
symmetryS S

Article

Statistical Inference for the Information Entropy of
the Log-Logistic Distribution under Progressive
Type-I Interval Censoring Schemes

Yuge Du, Yu Guo and Wenhao Gui *

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China; 15271098@bjtu.edu.cn (Y.D.);
15271100@bjtu.edu.cn (Y.G.)
* Correspondence: whgui@bjtu.edu.cn; Tel.: +86-10-51682062

Received: 9 September 2018; Accepted: 25 September 2018; Published: 28 September 2018

Abstract: In recent years, information entropy has been studied and developed rapidly across
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1. Introduction

The log-logistic distribution, which is also known as the Fisk distribution in economics, is a
continuous probability distribution for a non-negative random variable. The works in [1,2] first studied
the characteristics of the log-logistic distribution in detail. The work in [3] introduced a new survival
model based on logistic and log-logistic distributions. The work in [4] considered the best linear
unbiased estimators of the unknown parameters of the log-logistic distribution. When the product’s
failure density model is a log-logistic distribution, the acceptance test based on the life test was studied
by [5].

The log-logistic distribution is widely and extensively applied in survival analysis as a parametric
model for events in which the rate initially increases and then decreases, such as cancer mortality after
treatment in medical research, simple models for wealth or income distribution in economics, etc.

In order to improve the reliability of industrial products, many statisticians have begun to study
various types of lifetime data. In the industrial life inspection and medical survival analysis, it was
usually impossible for the experimenters to observe the lifetime of all individuals due to time and
cost. That is, the complete sample is unpractical and unrealistic. The censored sample is common
in practice.

Typically, the unit enters a failure or death before the loss, withdrawal or one only knows the
lifetime of the units in a range of circumstances. The most popular censoring schemes mainly include
type-I censorship, conventional type-II censorship and progressive censoring.

For the type-I censoring scheme, the product life testing is terminated at an advance planned time;
see [6–9]. As for the conventional type-II censored scheme, the product life testing is finished whenever
the pre-specified life time is reached; see [10–12]. Both type-I and type-II censoring schemes allow the
test item to be withdrawn simply at the end of the life test. However, the progressive censored scheme
allows test items to be deleted and removed sometime before the end of the life test.

In this article, we mainly focus on the inference of the entropy of the log-logistic distribution under
the progressive type-I interval censoring scheme. The progressively censored method for obtaining
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data is proposed, that is observation is performed within two consecutive predetermined time periods,
and the items are only allowed to be withdrawn at specific time points. Then, the statistical analysis is
studied on the data obtained under this censored method.

Suppose n items are put on a life testing at the initial time t0 = 0 and they will be checked and
inspected at m predetermined times 0 < t1 < t2 < · · · < tm, where tm is the pre-specified time to end
the experiment. At the ith checking time ti, the amount of failures Xi in (ti−1, ti] is counted, and Ri
surviving items i = 1, . . . , m are randomly taken out and deleted from the life testing. The amount,
Si, of surviving units is a random variable at a predetermined time ti, and Ri is no larger than Si.
Furthermore, Ri is determined by a predetermined percentage of the surviving items remaining at ti,
i = 1, . . . , m. For instance, if the pre-specified percentage values are p1, . . . , pm−1 and pm = 1, Ri can be
determined by using Ri = f loor[piSi] at each checking time ti, where f loor[x] gives the largest positive
integer not exceeding x. Thus, progressive type-I interval censored data of size n can be expressed as

Yi = (Xi, Ri, ti), i = 1, . . . , m. If Ri = 0, i = 1, 2, . . . , m− 1 and Rm = n−
m

∑
n=1

Xi, and the progressive

type-I interval censored data becomes the known type-I interval censored data.
Let R = (R1, R2, . . . , Rm), X = (X1, X2, . . . , Xm), B(a, b) represent the binomial distribution with

the number of trials a and the probability of success b and F(t; β) be the distribution function of the

inspection times. Let v1 = n, δ1(β) = F(t1; β), vi = n −
i−1

∑
j=1

(Xj + Rj) and δi(β) =
F(ti |β)−F(ti−1|β)

1−F(ti−1|β)

i = 2, · · · , m.
It can be shown that:

X1 ∼ B(v1, δ1(β))

Xi|Xi−1, . . . , X1; Ri−1, . . . , R1 ∼ B(vi, δi(β))

The rest of the article is organized as follows. In Section 2, the information entropy of the
log-logistic distribution is proposed and introduced. In Section 3, the maximum likelihood estimation
and EM algorithm are used to derive the parameter estimation and Fisher information of information
entropy. The asymptotic normal distribution is also obtained. In Section 4, we develop a hypothesis
testing algorithm on information entropy to test whether the amount of information can eliminate the
average uncertainty. The power function analysis of the proposed algorithm is also conducted in this
section. We use Monte Carlo simulation to justify and illustrate the algorithm in Section 5. Finally,
the conclusions about our proposed algorithm are presented in Section 6.

2. Information Entropy

A random variable T is said to have the log-logistic distribution, if its cumulative distribution
function (cdf) is:

FT(t) = 1− (1 + tβ)−1, t ≥ 0, β > 0 (1)

The probability density function (pdf) is as follows:

fT(t) =
βtβ−1

(1 + tβ)2 t ≥ 0, β > 0 (2)

In 1948, the statistician Shannon proposed the definition of information entropy. He successfully
solved the problem of quantitative measurement of information and first explained the relationship
between probability and information redundancy in mathematical language. Entropy is especially
used to measure the uncertainty of objects in information theory, which is a perfect mathematical
theory supporting all modern digital communications.
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The physical meaning of information entropy has the following three aspects:

(1) Indicating the average amount of information provided by each message or symbol after the
source is output;

(2) Indicating the average uncertainty of the source after the source is output;
(3) Measuring the uncertainty on a random variable T.

Let T be a random variable having distribution function F(t) = P(T ≤ t), and its probability
density function is f (t). The Shannon’s entropy can be defined as:

H( f ) =
∫ ∞

0
f (t)[− ln f (t)]dt (3)

For the log-logistic distribution, the entropy can be calculated as:

H( f ) =
∫ ∞

0
f (t)[− ln f (t)]dt = 2− ln β (4)

3. Parameter Estimations

3.1. Maximum Likelihood Estimation

Considering the progressively type-I censored data, Yi = (Xi, Ri, ti), i = 1, 2, · · · , n, from a
continuous log-logistic distribution with cdf F(t; β) based on progressive type-I interval censoring,
the likelihood function is defined as (see [13]):

L(Y|β) ∝ [F(t1; β)]X1 [1− F(t1; β)]R1 × [F(t2; β)− F(t1; β)]X2 [1− F(t2; β)]R2

× . . .× [F(tm; β)− F(tm−1; β)]Xm [1− F(tm; β)]Rm

=
m

∏
i=1

[F(ti; β)− F(ti−1; β)]Xi [1− F(ti; β)]Ri

where t0 = 0 and β is the parameter vector. For the log-logistic distribution proposed as above,
the likelihood function can be given as:

L(β) =
m

∏
i=1

[FT(ti)− FT(ti−1)]
Xi [1− FT(ti)]

Ri

=
m

∏
i=1

[(1 + tβ
i−1)

−1 − (1 + tβ
i )
−1]Xi (1 + tβ

i )
−Ri (5)

The calculation of the maximum likelihood estimator for a single parameter function is given
by [13]. If X1 = n, then ln(L(β)) is maximized when β approaches zero.

ln L(β) =
m

∑
i=1

[Xi ln[(1 + tβ
i−1)

−1 − (1 + tβ
i )
−1]− Ri ln(1 + tβ

i )] (6)

Set the derivative of the log-likelihood function with respect to β to be zero, and the maximum
likelihood estimate (MLE) of β is the solution of Equation (7). The log-likelihood function is given by:

d
dβ

ln L(β) =
m

∑
i=1

[Xi
(1 + tβ

i )
−2tβ

i ln ti − (1 + tβ
i−1)

−2tβ
i−1 ln ti−1

(1 + tβ
i−1)

−1 − (1 + tβ
i )
−1

− Ri
tβ
i ln ti

1 + tβ
i

] ≡ 0 (7)

Under fairly weak regular conditions, the maximum likelihood estimator is consistent. Under a
slightly stronger assumption, MLE is asymptotically normal. The work in [14] discussed the asymptotic
properties of the maximum likelihood estimator under the left truncated and right censored data
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and have proven that the MLE are asymptotic normal. Fisher’s information is I(β) = −E[ d2 ln L(β)
dβ2 ].

From (7), we have:

d2

dβ2 ln L(β) = −
m

∑
i=1

[Xi
A′B− AB′

[(1 + tβ
i−1)

−1 − (1 + tβ
i )
−1]2

− Ri
(1 + tβ

i ) ln ti − (β ln ti)
2

(1 + tβ
i )

2
] (8)

A = (1 + tβ
i )
−2tβ

i ln ti − (1 + tβ
i−1)

−2tβ
i−1 ln ti−1 (9)

A′ =
ln2 ti(t

β
i − t2β

i )

(1 + tβ
i )

3
−

ln2 ti−1(t
β
i−1 − t2β

i−1)

(1 + tβ
i−1)

3

B = (1 + tβ
i−1)

−1 − (1 + tβ
i )
−1

B′ = (1 + tβ
i )
−2tβ

i ln ti − (1 + tβ
i−1)

−2tβ
i−1 ln ti−1

C =
tβ
i ln ti

1 + tβ
i

C′ =
tβ
i ln2 ti

(1 + tβ
i )

2

From the initial data of size n putting life testing at time zero, the cdf of the log-logistic distribution,
the following conclusions can be drawn:

Xi|Xi−1, . . . , X1; Ri−1, . . . , R1

∼ Binomial(n−
i−1

∑
j=1

(Xj + Rj),
F(ti|β)− F(ti−1|β)

1− F(ti−1|β)
) (10)

Let qi =
F(ti |β)−F(ti−1|β)

1−F(ti−1|β)
= 1− 1+tβ

i−1

1+tβ
i

, i = 1, . . . , m. From (10), we have:

j = 1 n
f ail−−→ n(1− q1)

censor−−−→ n(1− q1)(1− p1) = n1

j = 2 n1
f ail−−→ n1(1− q2)

censor−−−→ n1(1− q2)(1− p2) = n2

j = i− 1 ni−2
f ail−−→ ni−2(1− qi−1)

censor−−−→ n
i−1

∏
j=1

(1− qj)(1− pj)

E(Xi) = EE(Xi|Xi−1, . . . , X1, Ri−1, . . . , R1)

= nqi ∏i−1
j=1(1− qj)(1− pj), i = 1, . . . , m

(11)

E(Ri) = n[
i−1

∏
j=1

(1− qj)(1− pj)](1− qi)pi (12)

The reduced Fisher information can be obtained from the above (8), (11) and (12):

I(β) = −E[
d2 ln L(β)

dβ2 ] = −n
m

∑
i=1

[qi
A′B− AB′

B2 − pi(1− qi)C′]
i−1

∏
j=1

(1− qj)(1− pj) (13)

A, A′, B, B′, C′ can be obtained from (9). Therefore, β obeys the asymptotic normal distribution.

√
m(β̃− β)

d−−−→
m→∞

N(0, I−1(β))
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The observation of the sample under the progressive type-I censoring is performed within
two consecutive specified times. Considering the special case that the interval duration is equal,
letting ti−1 = (i− 1)t, ti = it, then the monitoring and deletion take place in cycles of t. (7) can be
converted into:

d
dβ ln L(β) =

m

∑
i=1

[Xi
(1 + (it)β)−2(it)β ln it− (1 + ((i− 1)t)β)−2((i− 1)t)β ln ((i− 1)t)

(1 + ((i− 1)t)β)−1 − (1 + (it)β)−1

−Ri
(it)β ln it
1+(it)β ] = 0

(14)

We can get the MLE of β as β̃ through the above equation. Because the above equation does not
have a closed form of the maximum likelihood estimation solution, a Newton–Raphson method is
proposed here, which is a method of iterative numerical search to obtain MLE.

Let g(β) = d
dβ ln L(β). The iteration is defined as βi = βi−1 +

g(βi−1)
g′(βi−1)

, where βi is the estimated

value of β for the ith iteration and β0 is the initial estimate of β. When |βi − βi−1| < 10−4 holds,
the iteration is over. On this basis, each time with the same percentage p of censored data, (13) can be
converted into:

I(β) = −E[
d2 ln L(β)

dβ2 ] = −n
m

∑
i=1

[qi
A′B− AB′

B2 − p(1− qi)C′]
i−1

∏
j=1

(1− qj)(1− pj) (15)

Then, the asymptotic variance of β̃ can be given by V(β̃) = I−1(β). According to the invariance
of the maximum likelihood estimate, H̃ f is the likelihood estimate of H f . Since we have that

√
m(β̃−

β)
d−−−→

m→∞
N(0, I−1(β)) obeys the asymptotic normal distribution:

H̃ f
d−−−→

m→∞
N(H f , V(H̃ f )) (16)

The MLE H̃ f = 2− logβ̃ is an asymptotic and unbiased estimator of H f . By using the delta
method, the estimate of the asymptotic variance of H̃ f is proposed as:

g′(β) =
dH f

dβ
= − 1

β
(17)

V(H̃ f ) = I−1(β)[g′(β)]2 =
1
β2 I−1(β) = γ(β) (18)

The explicit solution of the shape parameter β cannot be obtained from the equation. If the
approximate solution is obtained by numerical methods, it cannot be proven that such a solution is
unique, so the maximum likelihood estimation of the shape parameter β is not easy to obtain. We apply
the Expectation Maximization Algorithm (EM algorithm) to determine the estimate of the parameter.

3.2. EM Algorithm

The EM algorithm is an iterative method mainly used to find the maximum likelihood estimation
of the posterior distribution. Each iteration includes two steps: E step (seeking expectation) and
M step (maximizing). The posterior density function of β obtained from the observation data Y is
represented by f (β|Y), which is called the observation posterior density, and f (β|Y, Z) represents the
posterior density function about β obtained after adding the data Z; called the addition of a posterior
distribution. f (Z|β, Y) represents the conditional density function of the latent data Z for a given β

and observation data Y. The EM algorithm proceeds as follows. Let β(i) be the estimated value of the
parameter β at the beginning of the (i + 1)th iteration, then the two steps of the (i + 1)th iteration are:
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• Step E: Find the conditional distribution of f (β|Y, Z) or ln f (β|Y, Z) with respect to Z, i.e.,

Q(β|β(i), Y) = E[ln f (β|Y, Z)|β(i), Y]

• Step M: Maximize Q(β|β(i), Y), that is find a point β(i+1) to make Q(β(i+1)|β(i), Y) = maxQ(β|β(i), Y).

This completes the iteration, β(i) → β(i+1). Iterate the above step E and step M until |β(i+1) − β(i)|
or |Q(β(i+1)|β(i), Y)−Q(β(i)|β(i), Y)| is sufficiently small to stop. For the previous progressive type-I
interval censorship test, record the observation results Y = {(Xj, Rj, tj), (j = 1, 2, . . . , k)}, and Zj is
the random variable falling into the interval (tj−1, tj]. According to the conditional density formula,
the conditional density function of Zj can be obtained as:

f j(z|β(i), Y) =

β(i)zβ(i)−1

(1+zβ(i) )2∫ tj
tj−1

β(i)zβ(i)−1

(1+zβ(i) )2
dz

=

β(i)zβ(i)−1

(1+zβ(i) )2

(1 + tβ(i)

j−1)
−1 − (1 + tβ(i)

j )−1
(19)

• Step E: According to the concept of the likelihood function:

f (β|Y, Z) =
k

∏
j=1

βXj Z
(β−1)Xj
j (1 + Zβ

j )
−2Xj(1 + tj)

−Rj (20)

ln f (β|Y, Z) =
k

∑
j=1

(Xj ln β + (β− 1)Xj ln Zj − 2Xj ln(1 + Zβ
j )− Rj ln(1 + tβ

j )) (21)

Q(β|β(i), Y)
4
= E[ln f (β|Y, Z)|β(i), Y] (22)

=
k

∑
j=1

(Xj ln β + (β− 1)XjE(ln Zj)− 2XjE(ln(1 + Zβ
j ))− Rj ln(1 + tβ

j ))

• Step M: Deriving Q(β|β(i), Y) with respect to β to find the maximum point β(i+1) of Q(β|β(i), Y):

∂Q
∂β

=
k

∑
j=1

[
Xj

β
+ XjE(ln Zj)− Rj

tβ
j ln tj

1 + tβ
j

]

=
1
β

k

∑
j=1

Xj +
k

∑
j=1

[XjE(ln Zj)− Rj
tβ

j ln tj

1 + tβ
j

] (23)

Let ∂Q
∂β = 0; β can be calculated as:

β = −
∑k

j=1 Xj

∑k
j=1[XjE(lnZj)− Rj

tβ
j lntj

1+tβ
j

]

(24)

E[ln Zj] = [(1 + tβ(i)

j−1)
−1 − (1 + tβ(i)

j )−1]
∫ tj

tj−1

β(i)zβ(i)−1 ln z

(1 + zβ(i))2
dz
4
= Aj (25)
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Let Bj =
tβ
j lntj

1+tβ
j

, and replace β with β(i+1), then β(i+1) can be defined as:

β(i+1) = −
∑k

j=1 Xj

∑k
j=1[Xj Aj − RjBj]

(26)

An iterative process from β(i) → β(i+1) is completed by Equation (26), and the estimation of
the parameter β can be obtained by using Equation (26) repeatedly, which is denoted as β̃. The EM
algorithm is an effective way to find the parameter estimates, the biggest advantage of which is the
stability of the estimate, especially in the case of censored samples. The following two lemmas illustrate
the convergence of the EM algorithm.

Lemma 1. The EM algorithm increases the posterior density function value (observes) after each iteration, i.e.,
f (β(i+1)|Y) ≥ f (β(i)|Y).

Lemma 2. 1. If f (β|Y) has an upper bound, then L(β(i)|Y) converges to L∗.

2. If Q(β|ϕ) is continuous with respect to β and ϕ, the convergence value β∗ of the estimated sequence β(i)

obtained by the EM algorithm is a stable point of L under a condition on L that is very general.

Proofs of Lemma 1 and 2 are found in [15].

4. Hypothesis Testing Algorithm

In recent years, interdisciplinary research on “information entropy” has developed rapidly and has
penetrated into many disciplines such as computer science and technology, systems science and
geography and has derived research topics from multiple interdisciplinary subjects, such as:

(i) The estimation of the (conditional) entropy or mutual information can be applied to independent
component analysis in order to measure the dependency among random variables (see [16]).

(ii) A discretization algorithm for continuous features and attributes of a raw and rough set for
selecting cut points can be illustrated on the basis of information entropy, which is defined for
every candidate cut point and treated as a measurement of importance (see [17]).

(iii) The information entropy can be applied in a multi-population genetic algorithm used to narrow
the search space. By defining the probabilities that the best solution appears in each population,
information-entropy is introduced into the evolution process, which will enhance the ability of
searching optimization solution for the evolution algorithms (see [18]).

In summary, any activity process that decreases or increases the affirmation, organization,
regularity or order of random event sets can be measured by the unified scale of the change of
information entropy, so the research on information entropy has become especially important. From the
perspective of information dissemination, information entropy can represent the value of information,
that is give a standard for measuring the value of information.

In this section, we propose an information entropy hypothesis testing algorithm based on the
log-logistic distribution, assuming that the data are progressive type-I censored data. Let h be the
critical amount of information required to reduce the source input to a certain standard.

The physical meaning of entropy represents the average uncertainty of the source before the
source is output. The hypothesis test of entropy is used to check whether the obtained source data
meet the requirements. If it passes the test, no additional data are needed, and the input of the source
can be reduced, further reducing the amount of human and material expenditure on data collection.
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The null hypothesis and alternative hypothesis are given as:

H0 : H( f ) ≤ h v.s. Hβ : H( f ) > h

Adopting to the MLE of H( f ) as the test statistic, then critical value H0 of the right-tailed
hypothesis test can be obtained as:

supP(H̃ f > H0) ≤ α ⇒ P(
H̃ f−H f√
Var(γ(β̃))

>
H0−H f√
Var(γ(β̃))

|H f ≤ h) ≤ α

⇒ P(
H̃ f−H f√
Var(γ(β̃))

>
H0−H f√
Var(γ(β̃))

|H f = h) = α

⇒ P(
H̃ f−h√

Var(γ(β̃))
> H0−h√

Var(γ(β̃))
) = α

⇒ P((
H̃ f−h√

Var(γ(β̃))
)2 > ( H0−h√

Var(γ(β̃))
)2) = α

⇒ P((
H̃ f−h√

Var(γ(β̃))
)2 ≤ ( H0−h√

Var(γ(β̃))
)2) = 1− α

(27)

where γ(β̃) = I−1(β̃) ∗ (g′(β̃))2 and under H f = h, (
H̃ f−h√

Var(γ(β̃))
)2 D−→ χ(1)2. From (27), by using the

CHIINV(1− α) function, which stands for the lower 100(1− α)th percentile of χ(1)2, then:

(
H0 − h√

Var(γ(β̃))
)2 = CHIINV(1− α) (28)

can be obtained. Therefore, the critical value can be expressed as:

H0 = h +
√

Var(γ(β̃)) ∗
√

CHIINV(1− α) (29)

where h and α represent the target value and the determined significance level. To determine whether
the obtained source data meet the requirements, managers can perform a one-sided hypothesis test on
information entropy. The test algorithm for H f is as follows. The power function w(h1) of the test of
this point H f = h1 > h0 is:

w(h1) = P(H̃ f > H0|β1 = e2−h1)

= P(2− lnβ̃ > h0 +
√

Var(γ(β̃0))CHIINV(1− α)|β0 = e2−h0 , β1 = e2−h1)

= P(β̃ < e2−h0−
√

Var(γ(β̃0))CHIINV(1−α)|β0 = e2−h0 , β1 = e2−h1)

= P( β̃−β1√
I−1(β1)

< e2−h0−
√

Var(γ(β̃0))CHIINV(1−α)−β1√
I−1(β1)

)

= Φ( e2−h0−
√

Var(γ(β̃0))CHIINV(1−α)−β1√
I−1(β1)

)

(30)

where Φ(·) is the cdf for the known standard normal distribution. The power function values of
w(h1) for testing H0 : H f ≤ 0.8 are summarized in Tables 1–3 at α = 0.01, 0.05, 0.1, respectively,
for h1 = 0.65(0.15)2, m = 5(1)8, n = 60(20)100 and p = 0.05(0.025)0.1, T = 0.5. Figures 1–4 shows the
power of the proposed algorithm for some common situations. From Tables 1–3, we conclude:
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1. For m = 5, p = 0.05 and α = 0.05, the power function w(h1) presents a non-decreasing trend with
respect to n, as performed in Figure 1 (any combinations of m, p and α will have the same trend).

2. The power w(h1) is a fixed non-increasing function of m, n = 60, p = 0.05, α = 0.05, as performed
in Figure 2 (any combinations of n, α and p will have a similar trend).

3. The power function w(h1) presents a non-increasing trend of the fixed deleted percentage p of
n = 60, α = 0.05, m = 5, as performed in Figure 3 (any combinations of n, m and α will have a
similar trend).

4. From Figures 1–3, the power function w(h1) increases as the value of h1 increases for any
combination of n, m, p and α.

5. From Figure 4, for any combination of n, m and p, the power function w(h1) presents a
non-decreasing trend with respect to α.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h1

w
(h

1) n = 60
n = 80
n = 100

Figure 1. Power function for testing at α = 0.05 under m = 5 and p = 0.05.
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Figure 2. Power function for testing at α = 0.05 under n = 60 and p = 0.05.
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Figure 3. Power function for testing at α = 0.1 under n = 60 and m = 5.
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Figure 4. Power function for testing under n = 60, m = 5 and p = 0.05.
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Table 1. The values of w(h1) at α = 0.01 for h1 = 0.65(0.15)2, n = 60(20)100, m = 5(1)8 and p = 0.05(0.025)0.1 under T = 0.5 and h0 = 0.8.

h1

m n p 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2

5 60 0.05 0.003800 0.017245 0.081148 0.276383 0.587226 0.836528 0.949660 0.985413 0.995253 0.998054
0.075 0.004032 0.017650 0.079868 0.265915 0.564973 0.815618 0.937988 0.980286 0.993032 0.996955
0.1 0.004284 0.018076 0.078677 0.255964 0.543147 0.793769 0.924717 0.973913 0.990040 0.995381

80 0.05 0.002183 0.015033 0.095768 0.363243 0.729005 0.932958 0.988235 0.998036 0.999598 0.999882
0.075 0.002336 0.015356 0.093514 0.347988 0.705013 0.918962 0.983776 0.996901 0.999286 0.999771
0.1 0.002504 0.015695 0.091385 0.333371 0.680742 0.903316 0.978118 0.995260 0.998781 0.999575

100 0.05 0.001342 0.013628 0.112273 0.451078 0.832886 0.975445 0.997651 0.999781 0.999972 0.999994
0.075 0.001449 0.013899 0.108974 0.431713 0.811215 0.967936 0.996335 0.999592 0.999940 0.999986
0.1 0.001566 0.014185 0.105847 0.412975 0.788483 0.958886 0.994453 0.999270 0.999876 0.999968

6 60 0.05 0.004883 0.017812 0.074107 0.250705 0.561279 0.833421 0.956602 0.990605 0.997878 0.999399
0.075 0.005045 0.018186 0.073611 0.243013 0.540752 0.811918 0.945089 0.986392 0.996484 0.998884
0.1 0.005230 0.018583 0.073132 0.235600 0.520662 0.789520 0.931792 0.980875 0.994414 0.998031

80 0.05 0.002900 0.015485 0.087078 0.334081 0.710792 0.935323 0.991557 0.999122 0.999898 0.999983
0.075 0.003011 0.015783 0.085822 0.321862 0.687350 0.921040 0.987709 0.998435 0.999778 0.999956
0.1 0.003137 0.016098 0.084597 0.310052 0.663750 0.905018 0.982626 0.997337 0.999549 0.999896

100 0.05 0.001839 0.014008 0.101885 0.420290 0.822110 0.978050 0.998653 0.999936 0.999996 1.000000
0.075 0.001918 0.014258 0.099808 0.403906 0.800241 0.970707 0.997707 0.999857 0.999989 0.999999
0.1 0.002010 0.014524 0.097781 0.387973 0.777431 0.961735 0.996257 0.999700 0.999971 0.999996

7 60 0.05 0.005761 0.018483 0.069396 0.227948 0.527358 0.817161 0.955804 0.992186 0.998704 0.999743
0.075 0.005817 0.018796 0.069612 0.223634 0.511146 0.796710 0.944284 0.988356 0.997680 0.999455
0.1 0.005910 0.019137 0.069752 0.219159 0.494940 0.775408 0.930965 0.983214 0.996057 0.998920

80 0.05 0.003498 0.016019 0.080815 0.305489 0.680614 0.928605 0.992033 0.999417 0.999959 0.999996
0.075 0.003538 0.016268 0.080510 0.297471 0.660316 0.914282 0.988308 0.998892 0.999897 0.999987
0.1 0.003603 0.016539 0.080111 0.289328 0.639687 0.898304 0.983342 0.998005 0.999762 0.999963

100 0.05 0.002264 0.014457 0.093988 0.387302 0.798857 0.975914 0.998856 0.999968 0.999999 1.000000
0.075 0.002295 0.014667 0.093118 0.375615 0.778690 0.968368 0.998005 0.999920 0.999997 1.000000
0.1 0.002343 0.014894 0.092138 0.363819 0.757631 0.959218 0.996669 0.999815 0.999989 0.999999

8 60 0.05 0.006372 0.019094 0.066647 0.211436 0.496750 0.797345 0.952000 0.992552 0.999033 0.999861
0.075 0.006325 0.019329 0.067386 0.210105 0.485710 0.779344 0.940671 0.988891 0.998195 0.999674
0.1 0.006334 0.019602 0.067964 0.208126 0.473880 0.760275 0.927569 0.983926 0.996808 0.999297

80 0.05 0.003922 0.016505 0.076893 0.283451 0.650493 0.918498 0.991494 0.999511 0.999977 0.999999
0.075 0.003890 0.016692 0.077317 0.279394 0.634761 0.904809 0.987749 0.999051 0.999937 0.999995
0.1 0.003897 0.016909 0.077527 0.274567 0.618106 0.889515 0.982776 0.998255 0.999843 0.999983

100 0.05 0.002571 0.014865 0.088823 0.360549 0.773440 0.971817 0.998821 0.999977 1.000000 1.000000
0.075 0.002549 0.015023 0.088903 0.353590 0.756498 0.964200 0.997973 0.999940 0.999999 1.000000
0.1 0.002556 0.015204 0.088720 0.345768 0.738370 0.955043 0.996647 0.999855 0.999994 1.000000
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Table 2. The values of w(h1) at α = 0.05 for h1 = 0.65(0.15)2, n = 60(20)100, m = 5(1)8 and p = 0.05(0.025)0.1 under T = 0.5 and h0 = 0.8.

h1

m n p 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2

5 60 0.05 0.010636 0.046060 0.181003 0.474751 0.782816 0.940493 0.986955 0.997095 0.999202 0.999697
0.075 0.011153 0.046622 0.177388 0.459489 0.763251 0.928988 0.982639 0.995690 0.998700 0.999472
0.1 0.011703 0.047209 0.173927 0.444650 0.743263 0.916199 0.977317 0.993767 0.997949 0.999112

80 0.05 0.006827 0.042893 0.212941 0.581850 0.884698 0.982370 0.997991 0.999758 0.999960 0.999989
0.075 0.007220 0.043365 0.207659 0.563229 0.868646 0.977054 0.996940 0.999570 0.999918 0.999976
0.1 0.007639 0.043859 0.202583 0.544881 0.851533 0.970624 0.995462 0.999264 0.999842 0.999949

100 0.05 0.004598 0.040788 0.245816 0.674392 0.942291 0.995271 0.999729 0.999983 0.999998 1.000000
0.075 0.004902 0.041201 0.238886 0.654207 0.931014 0.993245 0.999524 0.999963 0.999996 0.999999
0.1 0.005228 0.041633 0.232212 0.634008 0.918416 0.990560 0.999193 0.999924 0.999990 0.999998

6 60 0.05 0.012925 0.046845 0.169828 0.451170 0.773750 0.945074 0.990947 0.998680 0.999777 0.999947
0.075 0.013271 0.047359 0.167452 0.438091 0.754239 0.933478 0.987263 0.997804 0.999564 0.999881
0.1 0.013660 0.047900 0.165119 0.425308 0.734376 0.920492 0.982529 0.996487 0.999194 0.999753

80 0.05 0.008534 0.043553 0.199632 0.559181 0.881627 0.985367 0.998941 0.999933 0.999995 0.999999
0.075 0.008808 0.043985 0.195841 0.542395 0.865285 0.980369 0.998228 0.999857 0.999985 0.999998
0.1 0.009114 0.044439 0.192121 0.525822 0.847913 0.974197 0.997145 0.999713 0.999964 0.999993

100 0.05 0.005900 0.041366 0.230547 0.654074 0.942088 0.996545 0.999896 0.999997 1.000000 1.000000
0.075 0.006120 0.041743 0.225333 0.635237 0.930590 0.994819 0.999790 0.999992 1.000000 1.000000
0.1 0.006367 0.042140 0.220219 0.616397 0.917752 0.992446 0.999597 0.999980 0.999999 1.000000

7 60 0.05 0.014708 0.047764 0.161024 0.425370 0.753648 0.941871 0.991909 0.999150 0.999907 0.999986
0.075 0.014830 0.048189 0.159959 0.415859 0.736027 0.930271 0.988426 0.998486 0.999793 0.999962
0.1 0.015025 0.048649 0.158767 0.406226 0.717977 0.917311 0.983883 0.997431 0.999569 0.999905

80 0.05 0.009903 0.044324 0.188439 0.531179 0.868523 0.984874 0.999179 0.999969 0.999999 1.000000
0.075 0.010008 0.044681 0.186311 0.518031 0.852898 0.979833 0.998572 0.999926 0.999996 1.000000
0.1 0.010168 0.045067 0.184040 0.504721 0.836307 0.973619 0.997619 0.999834 0.999987 0.999999

100 0.05 0.006973 0.042040 0.217055 0.626106 0.934584 0.996556 0.999932 0.999999 1.000000 1.000000
0.075 0.007064 0.042352 0.213841 0.610595 0.923141 0.994839 0.999853 0.999997 1.000000 1.000000
0.1 0.007198 0.042689 0.210472 0.594800 0.910443 0.992476 0.999702 0.999991 1.000000 1.000000

8 60 0.05 0.015915 0.048590 0.155104 0.404095 0.732049 0.935697 0.991801 0.999320 0.999949 0.999995
0.075 0.015833 0.048906 0.155119 0.398271 0.717478 0.924473 0.988366 0.998752 0.999874 0.999984
0.1 0.015859 0.049270 0.154831 0.391745 0.702122 0.911917 0.983877 0.997818 0.999716 0.999954

80 0.05 0.010848 0.045018 0.180545 0.506603 0.852691 0.982997 0.999216 0.999980 1.000000 1.000000
0.075 0.010793 0.045283 0.179838 0.497552 0.838775 0.977893 0.998636 0.999949 0.999998 1.000000
0.1 0.010823 0.045588 0.178759 0.487726 0.823790 0.971646 0.997719 0.999878 0.999994 1.000000

100 0.05 0.007728 0.042646 0.207223 0.600230 0.924505 0.996092 0.999940 1.000000 1.000000 1.000000
0.075 0.007692 0.042878 0.205765 0.588809 0.913737 0.994305 0.999869 0.999998 1.000000 1.000000
0.1 0.007722 0.043144 0.203870 0.576536 0.901746 0.991875 0.999730 0.999995 1.000000 1.000000
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Table 3. The values of w(h1) at α = 0.1 for h1 = 0.65(0.15)2, m = 5(1)8, n = 60(20)100 and p = 0.05(0.025)0.1 under T = 0.5 and h0 = 0.8.

h1

m n p 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2

5 60 0.05 0.017792 0.073840 0.259702 0.590335 0.862265 0.969759 0.994548 0.998951 0.999736 0.999903
0.075 0.018563 0.074431 0.254462 0.574080 0.846532 0.962638 0.992401 0.998355 0.999543 0.999821
0.1 0.019376 0.075048 0.249400 0.558055 0.830049 0.954421 0.989623 0.997493 0.999237 0.999679

80 0.05 0.012008 0.070473 0.302042 0.694889 0.935704 0.992577 0.999337 0.999933 0.999990 0.999997
0.075 0.012631 0.070979 0.294897 0.676950 0.924651 0.989905 0.998930 0.999873 0.999978 0.999994
0.1 0.013290 0.071506 0.287976 0.658967 0.912494 0.986519 0.998322 0.999767 0.999954 0.999986

100 0.05 0.008430 0.068202 0.343607 0.777338 0.971524 0.998330 0.999928 0.999996 1.000000 1.000000
0.075 0.008936 0.068650 0.334695 0.759552 0.964778 0.997486 0.999865 0.999991 0.999999 1.000000
0.1 0.009476 0.069116 0.326041 0.741390 0.956959 0.996307 0.999755 0.999981 0.999998 0.999999

6 60 0.05 0.021057 0.074666 0.246967 0.571566 0.860041 0.974226 0.996759 0.999623 0.999946 0.999988
0.075 0.021569 0.075205 0.243110 0.556817 0.844067 0.967343 0.995130 0.999318 0.999883 0.999971
0.1 0.022139 0.075770 0.239312 0.542244 0.827367 0.959275 0.992894 0.998819 0.999763 0.999932

80 0.05 0.014582 0.071180 0.287321 0.678744 0.936457 0.994488 0.999716 0.999986 0.999999 1.000000
0.075 0.015014 0.071640 0.281772 0.661839 0.925225 0.992162 0.999483 0.999968 0.999997 1.000000
0.1 0.015494 0.072123 0.276311 0.644898 0.912863 0.989116 0.999100 0.999928 0.999992 0.999999

100 0.05 0.010486 0.068827 0.327209 0.764319 0.972851 0.998941 0.999979 1.000000 1.000000 1.000000
0.075 0.010850 0.069235 0.320061 0.747123 0.966101 0.998296 0.999952 0.999999 1.000000 1.000000
0.1 0.011255 0.069663 0.313024 0.729597 0.958241 0.997346 0.999900 0.999996 1.000000 1.000000

7 60 0.05 0.023565 0.075628 0.235989 0.547795 0.847890 0.973750 0.997383 0.999797 0.999983 0.999998
0.075 0.023759 0.076072 0.233736 0.536112 0.832763 0.966862 0.995940 0.999597 0.999955 0.999993
0.1 0.024051 0.076551 0.231339 0.524286 0.816928 0.958785 0.993905 0.999242 0.999895 0.999980

80 0.05 0.016619 0.072002 0.273811 0.655201 0.929912 0.994622 0.999809 0.999995 1.000000 1.000000
0.075 0.016797 0.072382 0.270223 0.641045 0.918816 0.992331 0.999631 0.999986 0.999999 1.000000
0.1 0.017055 0.072790 0.266476 0.626623 0.906652 0.989320 0.999322 0.999965 0.999998 1.000000

100 0.05 0.012156 0.069556 0.311419 0.742747 0.969715 0.999022 0.999988 1.000000 1.000000 1.000000
0.075 0.012318 0.069892 0.306544 0.727752 0.962851 0.998409 0.999971 1.000000 1.000000 1.000000
0.1 0.012545 0.070254 0.301497 0.712304 0.954917 0.997497 0.999935 0.999999 1.000000 1.000000

8 60 0.05 0.025253 0.076490 0.228102 0.526692 0.833155 0.971331 0.997504 0.999858 0.999992 0.999999
0.075 0.025160 0.076819 0.227254 0.518499 0.819777 0.964485 0.996118 0.999701 0.999977 0.999998
0.1 0.025216 0.077196 0.226038 0.509643 0.805548 0.956479 0.994149 0.999410 0.999940 0.999992

80 0.05 0.018018 0.072738 0.263705 0.632941 0.920841 0.994091 0.999833 0.999997 1.000000 1.000000
0.075 0.017960 0.073019 0.261895 0.622242 0.910430 0.991750 0.999672 0.999992 1.000000 1.000000
0.1 0.018024 0.073342 0.259645 0.610807 0.898963 0.988696 0.999387 0.999977 0.999999 1.000000

100 0.05 0.013326 0.070208 0.299260 0.721232 0.964803 0.998927 0.999991 1.000000 1.000000 1.000000
0.075 0.013292 0.070457 0.296503 0.709320 0.958059 0.998292 0.999977 1.000000 1.000000 1.000000
0.1 0.013359 0.070743 0.293244 0.696586 0.950294 0.997356 0.999945 0.999999 1.000000 1.000000
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Algorithm:

Step 1 Observe the progressive type-I interval censored data X1, . . . , Xm at the pre-scheduled times
t1, . . . , tm with censoring schemes of R1, . . . , Rm from the log-logistic distribution.

Step 2 In practical applications, h represents the critical amount of information required to reduce
the source input to a certain standard. Then, the testing null hypothesis H0 : H f ≤ h and the
alternative hypothesis Hβ : H f > h are constructed.

Step 3 Calculate the maximum likelihood estimate of β and the value of the test statistic H̃ f = 2− logβ̃.

Step 4 The critical value can be calculated for the level of significance of α as:

H0 = h +
√

Var(γ(β̃)) ∗
√

CHIINV(1− α) (31)

Step 5 Compare the size of H̃ f and H0. Determine whether the obtained source data meet
the requirements.

Based on the proposed algorithm, information entropy represents whether the amount of
information contained in the data meets the requirements. Two numerical examples are given in the
next section.

5. Monte Carlo Simulation

To demonstrate and illustrate the above test algorithm program, Monte Carlo simulation generates
two datasets.

Monte Carlo simulation is a computational method that realistically simulates actual physical
processes based on probabilistic and statistical theoretical methods. It is widely used in many fields,
such as physical science, estimating micro economic models, engineering and data analysis (see, e.g.,
the recent works [19–21]).

Example 1. The R software is used to generate n = 60 sets of failure time values, which obey the log-logistic
distribution under β = 4. The log-logistic distribution is generated as follows: if M is a random number with

uniform distribution (0,1), then U = ( M
1−M )

1
β follows a log-logistic distribution.

0.3118375, 0.3715598, 0.4876330, 0.5205967, 0.5424458, 0.5445681, 0.5819012

0.5882983, 0.6189600, 0.6723682, 0.6790795, 0.6936371, 0.7221577, 0.7227560

0.7424159, 0.7487004, 0.7490484, 0.7517022, 0.7750581, 0.8431784, 0.8434412

0.8686997, 0.8835853, 0.8855607, 0.8898366, 0.9227385, 0.9633077, 0.9638518

0.9643345, 0.9701875, 0.9810045, 0.9890877, 1.0151853, 1.0301795, 1.0597236

1.0836868, 1.0853866, 1.1076366, 1.1599594, 1.1661035, 1.2076103, 1.2394994

1.2654396, 1.2813285, 1.3142395, 1.3628084, 1.3895883, 1.3966131, 1.4486672

1.4501228, 1.4574971, 1.5251246, 1.6315132, 1.6351908, 1.7744221, 2.0102572

2.1783054, 2.5374440, 3.1885393, 6.4965022

According to these data, we are able to obtain a progressive type-I censored sample.
The number of checking times is m = 7; the check interval is equal to t = 0.2 (h); and the
predetermined deleted percentage of the survival units is given by (p1, p2, p3, p4, p5, p6, p7, p8) =

(0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 1). Now, we can start executing the test algorithm program
about H f .
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Step 1 Observe the progressive type-I interval censored data (0, 2, 6, 11, 13, 8, 8) at the pre-set times
(t1, t2, t3, t4, t5, t6, t7) = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4) with the censoring schemes of
(R1, R2, R3, R4, R5, R6, R7) = (3, 3, 2, 2, 1, 0, 1).

Step 2 Let the critical amount of information required h = 0.6, and then, propose the test null
hypothesis H0 : H f ≤ 0.6 and the alternative hypothesis Hβ : H f > 0.6.

Step 3 Calculate the maximum likelihood estimate of parameter β̃ = 4.725352 and the value of the test
statistic H̃ f = 2− ln β̃ = 0.447058.

Step 4 The critical value can be calculated for the level of significance of α = 0.05 as: H0 = h +√
Var(γ(β)) ∗

√
CHIINV(1− α) = 1.212735.

Step 5 Since H̃ f = 0.447058 < H0 = 1.212735, we accept the null hypothesis H0 : H f ≤ 0.6. Thus,
the obtained source data do not meet the requirements.

Example 2. The R software is used to generate n = 60 sets of failure time values, which obey the log-logistic
distribution under β = 6.

0.2517733, 0.5072381, 0.5850387, 0.6208714, 0.6625793, 0.6954254, 0.7241406

0.7372249, 0.7407151, 0.7610365, 0.7614509, 0.7616830, 0.7782394, 0.8252179

0.8414707, 0.8571038, 0.8703908, 0.8931475, 0.9007681, 0.9008163, 0.9077517

0.9100598, 0.9200725, 0.9301961, 0.9513207, 0.9545003, 0.9609950, 0.9635523

0.9856276, 0.9955788, 1.0130551, 1.0324070, 1.0612042, 1.0750621, 1.0762970

1.0783691, 1.1241678, 1.1481179, 1.1530923, 1.1605018, 1.1649218, 1.1785074

1.1838348, 1.1876701, 1.2244942, 1.2383936, 1.2795402, 1.2886820, 1.3056510

1.3163001, 1.3368304, 1.3685482, 1.4333597, 1.4493346, 1.4811992, 1.8535557

1.9116135, 2.1423352, 2.2983347, 2.4595617

According to these data, we are able to obtain a progressive type-I censored sample. The number of
checking times is m = 8; the check interval is equal to t = 0.2 (h); and the predetermined deleted percentage
of the survival units is given by (p1, p2, p3, p4, p5, p6, p7, p8) = (0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 1). Now,
we can start executing the test algorithm program about H f .

Step 1 Record the progressive type-I interval censored sample (0, 1, 2, 10, 17, 14, 8, 3) at the pre-set
times (t1, t2, t3, t4, t5, t6, t7, t8) = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6) with the censoring scheme of
(R1, R2, · · · , R8) = (1, 1, 1, 1, 1, 0, 0, 0).

Step 2 If the critical amount of information required h = 0.1, then, we can propose the test null
hypothesis H0 : H f ≤ 0.1 and the alternative hypothesis Hβ : H f > 0.1.

Step 3 Calculate the maximum likelihood estimate of parameter β̃ = 6.530128 and the value of the test
statistic H̃ f = 2− ln β̃ = 0.123574.

Step 4 The critical value can be calculated for the level of significance of α = 0.05 as: H0 = h +√
Var(γ(β)) ∗

√
CHIINV(1− α) = 0.609365.

Step 5 Since H̃ f = 0.123574 < H0 = 0.609365, we accept the null hypothesis H0 : H f ≤ 0.1. Thus,
the obtained source data do not meet the requirements.
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6. Conclusions

In practice, due to some reasons such as time and cost, usually only incomplete data can be
collected and observed. We consider that the data come from the progressive type-I censoring scheme
and use the MLE method and EM algorithm to estimate the parameters and the information entropy.
In combination with the hypothesis test, we establish the information entropy calculation algorithm,
using information entropy to measure the amount of uncertainty in an object in information theory.
Extensive simulations justify that the algorithm is feasible and effective. This information entropy
algorithm based on censored data will be widely used in interdisciplinary fields such as system science,
geography, computer science and technology in the future.
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