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Abstract: Smarandache defined a neutrosophic set to handle problems involving incompleteness,
indeterminacy, and awareness of inconsistency knowledge, and have further developed it
neutrosophic soft expert sets. In this paper, this concept is further expanded to generalized
neutrosophic soft expert set (GNSES). We then define its basic operations of complement, union,
intersection, AND, OR, and study some related properties, with supporting proofs. Subsequently,
we define a GNSES-aggregation operator to construct an algorithm for a GNSES decision-making
method, which allows for a more efficient decision process. Finally, we apply the algorithm to a
decision-making problem, to illustrate the effectiveness and practicality of the proposed concept.
A comparative analysis with existing methods is done and the result affirms the flexibility and
precision of our proposed method.
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1. Introduction

For a proper description of objects in an uncertain and ambiguous environment, indeterminate
and incomplete information has to be properly handled. Intuitionistic fuzzy sets were introduced by
Atanassov [1], followed by Molodtsov on soft sets [2] and neutrosophy logic [3] and neutrosophic
sets [4] were introduced by Smarandache. The term neutro-sophy means knowledge of neutral
thought and this neutral represents the main distinction between fuzzy and intuitionistic fuzzy logic
and a set. At present, work on the soft set theory is progressing rapidly. Various operations and
applications of soft sets have been developed rapidly, including the possibility of fuzzy soft set [5],
soft multiset theory [6], multiparameterized soft set [7], soft intuitionistic fuzzy sets [8], Q-fuzzy soft
sets [9–11], multi Q-fuzzy sets [12–14], N-soft set [15], Hesitant N-soft set [16], and Fuzzy N-soft set [17],
thereby, opening avenues to genetic applications [18,19]. Later, Maji [20] have introduced a more
generalized concept—which is a combination of neutrosophic sets and soft sets—and have studied its
properties. Alhazaymeh and Hassan [21,22] have studied the concept of vague soft set, which were
later extended to vague soft expert set theory [23,24], bipolar fuzzy soft expert set [25], and multi
Q-fuzzy soft expert set [26]. Şahin et al. [27] introduced neutrosophic soft expert sets, while Al-Quran
and Hassan [28,29] extended it further to neutrosophic vague soft expert set. Neutrosophic set theory
has also been applied to multiple attribute decision-making [30–32]. Fuzzy modelling has long
been widely applied to physical problems, which include intuitionistic hesitant fuzzy [33], t-concept
lattices [34], fuzzy operators [35], medical image retrieval [36], and artificial bee colony [37] and multi
criteria decision making [38,39]. Neutrosophic sets have also gained traction with recent publications

Symmetry 2018, 10, 437; doi:10.3390/sym10100437 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-5580-7037
https://orcid.org/0000-0002-1659-7089
http://dx.doi.org/10.3390/sym10100437
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/10/437?type=check_update&version=5


Symmetry 2018, 10, 437 2 of 17

on neutrosophic triplets [40,41], Q-neutrosophic soft relations [42], Q-neutrosophic soft sets [43],
and Q-neutrosophic soft expert set [44].

This paper anticipates the neutrosophic set discussions to handle problems involving
incompleteness, indeterminacy, and awareness of inconsistency of knowledge, which is further
developed to neutrosophic soft expert sets. We intend to extend the discussion further, by proposing
the concept of generalized neutrosophic soft expert set (GNSES) and its basic operations of complement,
union, intersection, AND, and OR, along with a definition of GNSES-aggregation operator, to construct
an algorithm of a GNSES decision method. Finally we provide an application of the constructed
algorithm to solve a decision-making problem.

2. Preliminaries

In this section, we review the basic definitions of a neutrosophic set, neutrosophic soft set, soft
expert sets, neutrosophic soft expert sets, and neutrosophic parametrized (NP)-aggregation operator,
which are required as preliminaries.

Definition 1. [4] Let U be a universe of discourse, with a generic element in U denoted by u, then a neutrosophic
(NS) set A is an object having the form

A = { < u : TA(u), IA(u) , FA(u) >, u ∈ U}

where the functions T, I, F: U→ ]−0, 1+[ define, respectively, the degree of membership (or Truth), the degree
of indeterminacy, and the degree of non-membership (or Falsehood) of the element u ∈ U to the set A with
the condition.

−0 ≤ TA(u) + IA(u)+ FA(u) ≤ 3+

Definition 2. [20] Let U be an initial universe set and E be a set of parameters. Consider A ⊆ E. Let NS(U)

denote the set of all neutrosophic sets of U. The collection (F, A) is termed to be the neutrosophic soft set over U,
where F is a mapping given by F : A→ NS(U) .

Definition 3. [23] U is an initial universe, E is a set of parameters, X is a set of experts (agents), and
O = {agree = 1, disagree = 0} a set of opinions. Let Z = E× X ×O and A ⊆ Z. A pair (F, A) is called a
soft expert set over U, where F is a mapping given by F : A→ P(U) where P(U) denoted the power set of U.

Definition 4. [27] A pair (F, A) is called a neutrosophic soft expert set over U, where F is a mapping given by
F : A→ P(U) where P(U) denotes the power neutrosophic set of U.

Definition 5. [27] The complement of a neutrosophic soft expert set (F, A) is denoted by (F, A)c, and is
defined as (F, A)c = (Fc,¬A) where Fc = ¬A→ P(U) is a mapping given by Fc(x) = neutrosophic soft
expert complement with TFc(x) = FF(x), IFc(x) = IF(x), FFc(x) = TF(x).

Definition 6. [27] The agree-neutrosophic soft expert set (F, A)1 over U is a neutrosophic soft expert subset of
(F, A) defined as

(F, A)1 = {F1(m) : m ∈ E× X× {1}}.

Definition 7. [27] The disagree-neutrosophic soft expert set (F, A)0 over U is a neutrosophic soft expert subset
of (F, A), defined as

(F, A)0 = {F0(m) : m ∈ E× X× {0}}.

Definition 8. [27] Let (H, A) and (G, B) be two neutrosophic soft expert sets (NSESs) over the common
universe U. Then the union of (H, A) and (G, B) is denoted by “(H, A)

∼
∪ (G, B)”, and is defined by
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(H, A)
∼
∪ (G, B) = (K, C), where C = A ∪ B and the truth-membership, indeterminacy-membership,

and falsity-membership of (K, C) are as follows:

TK(e)(m) =


TH(e)(m) , i f e ∈ A− B
TG(e)(m) , i f e ∈ B− A

max
(

TH(e)(m), TG(e)(m)
)

, i f e ∈ A ∩ B

IK(e)(m) =


IH(e)(m) , i f e ∈ A− B
IG(e)(m) , i f e ∈ B− A

IH(e)(m)+ IG(e)(m)

2 , i f e ∈ A ∩ B

FK(e)(m) =


FH(e)(m) , i f e ∈ A− B
FG(e)(m) , i f e ∈ B− A

min
(

FH(e)(m), FG(e)(m)
)

, i f e ∈ A ∩ B

Definition 9. [27] Let (H, A) and (G, B) be two NSESs over the common universe U. Then the intersection
of (H, A) and (G, B) is denoted by “(H, A)

∼
∩ (G, B)” and is defined by (H, A)

∼
∩ (G, B) = (K, C), where

C = A ∩ B and the truth-membership, indeterminacy-membership, and falsity-membership of (K, C) are
as follows:

TK(e)(m) = min
(

TH(e)(m), TG(e)(m)
)

IK(e)(m) =
IH(e)(m)+ IG(e)(m)

2

FK(e)(m) = max
(

FH(e)(m), FG(e)(m)
)

, i f e ∈ A ∩ B.

Definition 10. [45] Let ΨK ∈ NP-soft set. Then an NP-aggregation operator of ΨK, denoted by Ψagg
K , is

defined by
Ψagg

K =
{(
〈u, µ

agg
K , ϑ

agg
K , ω

agg
K 〉

)
: u ∈ U

}
, (1)

which is a neutrosophic set over U,

µ
agg
K (u) = 1

|U| ∑ e ∈ E
u ∈ U

µK(u).λ fK(x)(u), µ
agg
K : U → [0, 1] (2)

ϑ
agg
K (u) = 1

|U| ∑ e ∈ E
u ∈ U

ϑK(u).λ fK(x)(u), ϑ
agg
K : U → [0, 1] (3)

ω
agg
K = 1

|U| ∑ e ∈ E
u ∈ U

ωK(u). λ fK(x)(u) , ω
agg
K : U → [0, 1] (4)

and where,

λ fK(x)(u) =

{
1, x ∈ fK(x)(u),

0, otherwise,

such that |U| is the cardinality of U.

3. Generalized Neutrosophic Soft Expert Set

In this section, we introduce the concept of generalized neutrosophic soft expert set (GNSES) and
define some of its properties. Throughout this paper, U is an initial universe, E is a set of parameters,
X is a set of experts (agents), and O = {agree = 1, disagree = 0} a set of opinions. Let Z = E× X×O
and A ⊆ Z and u is a fuzzy set of A; that is, u : A→ I = [0, 1] .
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Definition 11. A pair (Fu, A) is called a generalized neutrosophic soft expert set (GNSES) over U, where Fu is
a mapping given by

Fu : A→ N (U)× I,

with N (U) being the set of all neutrosophic soft expert subsets of U. For any parameter e ∈ A, F(e) is referred
as the neutrosophic value set of parameter e, i.e.,

F(e) =
{
〈u/TF(e)(u), IF(e)(u), FF(e)(u)〉

}
,

where T, I, F : U → ]−0, 1+[ are the membership function of truth, indeterminacy, and falsity, respectively,
of the element u ∈ U. For any u ∈ U and e ∈ A

−0 ≤ TF(e)(u) + IF(e)(u) + FF(e)(u) ≤ 3+

In fact, Fu is a parameterized family of neutrosophic soft expert sets on U, which has the degree of
possibility of the approximate value set which is prepresented by u(e) for each parameter e, which can
be written as follows:

Fu(e) =
{(

u1
F(e)(u1)

, u2
F(e)(u2)

, u3
F(e)(u3)

, · · · , un
F(e)(un)

)
, u(e)

}
.

Example 1. Suppose that U = {u1, u2, u3} is a set of computers and E = {e1, e2, e3} is a set of decision
parameters. Let X = {p, q, r} be set of experts. Suppose that

Fu(e1, p, 1) =
{(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2

)
, 0.3

}
Fu(e1, q, 1) =

{(
u1

0.3,0.2,0.5 , u2
0.5,0.6,0.2 , u3

0.8,0.1,0.4

)
, 0.4

}
Fu(e1, r, 1) =

{(
u1

0.8,0.4,0.3 , u2
0.7,0.3,0.5 , u3

0.2,0.6,0.5 ,
)

, 0.8
}

Fu(e2, p, 1) =
{(

u1
0.7,0.3,0.6 , u2

0.5,0.1,0.4 , u3
0.8,0.6,0.3

)
, 0.2

}
Fu(e2, q, 1) =

{(
u1

0.6,0.7,0.1 , u2
0.8,0.4,0.7 , u3

0.5,0.1,0.7

)
, 0.6

}
Fu(e2, r, 1) =

{(
u1

0.5,0.1,0.8 , u2
0.9,0.3,0.6 , u3

0.4,0.1,0.7

)
, 0.5

}
Fu(e3, p, 1) =

{(
u1

0.6,0.3,0.2 , u2
0.5,0.6,0.7 , u3

0.8,0.1,0.4

)
, 0.7

}
Fu(e3, q, 1) =

{(
u1

0.7,0.3,0.4 , u2
0.6,0.2,0.5 , u3

0.7,0.4,0.6

)
, 0.4

}
Fu(e3, r, 1) =

{(
u1

0.8,0.4,0.3 , u2
0.5,0.3,0.6 , u3

0.1,0.4,0.2

)
, 0.5

}
Fu(e1, p, 0) =

{(
u1

0.4,0.1,0.2 , u2
0.7,0.3,0.5 , u3

0.4,0.1,0.6

)
, 0.1

}
Fu(e1, q, 0) =

{(
u1

0.7,0.3,0.5 , u2
0.6,0.2,0.4 , u3

0.4,0.5,0.1

)
, 0.3

}
Fu(e1, r, 0) =

{(
u1

0.6,0.4,0.3 , u2
0.7,0.2,0.6 , u3

0.4,0.1,0.3

)
, 0.2

}
Fu(e2, p, 0) =

{(
u1

0.5,0.1,0.7 , u2
0.4,0.5,0.1 , u3

0.7,0.1,0.4

)
, 0.2

}
Fu(e2, q, 0) =

{(
u1

0.4,0.3,0.6 , u2
0.7,0.2,0.5 , u3

0.8,0.1,0.4

)
, 0.6

}
Fu(e2, r, 0) =

{(
u1

0.3,0.2,0.6 , u2
0.4,0.3,0.5 , u3

0.5,0.1,0.4

)
, 0.4

}
Fu(e3, p, 0) =

{(
u1

0.4,0.3,0.6 , u2
0.5,0.1,0.6 , u3

0.6,0.2,0.5

)
, 0.5

}
Fu(e3, q, 0) =

{(
u1

0.6,0.2,0.7 , u2
0.8,0.1,0.4 , u3

0.5,0.3,0.4

)
, 0.7

}
Fu(e3, r, 0) =

{(
u1

0.5,0.4,0.6 , u2
0.6,0.4,0.3 , u3

0.7,0.2,0.1

)
, 0.2

}
The generalized neutrosophic soft expert set (GNSES) is a parameterized family {F(ei), i = 1, 2, . . .} of

all neutrosophic sets of U and describes a collection of approximation of an object.

Definition 12. Let (Fu, A) and (Gη , B) be two generalized neutrosophic soft expert sets (GNSESs) over U.
Then (Fu, A) is said to be a generalized neutrosophic soft expert subset of (Gη , B) if
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i. B ⊆ A, and
ii. Gη(ε) is a generalized neutrosophic soft expert subset Fu(ε), for all ε ∈ B,

Example 2. Consider Example 1. Suppose that A and B are as follows.

A = {(e1, p, 1), (e2, p, 1), (e2, q, 0), (e3, r, 1)}B = {(e1, p, 1), (e2, p, 1), (e3, r, 1)}.

Since B is a neutrosophic soft expert subset of A, clearly B ⊂ A. Let (Gη , B) and (Fu, A) be defined
as follows:

(Fu, A) =
{ [

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2

)
, 0.3

][
(e2, p, 1),

(
u1

0.7,0.3,0.6 , u2
0.5,0.1,0.4 , u3

0.8,0.6,0.3

)
, 0.2

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4

)
, 0.6

]
,[

(e3, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.5,0.3,0.6 , u3
0.1,0.4,0.2

)
, 0.5

]}
.

(Gη , B) =
{[

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2

)
, 0.3

]
,[

(e2, p, 1),
(

u1
0.7,0.3,0.6 , u2

0.5,0.1,0.4 , u3
0.8,0.6,0.3

)
, 0.2

]
,[

(e3, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.5,0.3,0.6 , u3
0.1,0.4,0.2

)
, 0.5

]}
.

Therefore (Gη , B) ⊆ (Fu, A).

Definition 13. Two GNSESs (Fu, A) and (Gη , B) over U are said to be equal if (Fu, A) is a GNSES subset of
(Gη , B) and (Gη , B) is a GNSES subset of (Fu, A).

Definition 14. An agree-GNSESs (Fu, A)1 over U is a GNSES subset of (Fu, A) defined as follows.

(Fu, A)1 = {F1(∝) :∝∈ E× X× {1}}.

Example 3. Consider Example 1. The agree-GNSES (Fu, Z)1 over U is

(Fu, Z)1 =
{[

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2 ,

)
, 0.3

]
,[

(e1, q, 1),
(

u1
0.3,0.2,0.5 , u2

0.5,0.6,0.2 , u3
0.8,0.1,0.4 ,

)
, 0.4

]
,[

(e1, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.7,0.3,0.5 , u3
0.2,0.6,0.5 ,

)
, 0.8

]
,[

(e2, p, 1),
(

u1
0.7,0.3,0.6 , u2

0.5,0.1,0.4 , u3
0.8,0.6,0.3 ,

)
, 0.2

]
,[

(e2, q, 1),
(

u1
0.6,0.7,0.1 , u2

0.8,0.4,0.7 , u3
0.5,0.1,0.7 ,

)
, 0.6

]
,[

(e2, r, 1),
(

u1
0.5,0.1,0.8 , u2

0.9,0.3,0.6 , u3
0.4,0.1,0.7 ,

)
, 0.5

]
,[

(e3, p, 1),
(

u1
0.6,0.3,0.2 , u2

0.5,0.6,0.7 , u3
0.8,0.1,0.4 ,

)
, 0.7

]
,[

(e3, q, 1),
(

u1
0.7,0.3,0.4 , u2

0.6,0.2,0.5 , u3
0.7,0.4,0.6 ,

)
, 0.4

]
,[

(e3, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.5,0.3,0.6 , u3
0.1,0.4,0.2 ,

)
, 0.5

]}
.

Definition 15. A disagree-GNSESs (Fu, A)0 over U is a GNSES subset of (Fu, A) is defined as follows:

(Fu, A)0 = {F0(∝) :∝∈ E× X× {0}}.
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Example 4. Consider Example 1. The disagree-GNSES (Fu, Z)0 over U is

(Fu, Z)0 =
{[

(e1, p, 0),
(

u1
0.4,0.1,0.2 , u2

0.7,0.3,0.5 , u3
0.4,0.1,0.6 ,

)
, 0.1

]
,[

(e1, q, 0),
(

u1
0.7,0.3,0.5 , u2

0.6,0.2,0.4 , u3
0.4,0.5,0.1 ,

)
, 0.3

]
,[

(e1, r, 0),
(

u1
0.6,0.4,0.3 , u2

0.7,0.2,0.6 , u3
0.4,0.1,0.3 ,

)
, 0.2

]
,[

(e2, p, 0),
(

u1
0.5,0.1,0.7 , u2

0.4,0.5,0.1 , u3
0.7,0.1,0.4 ,

)
, 0.2

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4 ,

)
, 0.6

]
,[

(e2, r, 0),
(

u1
0.3,0.2,0.6 , u2

0.4,0.3,0.5 , u3
0.5,0.1,0.4 ,

)
, 0.4

]
,[

(e3, p, 0),
(

u1
0.4,0.3,0.6 , u2

0.5,0.1,0.6 , u3
0.6,0.2,0.5 ,

)
, 0.5

]
,[

(e3, q, 0),
(

u1
0.6,0.2,0.7 , u2

0.8,0.1,0.4 , u3
0.5,0.3,0.4 ,

)
, 0.7

]
,[

(e3, r, 0),
(

u1
0.5,0.4,0.6 , u2

0.6,0.4,0.3 , u3
0.7,0.2,0.1 ,

)
, 0.2

]}
.

Definition 16. The complement of a GNSES (Fu, A), denoted by (Fu, A)c, is defined as (Fu, A)c =

(Fu(c),¬A) where Fu(c) :¬A→ N (U)× I is a mapping given by

Fu(c)(∝) =


T

F(∝)(c)
= FF(∝),

I
F(∝)(c)

= 1− IF(∝),

F
F(∝)(c)

= TF(∝),

uc(∝) = 1− u(∝)

 for each ∝∈ E.

Example 5. Consider Example 1. By using the definition of GNSES complement, the complement of Fu denoted
by Fu(c), is as follows:

(Fu(c), Z) =
{[

(¬e1, p, 1),
(

u1
0.2,0.7,0.4 , u2

0.8,0.9,0.6 , u3
0.2,0.3,0.5 ,

)
, 0.7

]
,[

(¬e1, q, 1),
(

u1
0.5,0.8,0.3 , u2

0.2,0.4,0.5 , u3
0.4,0.9,0.8 ,

)
, 0.6

]
,[

(¬e1, r, 1),
(

u1
0.3,0.6,0.8 , u2

0.5,0.7,0.7 , u3
0.5,0.4,0.2 ,

)
, 0.2

]
,[

(¬e2, p, 1),
(

u1
0.6,0.7,0.7 , u2

0.4,0.9,0.5 , u3
0.3,0.4,0.8 ,

)
, 0.8

]
,[

(¬e2, q, 1),
(

u1
0.1,0.3,0.6 , u2

0.7,0.6,0.8 , u3
0.7,0.9,0.5 ,

)
, 0.4

]
,[

(¬e2, r, 1),
(

u1
0.8,0.9,0.5 , u2

0.6,0.7,0.9 , u3
0.7,0.9,0.4 ,

)
, 0.5

]
,[

(¬e3, p, 1),
(

u1
0.2,0.7,0.6 , u2

0.7,0.4,0.5 , u3
0.4,0.9,0.8 ,

)
, 0.3

]
,[

(¬e3, q, 1),
(

u1
0.4,0.7,0.7 , u2

0.5,0.8,0.6 , u3
0.6,0.6,0.7 ,

)
, 0.6

]
,[

(¬e3, r, 1),
(

u1
0.3,0.6,0.8 , u2

0.6,0.7,0.5 , u3
0.2,0.6,0.1 ,

)
, 0.5

]
,[

(¬e1, p, 0),
(

u1
0.2,0.9,0.4 , u2

0.5,0.7,0.7 , u3
0.6,0.9,0.4 ,

)
, 0.9

]
,[

(¬e1, q, 0),
(

u1
0.5,0.7,0.7 , u2

0.4,0.8,0.6 , u3
0.1,0.5,0.4 ,

)
, 0.7

]
,[

(¬e1, r, 0),
(

u1
0.3,0.6,0.6 , u2

0.6,0.8,0.7 , u3
0.3,0.9,0.4 ,

)
, 0.8

]
,[

(¬e2, p, 0),
(

u1
0.7,0.9,0.5 , u2

0.1,0.5,0.4 , u3
0.4,0.9,0.7 ,

)
, 0.8

]
,[

(¬e2, q, 0),
(

u1
0.6,0.7,0.4 , u2

0.5,0.8,0.7 , u3
0.4,0.9,0.8 ,

)
, 0.4

]
,[

(¬e2, r, 0),
(

u1
0.6,0.8,0.3 , u2

0.5,0.7,0.4 , u3
0.4,0.9,0.5 ,

)
, 0.6

]
,[

(¬e3, p, 0),
(

u1
0.6,0.7,0.4 , u2

0.6,0.9,0.5 , u3
0.5,0.8,0.6 ,

)
, 0.5

]
,[

(¬e3, q, 0),
(

u1
0.7,0.8,0.6 , u2

0.4,0.9,0.8 , u3
0.4,0.7,0.5 ,

)
, 0.3

]
,[

(¬e3, r, 0),
(

u1
0.6,0.6,0.5 , u2

0.3,0.6,0.6 , u3
0.1,0.8,0.7 ,

)
, 0.8

]}
.
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Proposition 1. If (Fu, A) is a generalized neutrosophic soft expert set over U, then

1. ((Fu, A)c)
c
= (Fu, A)

2. ((Fu, A)1)
c = (Fu, A)0

3. ((Fu, A)0)
c = (Fu, A)1

Proof. (1) From Definition 16, we have (Fu, A)c = (Fu(c),¬A),
where Fu(c)(∝) = T

F(∝)(c)
= FF(∝), I

F(∝)(c)
= 1− I F(∝), F

F(∝)(c)
= TF(∝) and uc(∝) = 1− u(∝) for

each ∝∈ E.
Now ((Fu, A)c)

c
= ((Fu(c))

c
, A) where

(Fu(c))
c
(∝) =

[
T

F(∝)(c)
= FF(∝), I

F(∝)(c)
= 1− I F(∝),

F
F(∝)(c)

= TF(∝), uc(∝) = 1− u(∝)

]c

=

[
TF(∝) = F

F(∝)(c)
, I F(∝) = 1− I

F(∝)(c)
,

FF(∝) = T
F(∝)(c)

, u(∝) = 1− uc(∝)

]
= 1−

(
1− I F(∝)

)
= 1−

(
1− u(∝)

)
= I F(∝)

= u(∝).

Thus ((Fu, A)c)
c
= ((Fu(c))

c
, A) = (Fu, A), for all ∝∈ E.

The proofs of assertions (2) and (3) are obvious.

Definition 17. The union of two GNSESs (Fu, A) and (Gη , B) over U, denoted by (Fu, A)
∼
∪ (Gη , B),

is the GNSESs
(

HΩ, C
)
, where C = A ∪ B and the truth-membership, indeterminacy-membership,

and falsity-membership of
(

HΩ, C
)

are as follows:

THΩ(e) =


TFu(e)(m) i f e ∈ A− B

TGη(e) (m) i f e ∈ B− A

max
(

TFu(e)(m), TGη(e)(m)
)

i f e ∈ A ∩ B

IHΩ(e) =


IFu(e)(m) i f e ∈ A− B
IGη(e) (m) i f e ∈ B− A

min
(

IFu(e)(m),Gη(e) (m)
)

i f e ∈ A ∩ B

FHΩ(e) =


FFu(e)(m) i f e ∈ A− B
FGη(e) (m) i f e ∈ B− A

min
(

FFu(e)(m), FGη(e)(m)
)

i f e ∈ A ∩ B

where Ω(m) = max
(

u(e)(m), η(e)(m)
)

.

Example 6. Suppose that (Fu, A) and (Gη , B) are two GNSESs over U, such that

(Fu, A) =
{[

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2

)
, 0.3

][
(e2, q, 1),

(
u1

0.7,0.3,0.6 , u2
0.5,0.1,0.4 , u3

0.7,0.6,0.3

)
, 0.2

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4

)
, 0.6

]
,[

(e3, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.5,0.3,0.6 , u3
0.1,0.4,0.2

)
, 0.5

]}
.

(Gη , B) =
{[

(e1, p, 1),
(

u1
0.6,0.5,0.1 , u2

0.8,0.2,0.3 , u3
0.9,0.2,0.3

)
, 0.1

]
,[

(e2, q, 1),
(

u1
0.6,0.7,0.1 , u2

0.8,0.4,0.7 , u3
0.5,0.1,0.7

)
, 0.4

]
,[

(e3, r, 1),
(

u1
0.4,0.1,0.2 , u2

0.5,0.4,0.2 , u3
0.3,0.6,0.4

)
, 0.8

]}
.
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Then (Fu, A)
∼
∪ (Gη , B) =

(
HΩ, C

)
where

(
HΩ, C

)
=

{[
(e1, p, 1),

(
u1

0.6,0.3,0.1 , u2
0.8,0.1,0.3 , u3

0.9,0.2,0.2

)
, 0.3

]
,[

(e2, q, 1),
(

u1
0.6,0.3,0.1 , u2

0.8,0.2,0.5 , u3
0.7,0.1,0.4

)
, 0.4

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4

)
, 0.6

]
,[

(e3, r, 1),
(

u1
0.8,0.1,0.2 , u2

0.5,0.3,0.2 , u3
0.3,0.4,0.2

)
, 0.8

]}
.

Proposition 2. If (Fu, A), (Gη , B) and
(

HΩ, C
)

are three GNSESs over U, then

1.
(
(Fu, A)

∼
∪ (Gη , B)

) ∼
∪
(

HΩ, C
)
= (Fu, A)

∼
∪
(
(Gη , B)

∼
∪
(

HΩ, C
))

.

2. (Fu, A)
∼
∪ (Fu, A) ⊆ (Fu, A).

Proof. (1) We want to prove that(
(Fu, A)

∼
∪ (Gη , B)

) ∼
∪
(

HΩ, C
)
= (Fu, A)

∼
∪
(
(Gη , B)

∼
∪
(

HΩ, C
))

By using Definition 17, we consider the case when e ∈ A∩ B, as other cases are trivial. We will have

(Fu, A)
∼
∪ (Gη , B) =




u

/ max

(
TFu(e)(m),
TGη(e)(m)

)
,

min

(
IFu(e)(m),
IGη(e)(m)

)
,

min

(
FFu(e)(m),
FGη(e)(m)

)


,

max

(
u(e)(m),
η(e)(m)

)
, u ∈ U

.

Also consider the case when e ∈ H, as the other cases are trivial. We will have

(
(Fu, A)

∼
∪ (Gη , B)

) ∼
∪
(

HΩ, C
)

=


u

/ max
(

TFu(e)(m), TGη(e)(m)
)

,

min
(

IFu(e)(m), IGη(e)(m)
)

,

min
(

FFu(e)(m), FGη(e)(m)
)
 ,

(
u/THΩ(e)(m), IHΩ(e)(m), FHΩ(e)(m)

)
,

max
(

u(e)(m), η(e)(m), Ω(m)
)

, u ∈ U



=



(
u/TFΩ(e)(m), IFΩ(e)(m), FFΩ(e)(m)

)
,u

/ max
(

TGu(e)(m), THη(e)(m)
)

,

min
(

IGu(e)(m), IHη(e)(m)
)

,

min
(

FGu(e)(m), FHη(e)(m)
)
 max

(
u(e)(m), η(e)(m), Ω(m)

)
, u ∈ U

}

= (Fu, A)
∼
∪
(
(Gη , B)

∼
∪
(

HΩ, C
))

.

(2) The proof is straightforward.
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Definition 18. Let (Fu, A) and (Gη , B) be two GNSESs over a common universe U. Then the intersection of
(Fu, A) and (Gη , B) is denoted by (Fu, A)

∼
∩ (Gη , B) =

(
Kδ, C

)
, where C = A ∩ B and the truth-membership,

indeterminacy-membership, and falsity-membership of
(
Kδ, C

)
are as follows:

TKδ(e) =


TFu(e)(m) i f e ∈ A− B

TGη(e) (m) i f e ∈ B− A

min
(

TFu(e)(m), TGη(e)(m)
)

i f e ∈ A ∩ B

IKδ(e) =


IFu(e)(m) i f e ∈ A− B
IGη(e) (m) i f e ∈ B− A

min
(

IFu(e)(m), IGη(e)(m)
)

i f e ∈ A ∩ B

FKδ(e) =


FFu(e)(m) i f e ∈ A− B
FGη(e) (m) i f e ∈ B− A

max
(

FFu(e)(m), FGη(e)(m)
)

i f e ∈ A ∩ B

where δ(m) = min
(

u(e)(m), η(e)(m)
)

.

Example 7. Suppose that (Fu, A) and (Gη , B) are two GNSESs over U, such that

(Fu, A) =
{[

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2 ,

)
, 0.3

]
,[

(e2, q, 1),
(

u1
0.7,0.3,0.6 , u2

0.5,0.1,0.4 , u3
0.7,0.6,0.3 ,

)
, 0.2

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4 ,

)
, 0.6

]}
.

(Gη , B) =
{[

(e1, p, 1),
(

u1
0.6,0.5,0.1 , u2

0.8,0.2,0.3 , u3
0.9,0.2,0.3 ,

)
, 0.1

]
,[

(e3, r, 1),
(

u1
0.4,0.1,0.2 , u2

0.5,0.4,0.2 , u3
0.3,0.6,0.4 ,

)
, 0.8

]}
.

Then (Fu, A)
∼
∩ (Gη , B) =

(
Kδ, C

)
where

(
Kδ, C

)
=

{[
(e1, p, 1),

(
u1

0.4, 0.3, 0.2
,

u2

0.6, 0.1, 0.8
,

u3

0.5, 0.2, 0.3
,
)

, 0.1
]}

.

Proposition 3. If (Fu, A), (Gη , B) and
(

HΩ, C
)

are three GNSESs over U, then

1.
(
(Fu, A)

∼
∩ (Gη , B)

) ∼
∩
(
Kδ, C

)
= (Fu, A)

∼
∩
(
(Gη , B)

∼
∩
(
Kδ, C

))
2. (Fu, A)

∼
∩ (Fu, A) ⊆ (Fu, A).

Proof. (1) We want to prove that(
(Fu, A)

∼
∩ (Gη , B)

) ∼
∩
(

Kδ, C
)
= (Fu, A)

∼
∩
(
(Gη , B)

∼
∩
(

Kδ, C
))

By using Definition 18, consider the case when e ∈ A ∩ B, since other cases are trivial. We have

(Fu, A)
∼
∩ (Gη , B) =


u

/ min
(

TFu(e)(m), TGη(e)(m)
)

,

min
(

IFu(e)(m), IGη(e)(m)
)

,

max
(

FFu(e)(m), FGη(e)(m)
)
 , min

(
u(e)(m), η(e)(m)

)
, u ∈ U

}
.



Symmetry 2018, 10, 437 10 of 17

Also consider the case when e ∈ K, as the other cases are trivial. Then we have

(
(Fu, A)

∼
∩ (Gη , B)

) ∼
∩
(
Kδ, C

)
=


u

/ min
(

TFu(e)(m), TGη(e)(m)
)

,

min
(

IFu(e)(m), IGη(e)(m)
)

,

max
(

FFu(e)(m), FGη(e)(m)
)
 ,

(
u/TKδ(e)(m), IKδ(e)(m), FKδ(e)(m)

)
,

min
(

u(e)(m), η(e)(m), δ(m)
)

, u ∈ U

.

=



(
u/TFΩ(e)(m), IFΩ(e)(m), FFΩ(e)(m)

)
,u

/ min
(

TGu(e)(m), TKδ(e)(m)
)

,

min
(

IGu(e)(m), IKδ(e)(m)
)

,

max
(

FGu(e)(m), FKδ(e)(m)
)
 min

(
u(e)(m), η(e)(m), δ(m)

)
, u ∈ U

}

= (Fu, A)
∼
∩
(
(Gη , B)

∼
∩
(
Kδ, C

))
.

(2) The proof is straightforward.

Proposition 4. If (Fu, A), (Gη , B) and
(
Kδ, C

)
are three GNSESs over U. Then

1.
(
(Fu, A)

∼
∪ (Gη , B)

) ∼
∩
(
Kδ, C

)
=
(
(Fu, A)

∼
∩
(
Kδ, C

)) ∼
∪
(
(Gη , B)

∼
∩
(
Kδ, C

))
.

2.
(
(Fu, A)

∼
∩ (Gη , B)

) ∼
∪
(
Kδ, C

)
=
(
(Fu, A)

∼
∪
(
Kδ, C

)) ∼
∩
(
(Gη , B)

∼
∪
(
Kδ, C

))
.

Proof. The proofs can be easily obtained from Definitions 17 and 18.

Definition 19. If (Fu, A) and (Gη , B) are two GNSESs over U, then “(Fu, A) AND (Gη , B)” denoted by
(Fu, A) ∧ (Gη , B), is defined by

(Fu, A) ∧ (Gη , B) =
(

HΩ, A× B
)

such that, HΩ(α, β) = Fu(α) ∩ Gη(β) and the truth-membership, indeterminacy-membership,
and falsity-membership of

(
HΩ, A× B

)
are as follows.

THΩ(α,β)(m) = min
(

TFu(α)(m), TGη(β)(m)
)

,

IHΩ(α,β)(m) = min
(

IFu(α)(m), IGη(β)(m)
)

,

FHΩ(α,β)(m) = max
(

FFu(α)(m), FGη(β)(m)
)

and Ω(m) = min
(

u(e)(m), η(e)(m)
)

, ∀α ∈ A, ∀β ∈ B.

Example 8. Suppose that (Fu, A) and (Gη , B) are two GNSESs over U, such that

(Fu, A) =
{[

(e1, p, 1),
(

u1
0.2,0.3,0.5 , u2

0.4,0.1,0.2 , u3
0.6,0.3,0.7 ,

)
, 0.4

]
,[

(e3, r, 0),
(

u1
0.5,0.2,0.1 , u2

0.6,0.3,0.7 , u3
0.2,0.1,0.8 ,

)
, 0.3

]}
(Gη , B) =

{[
(e1, p, 1),

(
u1

0.3,0.2,0.6 , u2
0.6,0.3,0.2 , u3

0.8,0.1,0.2 ,
)

, 0.5
]

,[
(e2, q, 0),

(
u1

0.1,0.3,0.5 , u2
0.7,0.1,0.6 , u3

0.4,0.3,0.6 ,
)

, 0.6
]}

.
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Then (Fu, A) ∧ (Gη , B) =
(

HΩ, A× B
)

where

(
HΩ, A× B

)
=

{[
(e1, p, 1), (e1, p, 1)

(
u1

0.2,0.2,0.6 , u2
0.4,0.1,0.2 , u3

0.6,0.1,0.7 ,
)

, 0.4
]

,[
(e1, p, 1), (e2, q, 0),

(
u1

0.1,0.3,0.5 , u2
0.4,0.1,0.6 , u3

0.4,0.3,0.7 ,
)

, 0.4
]
,[

(e3, r, 0), (e1, p, 1),
(

u1
0.3,0.2,0.6 , u2

0.6,0.3,0.7 , u3
0.2,0.1,0.8 ,

)
, 0.3

]
,[

(e3, r, 0), (e2, q, 0),
(

u1
0.1,0.2,0.5 , u2

0.6,0.1,0.7 , u3
0.2,0.1,0.8 ,

)
, 0.3

]}
.

Definition 20. If (Fu, A) and (Gη , B) are two GNSESs over U, then “(Fu, A) OR (Gη , B)” denoted by
(Fu, A) ∨ (Gη , B), is defined by

(Fu, A) ∨ (Gη , B) =
(

Kδ, A× B
)

such that Kδ(α, β) = Fu(α) ∪ Gη(β) and the truth-membership, indeterminacy-membership,
and falsity-membership of

(
Kδ, A× B

)
are as follows.

TKδ(α,β)(m) = max
(

TFu(α)(m), TGη(β)(m)
)

,

IKδ(α,β)(m) = min
(

IFu(α)(m), IGη(β)(m)
)

,

FKδ(α,β)(m) = min
(

FFu(α)(m), FGη(β)(m)
)

and δ(m) = max
(

u(e)(m), η(e)(m)
)

, ∀α ∈ A, ∀β ∈ B.

Example 9. Suppose that (Fu, A) and (Gη , B) are two GNSESs over U, such that

(Fu, A) =
{[

(e1, p, 1),
(

u1
0.2,0.3,0.5 , u2

0.4,0.1,0.2 , u3
0.6,0.3,0.7 ,

)
, 0.4

]
,[

(e3, r, 0),
(

u1
0.5,0.2,0.1 , u2

0.6,0.3,0.7 , u3
0.2,0.1,0.8 ,

)
, 0.3

]}
(Gη , B) =

{[
(e1, p, 1),

(
u1

0.3,0.2,0.6 , u2
0.6,0.3,0.2 , u3

0.8,0.1,0.2 ,
)

, 0.5
]

,[
(e2, q, 0),

(
u1

0.1,0.3,0.5 , u2
0.7,0.1,0.6 , u3

0.4,0.3,0.6 ,
)

, 0.6
]}

.

Then (Fu, A) ∨ (Gη , B) =
(
Kδ, A× B

)
where

(
Kδ, A× B

)
=

{[
(e1, p, 1), (e1, p, 1)

(
u1

0.3,0.2,0.5 , u2
0.6,0.1,0.2 , u3

0.8,0.1,0.2 ,
)

, 0.5
]

,[
(e1, p, 1), (e2, q, 0),

(
u1

0.2,0.3,0.5 , u2
0.7,0.1,0.2 , u3

0.6,0.3,0.6 ,
)

, 0.6
]
,[

(e3, r, 0), (e1, p, 1),
(

u1
0.5,0.2,0.1 , u2

0.7,0.3,0.6 , u3
0.8,0.1,0.2 ,

)
, 0.5

]
,[

(e3, r, 0), (e2, q, 0),
(

u1
0.5,0.2,0.1 , u2

0.7,0.1,0.6 , u3
0.4,0.1,0.6 ,

)
, 0.6

]}
.

Proposition 5. Let (Fu, A) and (Gη , B) be GNSESs over U. Then

1. ((Fu, A) ∧ (Gη , B) )c = (Fu, A)c ∨ (Gη , B)c

2. ((Fu, A) ∨ (Gη , B))c = (Fu, A)c ∧ (Gη , B)c

Proof. The proofs can be easily obtained from Definitions 16, 19 and 20.
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4. GNSES-Aggregation Operator

In this section, we define a GNSES-aggregation operator of a GNSES to construct a decision
method by which approximate functions of a soft expert set are combined to produce a neutrosophic
set that can be used to evaluate each alternative.

Definition 21. Let ΥA ∈ GNSESs. Then a GNSES-aggregation operator of ΥA, denoted by Υagg
A , is defined by

Υagg
A =

{
〈
(

u, Tagg
A (u), Iagg

A (u), Fagg
A (u)

)
〉 : u ∈ U

}
, (5)

which is a GNSES over U,

Tagg
A : U → [0, 1], Tagg

A (u) =
1
|U|∑ e ∈ E

u ∈ U

TA(u).µ, (6)

Fagg
A : U → [0, 1], Fagg

A (u) =
1
|U|∑ e ∈ E

u ∈ U

FA(u).µ, (7)

Iagg
A : U → [0, 1], Iagg

A (u) =
1
|U|∑ e ∈ E

u ∈ U

IA(u). µ, (8)

where |U| is the cardinality of U and µ is defined below

µ =
1
n

. ∑n
i=1 µ(ei). (ei, i = 1, 2, 3, . . . , n). (9)

Definition 22. Let ΥA ∈ GNSESs, Υagg
A be the corresponding GNSES aggregation operator. Then a reduced

fuzzy set of Υagg
A is a fuzzy set over U, denoted by

Υagg
A =

{
τΥagg

A (u)
u

: u ∈ U

}
, (10)

where τΥagg
A (u) : U → [0, 1] and ui =

∣∣∣Tagg
Ai
− Fagg

Ai
− Iagg

Ai

∣∣∣.
5. An Application of Generalized Neutrosophic Soft Expert Set

In this section, we present an application of generalized neutrosophic soft expert set theory in a
decision-making problem. Based on Definitions 21 and 22, we constructed an algorithm for the GNSES
decision-making method as follows.

Step 1—Choose a feasible subset of the set of parameters.
Step 2—Construct the GNSES tables for each opinion (agree, disagree) of experts.
Step 3—Compute the aggregation operator GNSES Υagg

A of ΥA and the reduced fuzzy set Tagg
Ai

, Fagg
Ai

, Iagg
Ai

of Υagg
A .

Step 4—Score(uI) = maxagree(ui)−mindisagree(ui).
Step 5—Choose the element of ui that has maximum score. This will be the optimal solution.

Example 10. Suppose a company needs to employ a worker, which is to be decided by a few experts. The employee
has to be chosen from five potential workers, U = {u1, u2, u3, u4, u5}. Suppose there are four parameters
E = {e1, e2, e3, e4} where the parameters ei (i = 1, 2, 3, 4) stand for “education,” “age,” “capability” and
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“experience”, respectively. Let X = {p, q, r} be a set of experts. After a serious discussion, the experts construct
the following generalized neutrosophic soft expert set.

Step 1—Choose a feasible subset of the set of parameters

(Fu, Z) =
{ [

(e1, p, 1),
(

u1
0.2,0.3,0.4 , u2

0.8,0.2,0.6 , u3
0.6,0.3,0.5 , u4

0.4,0.2,0.3 , u5
0.6,0.3,0.1 ,

)
, 0.7

]
,[

(e1, q, 1),
(

u1
0.3,0.1,0.4 , u2

0.2,0.1,0.5 , u3
0.4,0.2,0.3 , u4

0.4,0.2,0.3 , u5
0.7,0.2,0.5 ,

)
, 0.6

]
,[

(e1, r, 1),
(

u1
0.3,0.5,0.1 , u2

0.6,0.2,0.5 , u3
0.1,0.4,0.2 , u4

0.5,0.2,0.3 , u5
0.4,0.3,0.2 ,

)
, 0.2

]
,[

(e2, p, 1),
(

u1
0.6,0.2,0.3 , u2

0.4,0.2,0.5 , u3
0.3,0.4,0.1 , u4

0.7,0.3,0.6 , u5
0.5,0.2,0.4 ,

)
, 0.8

]
,[

(e2, q, 1),
(

u1
0.1,0.3,0.6 , u2

0.7,0.3,0.1 , u3
0.6,0.2,0.5 , u4

0.3,0.1,0.6 , u5
0.4,0.3,0.2 ,

)
, 0.4

]
,[

(e2, r, 1),
(

u1
0.6,0.3,0.5 , u2

0.7,0.3,0.6 , u3
0.5,0.3,0.4 , u4

0.2,0.1,0.3 , u5
0.6,0.2,0.5 ,

)
, 0.5

]
,[

(e3, p, 1),
(

u1
0.2,0.4,0.6 , u2

0.7,0.4,0.2 , u3
0.4,0.1,0.2 , u4

0.8,0.4,0.3 , u5
0.7,0.3,0.4 ,

)
, 0.3

]
,[

(e3, q, 1),
(

u1
0.4,0.2,0.6 , u2

0.5,0.3,0.6 , u3
0.6,0.2,0.7 , u4

0.8,0.2,0.4 , u5
0.6,0.2,0.3 ,

)
, 0.4

]
,[

(e3, r, 1),
(

u1
0.3,0.6,0.5 , u2

0.6,0.2,0.5 , u3
0.2,0.1,0.4 , u4

0.5,0.3,0.2 , u5
0.4,0.1,0.5 ,

)
, 0.5

]
,[

(e4, p, 1),
(

u1
0.2,0.3,0.6 , u2

0.7,0.1,0.5 , u3
0.4,0.2,0.8 , u4

0.9,0.2,0.4 , u5
0.3,0.4,0.6 ,

)
, 0.6

]
,[

(e4, q, 1),
(

u1
0.5,0.2,0.1 , u2

0.2,0.3,0.4 , u3
0.4,0.1,0.5 , u4

0.6,0.3,0.2 , u5
0.7,0.3,0.4 ,

)
, 0.6

]
,[

(e4, r, 1),
(

u1
0.5,0.2,0.1 , u2

0.6,0.3,0.5 , u3
0.2,0.5,0.3 , u4

0.5,0.1,0.4 , u5
0.3,0.2,0.5 ,

)
, 0.3

]
,[

(e1, p, 0),
(

u1
0.2,0.3,0.4 , u2

0.5,0.3,0.1 , u3
0.6,0.3,0.4 , u4

0.6,0.2,0.4 , u5
0.7,0.5,0.6 ,

)
, 0.9

]
,[

(e1, q, 0),
(

u1
0.5,0.1,0.7 , u2

0.4,0.2,0.3 , u3
0.8,0.5,0.4 , u4

0.7,0.3,0.6 , u5
0.5,0.3,0.4 ,

)
, 0.7

]
,[

(e1, r, 0),
(

u1
0.3,0.1,0.6 , u2

0.6,0.3,0.7 , u3
0.3,0.2,0.4 , u4

0.8,0.1,0.4 , u5
0.6,0.4,0.5 ,

)
, 0.6

]
,[

(e2, p, 0),
(

u1
0.7,0.3,0.5 , u2

0.6,0.2,0.4 , u3
0.4,0.3,0.5 , u4

0.3,0.2,0.5 , u5
0.4,0.3,0.5 ,

)
, 0.8

]
,[

(e2, q, 0),
(

u1
0.6,0.2,0.4 , u2

0.5,0.3,0.7 , u3
0.8,0.1,0.3 , u4

0.2,0.3,0.6 , u5
0.6,0.2,0.4 ,

)
, 0.4

]
,[

(e2, r, 0),
(

u1
0.6,0.3,0.4 , u2

0.5,0.2,0.4 , u3
0.7,0.4,0.5 , u4

0.5,0.2,0.4 , u5
0.4,0.3,0.5 ,

)
, 0.2

]
,[

(e3, p, 0),
(

u1
0.6,02,0.4 , u2

0.6,0.1,0.5 , u3
0.5,0.4,0.6 , u4

0.8,0.3,0.6 , u5
0.7,0.2,0.4 ,

)
, 0.5

]
,[

(e3, q, 0),
(

u1
0.7,0.1,0.6 , u2

0.4,0.5,0.8 , u3
0.4,0.3,0.5 , u4

0.6,0.2,0.5 , u5
0.4,0.3,0.5 ,

)
, 0.3

]
,[

(e3, r, 0),
(

u1
0.2,0.3,0.6 , u2

0.7,0.4,0.5 , u3
0.4,0.2,0.8 , u4

0.9,0.1,0.4 , u5
0.6,0.3,0.2 ,

)
, 0.3

]
,[

(e4, p, 0),
(

u1
0.4,0.2,0.6 , u2

0.5,0.2,0.6 , u3
0.9,0.5,0.1 , u4

0.3,0.2,0.6 , u5
0.4,0.3,0.5 ,

)
, 0.6

]
,[

(e4, q, 0),
(

u1
0.3,0.2,0.1 , u2

0.6,0.1,0.5 , u3
0.6,0.2,0.5 , u4

0.8,0.3,0.2 , u5
0.2,0.3,0.4 ,

)
, 0.5

]
,[

(e4, r, 0),
(

u1
0.6,0.2,0.5 , u2

0.7,0.1,0.6 , u3
0.5,0.3,0.1 , u4

0.3,0.2,0.6 , u5
0.4,0.2,0.5 ,

)
, 0.1

]}
.

Step 2—Construct the GNSES tables for each opinion (agree, disagree) of experts, as shown in
Tables 1 and 2.

Table 1. Agree-GNSES.

U u1 u2 u3 u4 u5 µ

(e1, p) 0.2, 0.3, 0.4 0.8, 0.2, 0.6 0.6, 0.3, 0.5 0.4, 0.2, 0.3 0.6, 0.3, 0.1 0.7
(e2, p) 0.6, 0.2, 0.3 0.4, 0.2, 0.5 0.3, 0.4, 0.1 0.7, 0.3, 0.6 0.5, 0.2, 0.4 0.8
(e3, p) 0.2, 0.4, 0.6 0.7, 0.4, 0.2 0.4, 0.1, 0.2 0.8, 0.4, 0.3 0.7, 0.3, 0.4 0.3
(e4, p) 0.2, 0.3, 0.6 0.7, 0.1, 0.5 0.4, 0.2, 0.8 0.9, 0.2, 0.4 0.3, 0.4, 0.6 0.6
(e1, q) 0.3, 0.1, 0.4 0.2, 0.1, 0.5 0.4, 0.2, 0.3 0.4, 0.2, 0.3 0.7, 0.2, 0.5 0.6
(e2, q) 0.1, 0.3, 0.6 0.7, 0.3, 0.1 0.6, 0.2, 0.5 0.3, 0.1, 0.6 0.4, 0.3, 0.2 0.4
(e3, q) 0.4, 0.2, 0.6 0.5, 0.3, 0.6 0.6, 0.2, 0.7 0.8, 0.2, 0.4 0.6, 0.2, 0.3 0.4
(e4, q) 0.5, 0.2, 0.1 0.2, 0.3, 0.4 0.4, 0.1, 0.5 0.6, 0.3, 0.2 0.7, 0.3, 0.4 0.6
(e1, r) 0.3, 0.5, 0.1 0.6, 0.2, 0.5 0.1, 0.4, 0.2 0.5, 0.2, 0.3 0.4, 0.3, 0.2 0.2
(e2, r) 0.6, 0.3, 0.5 0.7, 0.3, 0.6 0.5, 0.3, 0.4 0.2, 0.1, 0.3 0.6, 0.2, 0.5 0.5
(e3, r) 0.3, 0.6, 0.5 0.6, 0.2, 0.5 0.2, 0.1, 0.4 0.5, 0.3, 0.2 0.4, 0.1, 0.5 0.5
(e4, r) 0.5, 0.2, 0.1 0.6, 0.3, 0.5 0.2, 0.5, 0.3 0.5, 0.1, 0.4 0.3, 0.2, 0.5 0.3
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Table 2. Disagree-GNSES.

U u1 u2 u3 u4 u5 µ

(e1, p) 0.2, 0.3, 0.4 0.5, 0.3, 0.1 0.6, 0.3, 0.4 0.6, 0.2, 0.4 0.7, 0.5, 0.6 0.9
(e2, p) 0.7, 0.3, 0.5 0.6, 0.2, 0.4 0.4, 0.3, 0.5 0.3, 0.2, 0.5 0.4, 0.3, 0.5 0.8
(e3, p) 0.6, 02, 0.4 0.6, 0.1, 0.5 0.5, 0.4, 0.6 0.8, 0.3, 0.6 0.7, 0.2, 0.4 0.5
(e4, p) 0.4, 0.2, 0.6 0.5, 0.2, 0.6 0.9, 0.5, 0.1 0.3, 0.2, 0.6 0.4, 0.3, 0.5 0.6
(e1, q) 0.5, 0.1, 0.7 0.4, 0.2, 0.3 0.8, 0.5, 0.4 0.7, 0.3, 0.6 0.5, 0.3, 0.4 0.7
(e2, q) 0.6, 0.2, 0.4 0.5, 0.3, 0.7 0.8, 0.1, 0.3 0.2, 0.3, 0.6 0.6, 0.2, 0.4 0.4
(e3, q) 0.7, 0.1, 0.6 0.4, 0.5, 0.8 0.4, 0.3, 0.5 0.6, 0.2, 0.5 0.4, 0.3, 0.5 0.3
(e4, q) 0.3, 0.2, 0.1 0.6, 0.1, 0.5 0.6, 0.2, 0.5 0.8, 0.3, 0.2 0.2, 0.3, 0.4 0.5
(e1, r) 0.3, 0.1, 0.6 0.6, 0.3, 0.7 0.3, 0.2, 0.4 0.8, 0.1, 0.4 0.6, 0.4, 0.5 0.6
(e2, r) 0.6, 0.3, 0.4 0.5, 0.2, 0.4 0.7, 0.4, 0.5 0.5, 0.2, 0.4 0.4, 0.3, 0.5 0.2
(e3, r) 0.2, 0.3, 0.6 0.7, 0.4, 0.5 0.4, 0.2, 0.8 0.9, 0.1, 0.4 0.6, 0.3, 0.2 0.3
(e4, r) 0.6, 0.2, 0.5 0.7, 0.1, 0.6 0.5, 0.3, 0.1 0.3, 0.2, 0.6 0.4, 0.2, 0.5 0.1

Step 3—Now calculate the scores of agree (ui) by using the data in Table 1, to obtain values in
Table 3.

Tagg
A (p, u1) =

(
TA1+TA2+TA3+TA4

4

)
.
(

µ1+ µ2+ µ3+ µ4
4

)
.

=
( 0.2+0.6+0.2+0.2

4
)
.
( 0.7+0.8+0.3+0.6

4
)

= 0.18

Iagg
A (q, u1) =

(
IA1+IA2+IA3+IA4

4

)
.
(

µ1+ µ2+ µ3+ µ4
4

)
.

=
(

0.3+0.2+0.4+0.3
4

)
.
( 0.7+0.8+0.3+0.6

4
)

= 0.18

Fagg
A (r, u1) =

(
FA1+FA2+FA3+FA4

4

)
.
(

µ1+ µ2+ µ3+ µ4
4

)
.

=
(

0.4+0.3+0.6+0.6
4

)
.
( 0.7+0.8+0.3+0.6

4
)

= 0.285

u1 =
∣∣∣Tagg

Ai
− Fagg

Ai
− Iagg

Ai

∣∣∣ = |0.18− 0.18− 0.285| = 0.285.

Table 3. Degree table of agree-GNSES.

U u1 u2 u3 u4 u5

p 0.285 0.015 0.135 0.015 0.09
q 0.18 0.15 0.105 0.12 0.015
r 0.165 0.09 0.24 0.06 0.045

Now calculate the score of disagree (ui) by using the data in Table 2, to obtain values in Table 4.

Tagg
A (p, u1) =

(
TA1+TA2+TA3+TA4

4

)
.
(

µ1+ µ2+ µ3+ µ4
4

)
=
(

0.2+0.7+0.6+0.4
4

)
.
( 0.9+0.8+0.5+0.6

4
)

= 0.3325

Iagg
A (q, u1) =

(
IA1+IA2+IA3+IA4

4

)
.
(

µ1+ µ2+ µ3+ µ4
4

)
.

=
( 0.3+0.3+0.2+0.2

4
)
.
( 0.9+0.8+0.5+0.6

4
)

= 0.175

Fagg
A (r, u1) =

(
FA1+FA2+FA3+FA4

4

)
.
(

µ1+ µ2+ µ3+ µ4
4

)
.

=
(

0.4+0.5+0.4+0.6
4

)
.
( 0.9+0.8+0.5+0.6

4
)

= 0.3325

u1 =
∣∣∣Tagg

Ai
− Fagg

Ai
− Iagg

Ai

∣∣∣ = |0.3325− 0.175− 0.3325| = 0.175.
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Table 4. Degree table of disagree-GNSES.

U u1 u2 u3 u4 u5

p 0.175 0.035 0.1225 0.175 0.1925
q 0.0525 0.2625 0.035 0.1225 0.0875
r 0.2275 0.1225 0.175 0.0175 0.1575

Step 4—The final score of ui is computed as follows.

Score(u1) = 0.285− 0.0525 = 0.2325,
Score(u2) = 0.15− 0.035 = 0.115,
Score(u3) = 0.24− 0.035 = 0.205,

Score(u4) = 0.12− 0.0175 = 0.1025,
Score(u5) = 0.09− 0.0875 = 0.0025.

Step 5—Score(u1) = 0.2325 is the maximum. Hence, the best decision for the experts is to select
worker u1 as the company’s employee.

6. Comparison Analysis

A generalized neutrosophic soft expert model gives more precision, flexibility, and compatibility
than the existing neutrosophic models. These are verified by a comparison analysis, using neutrosophic
soft expert decision method, with those methods used by Sahin et al. [27], Hassan [44], and Maji [20],
as given in Table 5. The comparison is done based on the same example as in Section 5. The ranking
order results obtained are consistent with those in [20,27,44].

Table 5. Comparison of neutrosophic soft set to other variants.

Methods Neutrosophic Soft
Set

Neutrosophic Soft
Expert Set

Q-Neutrosophic
Soft Expert Set

Generalized
Neutrosophic Soft

Expert Set

Authors Maji [20] Sahin et al. [27] Hassan et al. [44] Proposed Method

Domain Universe of
discourse

Universe of
discourse

Universe of
discourse

Universe of
discourse

Co-domain [0,1]3 [0,1]3 [0,1]3 [0,1]3

True Yes Yes Yes Yes

Falsity Yes Yes Yes Yes

Indeterminacy Yes Yes Yes Yes

Expert No Yes Yes Yes

Q No No Yes No

Ranking u2 > u3 > u1 >
u4 > u5

u2 > u2 > u1 >
u4 > u5

u3 > u1 > u2 >
u4 > u5

u1 > u3 > u2 >
u4 > u5

7. Conclusions

We have established the concept of generalized neutrosophic soft expert set (GNSES) as a
generalization of NSES. The basic operations of GNSES of complement, union, intersection AND,
and OR were defined. Subsequently, a definition of GNSES-aggregation operator was proposed
to construct an algorithm of a GNSES decision method. Finally, an application of the constructed
algorithm, to solve a decision-making, was provided. This new extension provides a significant
contribution to current theories for handling indeterminacy, and it spurs the development of further
research and pertinent applications.
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