressed by:

hµ,ν(z) =
∞

∑
n=1

(−1/4)n−1(
µ−ν+3

2

)
n−1

(
µ+ν+3

2

)
n−1

zn ((−µ± ν− 3)/2 6∈ N := {1, 2, · · · }), (1)

where (λ)n is the Pochhammer symbol which defined in terms of Euler’s gamma function such that
(λ)n = Γ(λ + n)/Γ(λ) = λ(λ + 1) · · · (λ + n− 1).

Corresponding to the function hµ,ν defined by (1), we consider a linear operator Lµ,ν : A → A
defined by:

Lµ,ν f (z) = hµ,ν(z) ∗ f (z) ((−µ± ν− 3)/2 6∈ N, z ∈ D, f ∈ A), (2)

in terms of the Hadamard product (or convolution) ∗. Then it can be easily observed from (1) and (2)
that the following relation holds:

z(Lµ+1,ν+1 f (z))′ =
(

µ + ν + 3
2

)
Lµ,ν f (z)−

(
µ + ν + 1

2

)
Lµ+1,ν+1 f (z). (3)

In a few years ago, many authors introduced new subclasses of univalent (or multivalent)
functions by using several linear operators and found many properties of them [6–13].
In [14,15], various inclusion relationships associated with several subclasses of analytic functions
were investigated.

Motivated by their works, by using the linear operator Lµ,ν, we define new subclasses of A
as follows:

S∗µ,ν(α) :=
{

f ∈ A : R
{

z(Lµ,ν f (z))′

Lµ,ν f (z)

}
> α (0 ≤ α < 1; z ∈ D)

}
,

Kµ,ν(α) :=
{

f ∈ A : R
{

1 +
z(Lµ,ν f (z))′′

(Lµ,ν f (z))′

}
> α (0 ≤ α < 1; z ∈ D)

}
,

Cµ,ν(β, α) :=
{

f ∈ A : ∃g ∈ S∗µ,ν(α) s.t. R

{
z(Lµ,ν f (z))′

Lµ,νg(z)

}
> β (0 ≤ α, β < 1; z ∈ D)

}
and

C∗µ,ν(β, α) :=
{

f ∈ A : ∃g ∈ Kµ,ν(α) s.t. R

{
(z(Lµ,ν f (z))′)′

(Lµ,νg(z))′

}
> β (0 ≤ α, β < 1; z ∈ D)

}
.
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Here, we note that a function f belongs to the class S∗µ,ν(α) (Kµ,ν(α), Cµ,ν(β, α) and C∗µ,ν(β, α))
is equivalent to that the function Lµ,ν f (z) belongs to the class S∗(α) (K(α), C(β, α) and C∗(β, α),
respectively). Further, from the linearity of the operator Lµ,ν, the following relations hold:

f (z) ∈ Kµ,ν(α)⇐⇒ z f ′(z) ∈ S∗µ,ν(α) (4)

and
f (z) ∈ C∗µ,ν(β, α)⇐⇒ z f ′(z) ∈ Cµ,ν(β, α). (5)

In the present paper some geometric properties of the normalized Lommel function of the first
kind are obtained by applying the method of admissible function. In Section 2, we find some sufficient
conditions for starlikeness and convexity for the function hµ,ν. In Section 3, we investigate some
inclusion relationships for the classes S∗µ,ν(α), Kµ,ν(α), Cµ,ν(β, α) and C∗µ,ν(β, α) which are related to
the function hµ,ν.

The following lemmas will be used for the proof of our results.

Lemma 1. ([16] Miller and Mocanu) Let Ω be a set in the complex plane C and let b be a complex number
such that R(b) > 0. Suppose that the function ψ : C3 ×D→ C satisfies the condition

ψ(iρ, σ, a + ib; z) 6∈ Ω

for all real ρ, σ, a, b ∈ R with σ ≤ −|b− iρ|2/(2R(b)), σ + a ≤ 0 and z ∈ D. If the function p(z) defined by
p(z) = b + b1z + b2z2 + . . . is analytic in D and if

ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω,

then R {p(z)} > 0 in D.

Lemma 2. ([17] Miller and Mocanu) Let u = u1 + iu2, v = v1 + iv2 with u1, u2, v1, v2 ∈ R and ∆ ⊂ C2.
Suppose that Φ : ∆→ C satisfies the following conditions

1. Φ(u, v) is continuous in ∆;
2. (1, 0) ∈ ∆ and R {Φ(1, 0)} > 0;
3. R {Φ(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ ∆ such that v1 ≤ −(1 + u2

2)/2.

Let p be an analytic function in D such that p(0) = 1 and (p(z), zp′(z)) ∈ ∆ for all z ∈ D.
If R {Φ(p(z), zp′(z))} > 0 in D, then R {p(z)} > 0 in D.

For analytic functions f and g, we say that f is subordinate to g, denoted by f ≺ g, if there is an
analytic function ω : D → D with |ω(z)| ≤ |z| such that f (z) = g(ω(z)). Further, if g is univalent,
then the definition of subordination f ≺ g can be simplified into the conditions f (0) = g(0) and
f (D) ⊆ g(D) (See [18], p. 36).

Lemma 3. ([19] Eenigenburg et al.) Let h be convex univalent in D and w be analytic in D with
R {w(z)} ≥ 0 in D. If q is analytic in D and q(0) = h(0), then the subordination

q(z) + w(z)zq′(z) ≺ h(z) (z ∈ D)

implies that
q(z) ≺ h(z) (z ∈ D).

Lemma 4. ([2] Yağmur) If µ > −1, ν ∈ R where µ± ν are not negative odd integers, and
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(µ + 1)[(µ + 1)(µ + 3)− ν2] ≥ 1
8

,

then R
{

hµ,ν(z)/z
}
> 0 in D.

2. Sufficient Conditions for Starlikeness and Convexity

We find some sufficient conditions for starlikeness and convexity of the function hµ,ν given by (1).

Theorem 1. Let µ and ν be real numbers such that µ± ν are not negative odd integers, µ > 2,

(µ + 1)[(µ + 1)(µ + 3)− ν2] ≥ 1
8

(6)

and
− 1

2
(µ− 2) +

1
96

(µ− 2)−1 − 1
4

(
(µ− 1)2 − ν2

)
≤ 0. (7)

Then the function hµ,ν is a starlike univalent function in D.

Proof. Since
hµ,ν(z) = (µ− ν + 1)(µ + ν + 1)z(1−µ)/2sµ,ν(

√
z)

and the function sµ,ν satisfies the inhomogeneous differential equation

z2s′′µ,ν(z) + zs′µ,ν(z) + (z2 − ν2)sµ,ν(z) = zµ+1,

we have

z2h′′µ,ν(z) + µzh′µ,ν(z) +
1
4

(
z + (µ− 1)2 − ν2

)
hµ,ν(z)−

(
µ− ν + 1

2

)(
µ + ν + 1

2

)
z = 0. (8)

Set

p(z) =
zh′µ,ν(z)
hµ,ν(z)

. (9)

From (6) and Lemma 4, R
{

hµ,ν(z)/z
}
> 0 for all z ∈ D and this implies that hµ,ν(z) 6= 0 holds

for all z ∈ D \ {0}. Therefore p is analytic in D and p(0) = 1. Furthermore, by (8) and (9), we have the
following equation[

zp′(z) + p(z)2 + (µ− 1)p(z) +
1
4

(
z + (µ− 1)2 − ν2

)]
hµ,ν(z) =

(
µ− ν + 1

2

)(
µ + ν + 1

2

)
z.

Now, we put

p̃(z) = zp′(z) + p(z)2 + (µ− 1)p(z) +
1
4

(
z + (µ− 1)2 − ν2

)
.

Then we have

p̃(z)hµ,ν(z) =
(

µ− ν + 1
2

)(
µ + ν + 1

2

)
z.

Differentiating the above equation and multiplying by z, we get

[zp̃′(z) + (p(z)− 1) p̃(z)]hµ,ν(z) = 0.

Since zp̃′(z) + (p(z)− 1) p̃(z) = 0 at z = 0 and hµ,ν(z) 6= 0 for all z ∈ D \ {0}, we have

zp̃′(z) + (p(z)− 1) p̃(z) = 0
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in D, or equivalently,

p(z)3 + (µ− 2)p(z)2 + z2 p′′(z) + 3zp′(z)p(z) + (µ− 1)zp′(z)

+
1
4

(
z + (µ− 1)(µ− 5)− ν2

)
p(z)− 1

4

(
(µ− 1)2 − ν2

)
= 0

(10)

in D. Now, let Ω = {0} and define a function ψ : C3 ×D→ C by

ψ(r, s, t; z)

= r3 + (µ− 2)r2 + t + 3rs + (µ− 1)s +
1
4
(z + (µ− 1)(µ− 5)− ν2)r− 1

4
((µ− 1)2 − ν2).

Then the Equation (10) can be rewritten as

ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω.

Moreover it holds that

R {ψ(ρi, σ, a + ib; z)}

= −(µ− 2)ρ2 + a + (µ− 1)σ +
1
4
R
{(

z + (µ− 1)(µ− 5)− ν2
)

iρ
}
− 1

4

(
(µ− 1)2 − ν2

)
< −1

2
(µ− 2)(1 + 3|ρ|2) + 1

4
|ρ| − 1

4

(
(µ− 1)2 − ν2

)
,

(11)

for z ∈ D and ρ, σ, a, b ∈ R with σ ≤ −(1 + ρ2)/2 and σ + a ≤ 0. Define a function g : [0, ∞)→ R by

g(ρ) = −1
2
(µ− 2)(1 + 3ρ2) +

1
4

ρ.

Then, g′(ρ) = 0 occurs when ρ = ρ∗ := 1/(12(µ − 2)) > 0 and g′′(ρ∗) = −3(µ − 2) < 0.
Therefore, the function g has its maximum

g(ρ∗) = −1
2
(µ− 2) +

1
96

(µ− 2)−1

on the half interval [0, ∞). Hence from (7) and (11) we have

R {ψ(ρi, σ, a + ib; z)}

< g(ρ)− 1
4

(
(µ− 1)2 − ν2

)
≤ −1

2
(µ− 2) +

1
96

(µ− 2)−1 − 1
4

(
(µ− 1)2 − ν2

)
≤ 0,

for all z ∈ D and all ρ, σ, a, b ∈ R with σ ≤ −(1 + ρ2)/2 and σ + a ≤ 0. By Lemma 1, we have
R {p(z)} > 0 in D which shows that hµ,ν is starlike in D.

Example 1. We note that µ = 5/2 and ν = 1/2 satisfy the condition of Theorem 1. Therefore the function

h5/2,1/2(z) = 12
(

z + 2 cos
√

z− 2
z

)
(12)

is starlike in D.
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Theorem 2. Let µ and ν be real numbers such that µ± ν are not negative odd integers, µ > 2,

(µ + 1)[(µ + 1)(µ + 3)− ν2] ≥ 1
8

and {
1

96 (µ− 2)−1 + (µ− 2)− 1
4
(
(µ− 1)2 − ν2) ≤ 0, if µ ≤ 25

12 ,

− 1
2 µ + 5

4 −
1
4
(
(µ− 1)2 − ν2) ≤ 0, if µ > 25

12 .
(13)

Then the function hµ,ν is a convex univalent function in D.

Proof. First of all, we observe that the condition (13) implies (7) in Theorem 1. To see this, we assume
that the inequality (13) holds. For the case 2 < µ ≤ 25/12, from the inequality −(µ− 2)/2 ≤ µ− 2,
we can easily obtain the inequality (7). For the case µ > 25/12, it is sufficient to check the following
inequality holds:

−1
2
(µ− 2)2 +

1
96
≤ −1

2
µ(µ− 2) +

5
4
(µ− 2).

And the above inequality is true for µ > 25/12, since

−1
2

µ(µ− 2) +
5
4
(µ− 2) +

1
2
(µ− 2)2 − 1

96
=

1
4

(
µ− 49

24

)
>

1
96

.

Therefore the function hµ,ν is starlike univalent, hence h′µ,ν(z) 6= 0 in D. Now, set

p(z) = 1 +
zh′′µ,ν(z)
h′µ,ν(z)

(z ∈ D).

Since h′µ,ν(z) 6= 0 in D, p is analytic in D with p(0) = 1. And we have

zh′′µ,ν(z) = (p(z)− 1)h′µ,ν(z) (14)

and
2zh′′µ,ν(z) + z2h(3)µ,ν(z) = [zp′(z) + p(z)2 − p(z)]h′µ,ν(z). (15)

Furthermore, from (8), we have

(p(z) + µ− 1)zh′µ,ν(z) +
1
4

(
z + (µ− 1)2 − ν2

)
hµ,ν(z)−

(
µ− ν + 1

2

)(
µ + ν + 1

2

)
z = 0. (16)

Differentiating (16) and multiplying by z, we get

z2 p′(z)h′µ,ν(z) + (p(z) + µ− 1)zh′µ,ν(z) + (p(z) + µ− 1)z2h′′µ,ν(z)

+
1
4

zhµ,ν(z) +
1
4

(
z + (µ− 1)2 − ν2

)
zh′µ,ν(z)

−
(

µ− ν + 1
2

)(
µ + ν + 1

2

)
z = 0.

(17)

Substituting (17) into (16), we obtain

(p(z) + µ− 1)z2h′′µ,ν(z) + [zp′(z) +
1
4

(
z + (µ− 1)2 − ν2

)
]zh′µ,ν(z)

− 1
4

(
(µ− 1)2 − ν2

)
hµ,ν(z) = 0.

(18)

Differentiating (18) and using the equalities (14) and (15), we get
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z2 p′′(z) + 3zp′(z)p(z) + (µ− 1)zp′(z) + p(z)3 + (µ− 2)p(z)2

+
1
4

(
z + (µ− 1)(µ− 5)− ν2

)
p(z) +

1
4

(
z− (µ− 1)2 + ν2

)
= 0.

(19)

Now, let Ω = {0} and define a function ψ : C3 ×D→ C by

ψ(r, s, t; z)

= t + 3rs + (µ− 1)s + r3 + (µ− 2)r2 +
1
4

(
z + (µ− 1)(µ− 5)− ν2

)
r +

1
4

(
z− (µ− 1)2 + ν2

)
.

Then, (19) becomes
ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω.

And simple calculations give us that

R {ψ(iρ, σ, a + ib; z)}

= a + (µ− 1)σ− (µ− 2)ρ2 +
1
4
R {iρz}+ 1

4
R
{

z− (µ− 1)2 + ν2
}

≤ −(µ− 2)ρ2 + (µ− 2)σ +
1
4
R {(1 + iρ)z} − 1

4

(
(µ− 1)2 − ν2

)
< −(µ− 2)ρ2 − 1

2
(µ− 2)(1 + ρ2) +

1
4

√
1 + ρ2 − 1

4

(
(µ− 1)2 − ν2

)
= −3

2
(µ− 2)u2 + (µ− 2) +

1
4

u− 1
4

(
(µ− 1)2 − ν2

)
,

(20)

for all z ∈ D and all ρ, σ, a, b, u ∈ R with σ ≤ −(1 + ρ2)/2, σ + a ≤ 0 and u =
√

1 + ρ2. Define a
function g : [1, ∞)→ R by

g(u) = −3
2
(µ− 2)u2 +

1
4

u + µ− 2.

Then, by putting u∗ = 1/(12(µ − 2)) > 0, we have g′(u∗) = 0. Moreover it holds that
g′′(u) = −3(µ− 2) < 0 for all u ∈ [1, ∞). Therefore u = u∗ gives the maximum value for g when
µ ≤ 25/12. On the other hand, when µ > 25/12 the function g is maximized by setting u = 1. Hence,
for the case µ ≤ 25/12, it follows from (13) and (20) that

R {ψ(iρ, σ, a + ib; z)}

< g(u∗)− 1
4

(
(µ− 1)2 − ν2

)
≤ 1

96
(µ− 2)−1 + (µ− 2)− 1

4

(
(µ− 1)2 − ν2

)
≤ 0,

for all z ∈ D and all ρ, σ, a, b ∈ R with σ ≤ −(1 + ρ2)/2 and σ + a ≤ 0. Similarly, for the case
µ > 25/12, we obtain

R {ψ(iρ, σ, a + ib; z)}

< g(1)− 1
4

(
(µ− 1)2 − ν2

)
≤ −1

2
µ +

5
4
− 1

4

(
(µ− 1)2 − ν2

)
≤ 0,

for all z ∈ D and all ρ, σ, a, b ∈ R with σ ≤ −(1 + ρ2)/2 and σ + a ≤ 0. By Lemma 1, we thus have
R {p(z)} > 0 in D which shows that hµ,ν is convex in D.
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Example 2. We note that µ = 5/2 and ν = 1/2 satisfy the condition of Theorem 2. Therefore the function
h5/2,1/2 given by (12) is convex in D.

3. Inclusion Relationships

Now, we investigate some inclusion relationships for the classes S∗µ,ν(α), Kµ,ν(α), Cµ,ν(β, α) and
C∗µ,ν(β, α). We begin by proving our first inclusion relationship for the class S∗µ,ν(α).

Theorem 3. Let µ, ν and α be real numbers such that µ± ν are not negative odd integers, 0 ≤ α < 1 and
2α + µ + ν + 1 ≥ 0. Then

S∗µ,ν(α) ⊂ S∗µ+1,ν+1(α).

Proof. Let f ∈ S∗µ,ν(α) and define a function φ : C→ C by

φ(z) =
1

1− α

(
z(Lµ+1,ν+1 f (z))′

Lµ+1,ν+1 f (z)
− α

)
. (21)

Then φ is analytic in D and φ(0) = 1. From the equality (3), we get(
µ + ν + 3

2

)
Lµ,ν f (z)

Lµ+1,ν+1 f (z)
=

z(Lµ+1,ν+1 f (z))′

Lµ+1,ν+1 f (z)
+

µ + ν + 1
2

. (22)

By combining (21) and (22), we obtain

Lµ,ν f (z)
Lµ+1,ν+1 f (z)

=
2

µ + ν + 3

[
(1− α)φ(z) + α +

µ + ν + 1
2

]
. (23)

Now, by applying the logarithmic differentiation on both sides of (23) and multiplying the
resulting equation by z, we have

z(Lµ,ν f (z))′

Lµ,ν f (z)
=

z(Lµ+1,ν+1 f (z))′

Lµ+1,ν+1 f (z)
+

(1− α)zφ′(z)

(1− α)φ(z) + α + µ+ν+1
2

which, in view of (21), yields

1
1− α

(
z(Lµ,ν f (z))′

Lµ,ν f (z)
− α

)
= φ(z) +

zφ′(z)

(1− α)φ(z) + α + µ+ν+1
2

. (24)

Now, we define a function Φ : C2 → C by

Φ(u, v) = u +
v

(1− α)u + α + µ+ν+1
2

.

Observe that Φ is continuous on

∆ :=

(
C \

{
α + µ+ν+1

2
α− 1

})
×C,

(1, 0) ∈ ∆ and R {Φ(1, 0)} > 0. Since f ∈ S∗µ,ν(α), it follows from (24) that
R
{

Φ(φ(z), zφ′(z), z2φ′′(z))
}

> 0 for all z ∈ D. Also, for (iu2, v1) ∈ ∆ with u2, v1 ∈ R such that
v1 ≤ −(1 + u2

2)/2, we have
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R {Φ(iu2, v1)} = R

{
iu2 +

v1

i(1− α)u2 + α + µ+ν+1
2

}

=
v1

(
α + µ+ν+1

2

)
(1− α)2 u2

2 +
(

α + µ+ν+1
2

)2

≤ −1
2

(
1 + u2

2

) α + µ+ν+1
2

(1− α)2 u2
2 +

(
α + µ+ν+1

2

)2

< 0

which shows that R {Φ(iu2, v1)} < 0. Therefore, by Lemma 2, we have

R {φ(z)} > 0 (z ∈ D).

Thus, by making use of (21), we find that f ∈ S∗µ+1,ν+1(α). This completes the proof of
Theorem 3.

Theorem 4. Let µ, ν and α be real numbers such that µ± ν are not negative odd integers, 0 ≤ α < 1 and
2α + µ + ν + 1 ≥ 0. Then

Kµ,ν(α) ⊂ Kµ+1,ν+1(α).

Proof. By applying (4) and Theorem 3, we observe that

f ∈ Kµ,ν(α)⇐⇒ z f ′ ∈ S∗µ,ν(α)

=⇒ z f ′ ∈ S∗µ+1,ν+1(α)

⇐⇒ f ∈ Kµ+1,ν+1(α)

which proves Theorem 4.

Theorem 5. Let µ, ν, α and β be real numbers such that µ± ν are not negative odd integers, 0 ≤ α < 1,
0 ≤ β < 1 and 2α + µ + ν + 1 ≥ 0. Then

Cµ,ν(β, α) ⊂ Cµ+1,ν+1(β, α).

Proof. Let f ∈ Cµ,ν(β, α). Then there exists a function g ∈ S∗µ,ν(α) such that

R

{
z(Lµ,ν f (z))′

Lµ,νg(z)

}
> β. (25)

Define a function φ : D→ C by

φ(z) =
1

1− β

(
z(Lµ+1,ν+1 f (z))′

Lµ+1,ν+1g(z)
− β

)
. (26)

Then, φ is analytic in D with φ(0) = 1. Using the identity (3), we also have
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z(Lµ,ν f (z))′

Lµ,νg(z)
=

Lµ,ν(z f ′(z))
Lµ,νg(z)

=
z(Lµ+1,ν+1(z f ′(z)))′ +

(
µ+ν+1

2

)
Lµ+1,ν+1(z f ′(z))

z(Lµ+1,ν+1g(z))′ +
(

µ+ν+1
2

)
Lµ+1,ν+1g(z)

=

z(Lµ+1,ν+1(z f ′(z)))′

Lµ+1,ν+1g(z) +
(

µ+ν+1
2

)
Lµ+1,ν+1(z f ′(z))

Lµ+1,ν+1g(z)

z(Lµ+1,ν+1g(z))′

Lµ+1,ν+1g(z) + µ+ν+1
2

.

(27)

Now we define a function q : D→ C by

q(z) =
1

1− α

(
z(Lµ+1,ν+1g(z))′

Lµ+1,ν+1g(z)
− α

)
. (28)

Since g ∈ S∗µ,ν(α), by Theorem 3, we have g ∈ S∗µ+1,ν+1(α) and therefore we get R {q(z)} > 0 in
D. Upon substituting from (26) and (28) into (27), we have

z(Lµ,ν f (z))′

Lµ,νg(z)
=

z(Lµ+1,ν+1(z f ′(z)))′

Lµ+1,ν+1g(z) +
(

µ+ν+1
2

)
((1− β)φ(z) + β)

(1− α)q(z) + α + µ+ν+1
2

. (29)

By logarithmically differentiating both sides of (26) with respect to z, we have

z(Lµ+1,ν+1(z f ′(z)))′

Lµ+1,ν+1g(z)
= ((1− β)φ(z) + β)((1− α)q(z) + α) + (1− β)zφ′(z)

which, in conjunction with (29), yields

1
1− β

(
z(Lµ,ν f (z))′

Lµ,νg(z)
− β

)
= φ(z) +

zφ′(z)

(1− α)q(z) + α + µ+ν+1
2

.

Put
ω(z) =

1

(1− α)q(z) + α + µ+ν+1
2

.

Then, ω is analytic in D and, from the inequality (25), we have

R
{

φ(z) + ω(z)zφ′(z)
}
> 0

in D. Using the fact that R {q(z)} > 0 in D and the inequality 2α + µ + ν + 1 ≥ 0, we have
R {ω(z)} > 0 in D. Applying Lemma 3 with h(z) = (1 + z)/(1− z), we have R {φ(z)} > 0 in D.
Thus, by making use of (26), we get f ∈ Cµ+1,ν+1(β, α). This completes the proof of Theorem 5.

Finally, we state the inclusion relationship for the class C∗µ,ν(β, α).

Theorem 6. Let µ, ν, α and β be real numbers such that µ± ν are not negative odd integers, 0 ≤ α < 1,
0 ≤ β < 1 and 2α + µ + ν + 1 ≥ 0. Then

C∗µ,ν(β, α) ⊂ C∗µ+1,ν+1(β, α).

Proof. By applying (5) and Theorem 5, we observe that

f ∈ C∗µ,ν(β, α)⇐⇒ z f ′(z) ∈ Cµ,ν(β, α)

=⇒ z f ′(z) ∈ Cµ+1,ν+1(β, α)

⇐⇒ f ∈ C∗µ+1,ν+1(β, α)
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which proves Theorem 6.

Author Contributions: All of the authors in this paper investigated this research. Y.J.S. and O.S.K. wrote and
reviewed the original draft. And N.E.C. wrote, reviewed and edited this research.

Funding: The first author was supported by the National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIP; Ministry of Science, ICT & Future Planning) (No. NRF-2017R1C1B5076778).
The third author was supported by the Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2016R1D1A1A09916450).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lommel, E. Ueber eine mit den Besselschen Functionen verwandte Function. Math. Ann. 1876, 9, 425–444.
[CrossRef]
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