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Abstract: The work reports the finding and the study of transformation groups with two conditional
elements (binary transformations of abstract structures of the finite numerical sets with broken
symmetry). The term Broken Symmetry Group (BSG) is introduced. Transformation examples of
relevant structures are studied with computer visualization and application in real structure study.
A special type of BSG was discovered, which describes the subsets of “evolutionary trees” with
convergent and divergent properties of the oriented graph (orgraph) with structure-development
direction edges and “growth spirals”.
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1. Introduction

All the known physical effects in crystals are described based on the Curie-Neumann principle:
the symmetry of the structure and the symmetry of the “impact” on the structure are summated in a
way where only shared transformations remain. The growth of monocrystals in particular starts in one
spot (nucleant-defect), where the symmetry of medium uniformity and isotropy is broken.

In a general case, systems interaction also results the transformations which break the symmetry
and lead to the restructuring of each system [1]. This circumstance, as with many other factors,
allows highlighting of the unity of two major principles of development, growth, accumulation,
evolution, and stability of systems. These are, firstly, when expanded to all the systems, Curie’s
Broken Symmetry Principle, which determines the cause of new occurrences, and secondly Le
Chatelier’s symmetry conservation principle, which determines the system’s response, counteracting
any infraction. The latter claims a conservation of the previous state or a transition to a new
one, but also sustainable (symmetrical) state. According to the Noether’s theory, in a physical
system of material particles, every differentiable symmetry of the action of a physical system has a
corresponding energy-impulse conservation. In this case, the four-dimensional spatial occurrences
continuum performs a “function” of possibility space. Lately, the following terms became common
in scientific literature: phase space, economical space, personal psychological space, viral genome
space, configurational space, informational space, and many others, which often are referred to
as many-dimensional. Existing software tools such as Multidimensional Scaling (MDS) allow the
projection of all the processed information on a familiar three-dimensional space. In all those
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dimensions, formally abstract variables create an “image” of the system and its reactions, which
becomes a method of abstraction “visualization”.

A substantial contribution to the studies of the symmetry and natural substances’ properties
within a crystal lattice state was made by Russian crystallographers [1,2]. These are the classic works
of Fedorov (230 spatial groups of symmetry), Shubnikov (black-and-white symmetry), and Belov
(color symmetry) etc. Starting midway through the last century, a numerous amount of works devoted
to systems with broken symmetry had been written. In particular, super-symmetry groups and
multidimensional groups [3] were introduced for the description of in commensurately modulated
phases and quasicrystals. For more complex cases, a description based on “interlacement groups” [4]
was introduced, which, in the final analysis, may depict the classic groups of substitutions. A research
on pseudo-symmetry during a monocrystal growth may be referred to as an example [5].

Historically, symmetry groups theory takes the mathematical course starting with the work of
Galois, describing the theory of symmetry of equation roots permutation. All the classic algebra [6]
studies and combinatorics [7], geometry, and topology relate to the group theory basics. General
classification of binary relation sets by groups, semi groups, field of scalars, vectors, tensor quantities
and rings relate directly to the maze, diagrams, nets, graphs, orgraphs and other mathematical
structures as well as to real objects. In particular, in modern quantum field theory a diagram technique
of the description of the broken symmetry processes was offered by Feinman. The works of other Nobel
Prize laureates, including Higgs, led to the understanding of the gauge symmetry of the physical
vacuum state and of the moment of the “beginning” of the Universe [8], starting with the Higgs
boson. Therefore, the accordingly reinterpreted quantum theory of nonabelian gauge fields with
spontaneously broken symmetry lays the basis of scientific conceptions of this research area. Feinman’s
diagrams will be studied in further works within the scope of Broken Symmetry Group (BSG) analysis.

The article does not aim to present the fundamental essence of symmetry and the mechanisms
of broken symmetry in different types of matter (physical, biological, social etc.), but attempts to
search for a broken system elementary mathematical model and possible “visualization”, for which
purpose some studies previously developed and presented in the field of computer techniques had
been used [9,10]. Group theory shows that any finite symmetry group is isomorphic to a permutation
group accordingly (Cayley theorem). Therefore, to describe symmetry, a “matrix representation”
may be implemented as well as a two-rowed matrices substitution representation. In this article,
the substitution is the choice due to, firstly, symmetry operation record simplicity and, secondly,
substitution coding regardless of space characteristics. This has a particular importance when dealing
with the state space or phase space, where topology and sizing may be indeterminate enough to enter
a certain virtual possibilities space to visualize a calculation result.

As shown in the study [9], quaternion abstract symmetry, Pauli matrices, Dirac matrices and the
local symmetry can be analyzed with substitution groups, and its visualization can be performed
on periodic packing space discretion in the lattice [9]. This article will report the results describing
translational symmetrical structures as well as non-periodic packing spaces structures and their
discretion graphs. We will implement broken symmetry mathematical groups for restructuring
processes description, in accordance with Curie’s principle. This was briefly reported by the article’s
authors at the First Russian Crystallography Congress [11].

2. Transformation Models in Structures with Broken Symmetry

In our research, the first case of the broken symmetry group (BSG) finding and new properties
showing up was the structure of the complex octahedral cation [Me(urea)6]2+,3+ (reference code
“WOKNIT” in the database [12] with chelate hydrogen bonds [10,13]. Previously, the overview
article [14] reported a crystalo-chemical research of possible combinations of directed H-bonds in
different structures of complex compounds with carbamide. The description of the symmetry of
complex cation [13] with double hydrogen bond required the “defect” substitutes entry to be in the
form of two-rowed matrices as follows: ( 012345

223550 ), or, briefly, with the use of the “coding“ (lower row):
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g[1] = (223550). Therefore the classic multiplication substitution table (Cayley table) of a complex
octahedral symmetry group in the orgraph model of directed bonds was not possible to apply. The
octahedral symmetry was broken regarding directed bonds [12].

A series of computer experiments were performed to research such modifications in symmetry [11].
Now we will intentionally implement a defect (“accidental coding mistake”) in the entry of a certain
substitution cyclic subgroup.

A regular pentagon (with a fixed central point) will be perceived as a classic symmetry simple
geometric structure (Figure 1). A singular transformation g[0] will be left without the defect; however
instead of a classic permutation (72◦ turn), which is coded by matrix g[1]class = (023451), formally we
will enter a different operation: g[1] = (023431). Evidently a defect shows up within the fifth place in
the permutation coding row.
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Figure 1. Groups calculation results with multiplication table and a program window screen shot.

If thereafter we use a simple rule of two-row matrices multiplication, then we will get an
operations set g[1] = (023431), (g[1])2 = g[2] = (034342), (g[1])3 = g[3] = (043433) and (g[1])4 = g[4] =
(034344) as other elements of a substitution cyclic group.

We will “expand” this final subgroup up to the “9th order group” by the operation with a defect
g[5] = (012343).As a result we will get the final multiplication table of substitution with a defect
(Table 1).

Table 1. Substitution operations with a defect subset and a multiplication table.

g[0] = (0 1 2 3 4 5); g[0] g[1] g[2] g[3] g[3] g[5] g[6] g[7] g[8]
g[1] = (0 2 3 4 3 1); g[1] g[2] g[3] g[4] g[3] g[1] g[2] g[3] g[4]
g[2] = (0 3 4 3 4 2); g[2] g[3] g[4] g[3] g[4] g[2] g[3] g[4] g[3]
g[3] = (0 4 3 4 3 3); g[3] g[4] g[3] g[4] g[3] g[3] g[4] g[3] g[4]
g[4] = (0 3 4 3 4 4); g[4] g[3] g[4] g[3] g[4] g[4] g[3] g[4] g[3]
g[5] = (0 1 2 3 4 3); g[5] g[6] g[7] g[8] g[7] g[5] g[6] g[7] g[8]
g[6] = (0 2 3 4 3 4); g[6] g[7] g[8] g[7] g[8] g[6] g[7] g[8] g[7]
g[7] = (0 3 4 3 4 3); g[7] g[8] g[7] g[8] g[7] g[7] g[8] g[7] g[8]
g[8] = (0 4 3 4 3 4); g[8] g[7] g[8] g[7] g[8] g[8] g[7] g[8] g[7]

For the structure, new operations with “a defect” cannot be considered permutations. However,
at the same time they can still be called number substitutions, because the term “substitution” is wider
than the term “permutation”. Permutation retains the numbers set, and substitution may change them.
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Evidently, the resulting table is not a classic multiplication Cayley table, as inverse elements
are absent and properties change “by rows” and “by columns”. Therefore, we may state that “a
mistake” in element coding in symmetry groups led to a broken symmetry. We will consider [8] that
each transformation from the elements of the transformation set may be visualized by analyzing the
substitution itself.

Each modification [9] can be visualized by analyzing the substitution itself. Substitution
visualization of three operations, randomly chosen from Table 1, is presented in Figure 2 [15].
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g[8] in two-dimensional space (b).

Definition 1. The product set of two-rowed matrices of substitution numbers, which are not permutations, will
be called broken symmetry groups (BSG). The order of the finite group broken symmetry is determined by the
amount of transformations. The above example with nine operations can be marked as BSG 9.

In one of the computer experiments [11] using a designed program of binary matrices
multiplication with classic and non-classic substitutions (Figure 3) numerical set of 34 number values
made a substitution set consisting of 91 BSG operations. Out of the set, two operations subgroups can
be highlighted (including g[0]), which create small finite subsets (Table 2) BSG 6 and BSG 4.
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Table 2. 6 and 4 transformations subsets of BSG-91 and their multiplication tables.

g[0] = (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33); g[0] g[1] g[2] g[3] g[4] g[5]
g[1] = (3 5 7 9 11 13 15 17 19 20 22 24 26 27 28 29 16 12 23 25 3 7 30 32 4 8 31 5 33 6 10 12 18 14); g[1] g[2] g[3] g[4] g[5] g[3]
g[2] = (9 13 17 20 24 27 29 12 25 3 30 4 31 5 33 6 16 26 32 8 9 17 10 18 11 19 12 13 14 15 22 26 23 28); g[2] g[3] g[4] g[5] g[3] g[4]
g[3] = (20 27 12 3 4 5 6 26 8 9 10 11 12 13 14 15 16 31 18 19 20 12 22 23 24 25 26 27 28 29 30 31 32 33); g[3] g[4] g[5] g[3] g[4] g[5]
g[4] = (3 5 26 9 11 13 15 31 19 20 22 24 26 27 28 29 16 12 23 25 3 26 30 32 4 8 31 5 33 6 10 12 18 14); g[4] g[5] g[3] g[4] g[5] g[3]
g[5] = (9 13 31 20 24 27 29 12 25 3 30 4 31 5 33 6 16 26 32 8 9 31 10 18 11 19 12 13 14 15 22 26 23 28); g[5] g[3] g[4] g[5] g[3] g[4]
g[0] = (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33); g[0] g[1] g[2] g[3]
g[1] = (10 14 18 21 25 27 29 21 25 4 31 4 31 6 16 6 16 8 16 8 10 18 10 18 12 16 12 14 14 16 23 16 23 28); g[1] g[2] g[3] g[3]
g[2] = (31 16 16 18 16 14 16 18 16 25 16 25 16 29 16 29 16 25 16 25 31 16 31 16 31 16 31 16 16 16 18 16 18 14); g[2] g[3] g[3] g[3]
g[3] = (16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16); g[3] g[3] g[3] g[3]

Some transformations visualization from the table is presented on Figure 3.
Of particular interest is the multiplication table of the 4th order subgroup from Table 2, i.e.,

product table g[i] × g[k], which can serve as the grounding for the following statement: subgroups
with convergent properties of the transformation structure orgraph can exist within BSGs.

Evidently, for each table (with any finite number of elements), structurally created analogically
with the multiplying table (Table 2, 4th order), there is always one transformation which inevitably
exists, and which can be registered as a single value of integer R. A particular case of a group structure
with such an inevitable operation is presented in Table 3. Operation g[R] = g[7] = (7 7 7 7 7 7 7 7).

Table 3. Broken symmetry group with the “Rome” point on the 8 points set and the group
multiplication table.

g[0] = (0 1 2 3 4 5 6 7); g[0] g[1] g[2] g[3] g[4] g[5] g[6] g[7]
g[1] = (1 2 3 4 5 6 7 7); g[1] g[2] g[3] g[4] g[5] g[6] g[7] g[7]
g[2] = (2 3 4 5 6 7 7 7); g[2] g[3] g[4] g[5] g[6] g[7] g[7] g[7]
g[3] = (3 4 5 6 7 7 7 7); g[3] g[4] g[5] g[6] g[7] g[7] g[7] g[7]
g[4] = (4 5 6 7 7 7 7 7); g[4] g[5] g[6] g[7] g[7] g[7] g[7] g[7]
g[5] = (5 6 7 7 7 7 7 7); g[5] g[6] g[7] g[7] g[7] g[7] g[7] g[7]
g[6] = (6 7 7 7 7 7 7 7); g[6] g[7] g[7] g[7] g[7] g[7] g[7] g[7]
g[7] = (7 7 7 7 7 7 7 7); g[7] g[7] g[7] g[7] g[7] g[7] g[7] g[7]

ROME

The point where all the paths cross within the orgraph structure (as per Figure 3 for g[3], R = 16)
in a word will be called “Rome” (as per old saying: “All roads lead to Rome”), and the elements set of
such a table, where “Rome” point exists, will be called “the Rome Transformations Set”.

A transition to the orgraph with divergent vectors (“All roads start in Rome”), formally can
be seen as “reverse” operation, g[1]−1, where upper and lower rows switch places in substitutional
matrices [15]. A graphic representation of the reverse to the transformations from Table 3 operations is
shown on Figure 4 as a divergent process (diverging “development spiral”).
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A virtual “possibility space”, or “latitude rate” (Figure 4) is necessary for such an “expansion”.
Not a single system may develop without this condition. This circumstance requires additional
systemic philosophical analysis (for instance within the “fractal-facet model” [16]).

The g[7] operation in the Roman set from Table 4 acts as “zero”, since its application to other
operations of the set of elements results in g[7]: “zero remains zero, regardless of how it is multiplied”.
Therefore, the Roman set of binary operations has “unity” (g[0]) and “zero” (g[7]) but does not have
inverse elements.

Table 4. Transformations types and a multiplying table for a 14 dots system.

g[0] = (0 1 2 3 4 5 6 7 8 9 10 11 12 13); g[0] g[1] g[2] g[3] g[4] g[5] g[6];
g[1] = (2 3 4 5 6 7 8 9 10 11 12 13 12 13); g[1] g[2] g[3] g[4] g[5] g[6] g[6];
g[2] = (4 5 6 7 8 9 10 11 12 13 12 13 12 13); g[2] g[3] g[4] g[5] g[6] g[6] g[6];
g[3] = (6 7 8 9 10 11 12 13 12 13 12 13 12 13); g[3] g[4] g[5] g[6] g[6] g[6] g[6];
g[4] = (8 9 10 11 12 13 12 13 12 13 12 13 12 13); g[4] g[5] g[6] g[6] g[6] g[6] g[6];
g[5] = (10 11 12 13 12 13 12 13 12 13 12 13 12 13); g[5] g[6] g[6] g[6] g[6] g[6] g[6];
g[6] = (12 13 12 13 12 13 12 13 12 13 12 13 12 13). g[6] g[6] g[6] g[6] g[6] g[6] g[6].

The orgraph divergent property leads to a situation where all the points of the structure become
distinguishable (not identical), i.e., they only pass into themselves. This is the finite operation of
“unity” g[0]−1 (Figure 4). On the contrary, the convergence leads to absolute symmetry when all
points of the structure become indistinguishable (identical). This is the finite operation of “zero” g[R]
(“Rome point”).

Table 4 and Figure 5a represent transformations types and a multiplying table for a 14 dots system
(7 × 2) with 6 stages of the evolutionary spiral. The system expanding is done in accordance with
the work’s formulations [9]. Similarly, Table 5 and Figure 5b represents a development spiral of the
expanded system of 24 dots with 7 stages (8 × 3).
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Figure 5. Two versions of “evolution spiral” in broken symmetry groups: (a) 7 steps in the structure of
7 × 2 = 14 dots; and (b) 8 steps in the structure of 8 × 3 = 24 dots.

The point of sets classification in mathematics, obtained by the broken symmetry method generally
stand as symmetry subgroups, rings and semi groups grouping. There was no contravention of the
associativity requirement detected in all the examined cases. Below are a few cases of BSG to describe
symmetry and broken symmetry.
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Table 5. Transformations types and a multiplying table for a 24 dots system.

g[0] = (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23); g[0] g[1] g[2] g[3] g[4] g[5] g[6] g[7];
g[1] = (3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 21 21 21); g[1] g[2] g[3] g[4] g[5] g[6] g[7] g[7];
g[2] = (6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 21 21 21 21 21 21); g[2] g[3] g[4] g[5] g[6] g[7] g[7] g[7];
g[3] = (9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 21 21 21 21 21 21 21 21 21); g[3] g[4] g[5] g[6] g[7] g[7] g[7] g[7];
g[4] = (12 13 14 15 16 17 18 19 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21); g[4] g[5] g[6] g[7] g[7] g[7] g[7] g[7];
g[5] = (15 16 17 18 19 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21); g[5] g[6] g[7] g[7] g[7] g[7] g[7] g[7];
g[6] = (18 19 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21); g[6] g[7] g[7] g[7] g[7] g[7] g[7] g[7];
g[7] = (21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21). g[7] g[7] g[7] g[7] g[7] g[7] g[7] g[7].

3. Applied Method of Symmetry Groups Visualization

Example 1. As shown in the study [5], within the crystal growth the internal intermolecular
interaction can convert the system with two local centers (LC) of symmetry into a system with one
global center (GC) of symmetry without the property modifications (Figure 6, g[1]) (classic substitution).
Suppose we have two subgroups: A (with a global symmetry center from Table 6 and B (with two LCs
and broken symmetry from Table 7 and Figure 7.

We will calculate A × B to assess a possibility of a joint existence of the structure with a global
and local symmetry centers within one structure. The calculation result is presented in Table 8.
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Figure 6. Global center (GC) regain g[1]’ = g[1].

Table 6. Subgroup A with broken symmetry with a global symmetry center.

g[0] = (0 1 2 3 4 5 6 7); g[0] g[1] E
g[1] = (1 0 7 6 5 4 3 2); g[1] g[0] GC

Table 7. Subgroup B with broken symmetry and two local centers.

g[0] = (0 1 2 3 4 5 6 7); g[0] g[1] g[2] g[3] E
g[1] = (4 5 6 7 0 1 2 3); g[1] g[0] g[2] g[3] LC
g[2] = (0 5 0 5 0 5 0 5); g[2] g[3] g[2] g[3] BS
g[3] = (4 1 4 1 4 1 4 1); g[3] g[2] g[2] g[3] BS

Table 8. BSG table of the group A × B binary transformations and a multiplying table.

g[0] = (0 1 2 3 4 5 6 7); g[0] g[1] g[2] g[3] g[4] g[5] g[6] g[7]; E
g[1] = (1 0 7 6 5 4 3 2); g[1] g[0] g[3] g[2] g[5] g[4] g[7] g[6]; GC
g[2] = (4 5 6 7 0 1 2 3); g[2] g[3] g[0] g[1] g[4] g[5] g[6] g[7]; LC
g[3] = (5 4 3 2 1 0 7 6); g[3] g[2] g[1] g[0] g[5] g[4] g[7] g[6]; TC
g[4] = (4 1 4 1 4 1 4 1); g[4] g[6] g[7] g[5] g[4] g[5] g[6] g[7]; NC
g[5] = (1 4 1 4 1 4 1 4); g[5] g[7] g[6] g[4] g[5] g[4] g[7] g[6]; NC
g[6] = (5 0 5 0 5 0 5 0); g[6] g[4] g[5] g[7] g[5] g[4] g[7] g[6]; NC
g[7] = (0 5 0 5 0 5 0 5); g[7] g[5] g[4] g[6] g[4] g[5] g[6] g[7]. NC
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Figure 7. Structural images of transformation in a full group.

Evidently, in a joint BSG, g[1] and g[2] visualize a global symmetry center (inversion) (1) and (2)
two LCs of inversion. g[3] describes a structure with 4 centers and t-transfer (TC).

Example 2. Let the two subsets of elements—dots numbered from 0 to 14 and from 15 to
25–interact in various ways. The possible three scenarios of its “behavior” are: (1) with the symmetry
center (equality) between the dots of internal convergence (”Rome points” 0 and 15); (2) with numbers
0 and 15; (2) without the local symmetry center of convergence dots and (3) with a directed bond
between them (Figure 8). First, lets refer to the case dynamics of the third scenario (Table 9).

Scenario 3. Directed bond.15→ 0.Ultimately Rome g[4].
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Table 9. Step by step system dynamics in Scenario 3.

g[0] = (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25); g[0] g[1] g[2] g[3] g[4];
g[1] = (0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 0 15 15 16 17 16 17 21 21 20 20); g[1] g[2] g[3] g[4] g[4];
g[2] = (0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 0 0 0 15 15 15 15 17 17 16 16); g[2] g[3] g[4] g[4] g[4];
g[3] = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 15 15 15); g[3] g[4] g[4] g[4] g[4];
g[4] = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0); g[4] g[4] g[4] g[4] g[4].

Figure 8 represents a visualization of the transformation scenario.
In microbiology in particular, the development model can characterize two branches of interaction

(“archaea” and “viruses” in g[1]) with a formation of a single “viruses’ life tree” (in g[4]) with possible
transformation stages in the genome space.

Evolution within the genome space is studied separately in reference [17].
The calculation process of the evolution within BSG convergent model is registered in BSG-7

table (Table 10). Figure 9b represents a reverse divergent process of the evolutionary development by
time axis (Figure 9a). Each of the few highlighted columns in the multiplying table characterizes a
separate “branch” of the process. The direction in each group is “interpreted” consequentially “from
bottom-up”.

Table 10. Transformation group BSG-7 multiplying table (Figure 9b).

g[0] = (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 192021 22 23);
g[1] = (0 0 0 1 1 2 3 3 4 2 6 6 11 5 10 9 77 8 81515 14 14);
g[2] = (0 0 0 0 0 0 1 1 1 0 3 3 6 2 6 2 33 4 499 10 10);
g[3] = (0 0 0 0 0 0 0 0 0 0 1 1 3 0 3 0 11 1 122 6 6);
g[4] = (0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 00 0 000 3 3);
g[5] = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 000 1 1);
g[6] = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 000 0 0).
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methods of broken symmetry visualization in biological systems 

Figure 9. The process of prokaryotes’ “life tree” formation within the genome space (a) and a digital
model of the process (b) based on BSG.

The presented example scientifically and objectively confirms the validity of the studied methods
of broken symmetry visualization in biological systems

Example 3. Currently, a new field of supramolecular bonds chemistry is being developed which
relates to the synthesis of three-dimensional branched polymers and oligomers called dendrimers
(1. Hoffman Allan S. The origins and evolution of “controlled” drug delivery systems // J. Contr.
Release. 2008. V. 132. pp. 153–163. 2. Nanoparticulate Drug Delivery Systems/Ed. by D. Thassu;
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M. Deleers; Y. Pathak.—Informa Healthcare, 2007, p. 352). This type of bond is of particular
interest since with each elementary growth event of a dendrimer the amount of branching in a
simple case increases exponentially. With the increase of molecular mass of such bonds the shape
and density of the molecules also changes and generally it occurs along with the modifications of
dendrimers’ physicochemical properties such as viscosity, solubility, density etc. Dendrimers can
create complexes with other molecules, moreover the stability of such complexes is controlled by the
external environmental state. This opens a potential for dendrimer use in medicine as a vehicle for
a directed delivery of genes or pharmaceutical substances (vectors). The initial stage of this process
is presented in Figure 10a. The formation of “branches” of dendrimers gives a task its mathematical
description with the consideration of the directions of the process, which is, from a mathematical point
of view, a directed graph; it is sort of a “labyrinth” (Figure 10b) or even a net if bonds between the
branches form.
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Figure 10. The initial stage of dendrimers synthesis (a) and a “labyrinth” with bonds (b).

Hypothetically, in a liquid crystal state, carbamide molecule chains which diverge from the
“center” could have created a dendrimer.

A simple fragment of such a chain, highlighted in Figure 3b, is structurally like such an element of
the labyrinth structure (Figure 10b), if an end atom (marked as dot 5) will not interact with the external
cycle, therefore the bond direction has changed.

For the highlighted element we will find a BSG with an initial (non-identical) transformation g[1].
Transformation visualization is presented in Figures 11 and 12 and corresponds with Table 11

group fragment data.
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A simple fragment of such a chain, highlighted in Figure 3b, is structurally like such an element 
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Figure 11. Tetragonal carbamide structure (a) and carbamide molecules “chain” (b).
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Table 11. BSG transformations within the 5 dots structure 5.

g[0] = (0 1 2 3 4 5); g[0] g[1] g[2] g[3] g[4]
g[1] = (1 2 4 1 3 4); g[1] g[2] g[3] g[4] g[1]
g[2] = (2 4 3 2 1 3); g[2] g[3] g[4] g[1] g[2]
g[3] = (4 3 1 4 2 1); g[3] g[4] g[1] g[2] g[3]
g[4] = (3 1 2 3 4 2); g[4] g[1] g[2] g[3] g[4]

Example 4. We shall investigate the case of a more complicated structure of two dendrimers with
11 and 15 branching dots, which at the initial stage have a bond only between the directed graph
tree “roots”.

As the result of the interaction, a phased rearrangement of the bonds occurs (Figure 13) and
this visual data fully matches the BSG structure presented in the table of the general group of 26
elements-dots (Table 12).
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Broken symmetry research becomes relevant not only for structural chemistry and modern
physics of elementary particles, which appear to be a quantum theory of nonabelian gauge fields
with spontaneously broken symmetry, but also for other real micro- and macro systems, including
biological as well as socioeconomical. Each of them has its own symmetry infractor “defect”, which
causes the creation of new properties, along with evolution process occurrence. Therefore, further
scientific confirmation is required.
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Table 12. BSG table (26 dots, 4th order) with the local symmetry center.

g[0] = (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25); g[0] g[1] g[2] g[3] g[4];
g[1] = (15 0 0 1 1 2 2 3 3 4 4 5 5 6 6 0 15 15 16 17 16 17 21 21 20 20); g[1] g[2] g[3] g[4] g[3];
g[2] = (0 15 15 0 0 0 0 1 1 1 1 2 2 2 2 15 0 0 15 15 15 15 17 17 16 16); g[2] g[3] g[4] g[3] g[4];
g[3] = (15 0 0 15 15 15 15 0 0 0 0 0 0 0 0 0 15 15 0 0 0 0 15 15 15 15); g[3] g[4] g[3] g[4] g[3];
g[4] = (0 15 15 0 0 0 0 15 15 15 15 15 15 15 15 15 0 0 15 15 15 15 0 0 0 0). g[4] g[3] g[4] g[3] g[4].

4. Conclusions

A computer experiment with tables of binary transformation sets with a “defect” discovered
new transformation sets with zero, with unity, without the reverse elements, with convergent and
with divergent properties of the structure orgraph. They were called BSG. A possibility of a transition
from the structure group with convergent orgraph properties to a group with divergent properties.
A developed approach clearly demonstrates a creation of evolutionary trees and growth spirals of the
orgraph structure; therefore, it emphasizes a general aspect of scientific studies.

The researched method of visualization allows easy presentation of the points and transitions of
broken symmetry in designated transformations.
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