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Abstract: In this paper, a tunable dielectric metamaterial absorber with temperature-based vanadium
dioxide (VO2) is proposed. In contrast to previous studies, both the metal phase of VO2 and the
semiconductor phase are applied to manipulate the Mie resonant modes in the dielectric cubes.
By embedding VO2 in the main resonant structure, the control over Mie resonant modes in dielectric
metamaterials is realized. Each resonant mode is analyzed through field distribution and explains
why the phase switch of VO2 could affect the absorbance spectrum. This use of tunable materials
could create another new methodology for the manipulation of the Mie resonance-based dielectric
cubes and make them closer in essence to isotropic metamaterials.
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1. Introduction

The study of electromagnetic waves began in the late 1800s. Over the course of a century’s
research, the primary goal modern electromagnetic wave research has been to achieve full control of it,
including amplitude control, phase control, and wave impendence control [1–5]. Dielectric composites
have been proposed for many applications, and exhibit excellent absorption properties, while the
electric resonant mode and magnetic resonant mode overlap with each other [6–11]. Some papers
have also proposed tunable metamaterial and metasurface absorbers based on graphene [12–15] or
strontium titanate [16,17] to realize tunable absorption or anomalous refraction. Frequency-stable and
continuously tunable performance could be achieved by varying the voltage or temperature.

Vanadium dioxide (VO2) has drawn a great deal of interest for its semiconductor-to-metal
transition and low transition temperature (68 ◦C) [18–20]. Another characteristic that makes VO2 a
promising tunable material is that the switching time is very fast when changing from a semiconductor
property to a metal property. The study of VO2 is mainly focused on two areas: the first design idea
is changing the electrical length by exploiting the ultra-large change of the refractive index in VO2

between the semiconductor and the metallic states [21–23], and the second design idea is changing the
transverse electric and transverse magnetic pass with different phases [24,25]. However, these two
ideas are still far from achieving full control over the electromagnetic wave.

In this paper, a tunable dielectric metamaterial absorber with vanadium dioxide is proposed.
Unlike previous papers, which only take advantage of the metal properties of VO2 and change the
electrical length of the structure, this paper makes use of both material properties to control the
absorption. The basic absorber is a cross-shaped high permittivity ceramic, and VO2 is placed first in
the center and then on the edge of this absorber to achieve the tunability of the absorption. The resulting
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composite material functions as a sub-wavelength metamaterial with the tunable operating material
phase permitting the realization of an absorber.

2. Modeling and Design Principle

This study starts with the cross-shaped dielectric metamaterial absorption. For metamaterial or
metasurface absorbers, one of the most important conditions is the exploitation of epsilon-near-zero
(ENZ) materials [26]. A cross-shaped absorber was developed from the cube absorber [27]. By adding
other components into the unit cell, ENZ materials can be obtained by the Mie resonances inside the
cross-shaped structure.

First, this study starts with the Mie resonance inside the dielectric cube. The incident wave
excites different Mie resonant modes at different frequencies. As there are different application
requirements, full control over the resonant modes is needed. Learning from the broadband antenna
or left-handed metamaterial design, adding some other structures into the unit cell could manipulate
the resonant modes by tuning the nearby resonances together. Based on previous experience with
absorbers, the cross-shaped dielectric absorber could have three absorbance peaks corresponding
to three resonant frequencies and resonant modes. At each resonant frequency, the incident energy
is trapped in the center of the shape and both dielectric arms, on the basis of the electric wave.
This multi-mode resonance structure has great advantages in wave control, and also makes it easier to
accomplish different electromagnetic goals. Compared to the similar shapes [28,29], the cross-shaped
absorber can also be regarded as a complementary dielectric cube absorber. Based on the equivalent
circuit theory, the cross-shaped structure is smaller while keeping the same resonant performance.
Additionally, the unit cell is composed of dielectric ceramics, which means low ohmic loss and a
greater suitability for high-temperature and high-power conditions. Considering that temperature
is one of the most important parameters in this study, it is necessary to keep the host unit cell shape
and constitutive parameters stable while tuning the temperature. Therefore, the cross shape is the best
candidate for the study of a hybrid VO2 and dielectric metamaterial absorber.

By replacing the ceramic into the vanadium dioxide at the energy-concentrated positions, a tunable
absorber is achieved with a different material phase of vanadium dioxide. The VO2-dielectric absorber
unit cell is shown in Figure 1.
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Figure 1. Schematic of absorber unit cell.

2.1. Center Case

In the cross-shaped dielectric metamaterial absorber, one of the resonant modes concentrates on
the incident energy around the center of the cross shape. Consequently, in the first case, the effect of
the material phase on absorption is discussed by replacing the center material with VO2. The material
properties used in this paper are based on the results published before [7]. In this first case, the dielectric
arms of the cross-shaped absorber are connected directly with each other without VO2. The simulated
results of the different VO2 phase absorptions are shown in Figure 2.
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Figure 2. Absorbance and constitutive parameters of the dielectric metamaterial when VO2 is placed
in the cross-shaped center. (a) Absorbance (b) Constructive parameters.
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Figure 2a shows the different absorbance results achieved through the different VO2 material
phases. The red dotted line shows the absorption of the dielectric metamaterial while VO2 operates as
a metal. Under this condition, three main resonant peaks and two slight resonant peaks were observed.
The main resonant peak appeared at 12.92 GHz and the resonant absorption was 99.3%. The other two
main resonant peaks appeared around 18.04 GHz and 19.59 GHz, and the absorptions were 85.2% and
65.6%, respectively. Each of these resonant peaks corresponds to a resonant mode, and the underlying
mechanism of the proposed tunable dielectric metamaterial absorber was the modification of the
resonant mode and resonant frequency while controlling the material phase of VO2. The other two
slight resonant peaks were around 7.79 GHz and 15.79 GHz.

The black solid line shows the absorption of the dielectric metamaterial absorber while VO2

operates under a semiconductor phase. In this condition, the dielectric metamaterial absorber was
composed of two different permittivity dielectric cubes, and excited several orders of Mie resonant
modes inside the cubes. Figure 2 shows that the absorption over the whole frequency band was
more complicated when VO2 operated under a semiconductor phase. There were four main resonant
peaks which could keep the absorption over 80% at 8.11 GHz, 12.43 GHz, 12.84 GHz, and 18.34 GHz,
respectively. When the VO2 phase changed from metal to semiconductor, the first resonant mode
was enhanced. This means that the absorbance efficiency was improved to as high as 91.8% without
a frequency shift. Another resonant enhancement occurred at 16.62 GHz. At this resonant mode,
the VO2 phase switching led to a resonant frequency which shifted from 15.79 GHz to 16.61 GHz,
and the absorbance efficiency was enhanced from 27.3% to 68.2%.

At the second main resonant frequency of the semiconductor-phase dielectric absorber,
the resonance reached around 12.45 GHz and was nearly combined with the third resonance, which was
around 12.84 GHz. Unlike that of the metal phase, the resonant mode of this resonance split into
two. Also unlike the metal phase, by modifying the electromagnetic field of the semiconductor
cube at the center, Mie resonance was excited inside the cube rather than through reflection.
Therefore, the dielectric absorber generated another resonant mode and shifted the resonant frequency.
The resonant intensity decreased while the resonant mode split into two independent modes.
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The last main resonant frequency at 18.34 GHz was enhanced from the third resonant frequency
in the metal phase. Meanwhile, the resonant intensity was also increased and shifted to a higher
resonant mode nearby. The field distribution of the dielectric metamaterial absorber with VO2 in both
the metal and semiconductor phases is shown in next section. The incident electric field vector is along
the Y-axis.

Figure 2b shows the effective constitutive parameters of the dielectric metamaterial while VO2

operated in the metal phase. The metamaterial absorber showed either negative permittivity or a
permeability of 5 GHz to 12 GHz, so the incident wave was reflected over these frequency bands,
which is also verified in Figure 2a. The dashed areas in Figure 2b show that the effective permittivity
and permeability both approximated to zero. This means the absorber operated as a double-zero
metamaterial at these two dashed areas in Figure 2b, corresponding to the best absorption performance
around 12.92 GHz and 18.04 GHz, shown in Figure 2a.

2.2. Dielectric Arm Case

The resonance of traditional cross-shaped dielectric metamaterial absorbers mainly focuses the
incident energy on either the shape center or the dielectric arm. Therefore, the tunable material placed
in the dielectric arm was investigated in this part of study. The absorbance of the dielectric absorber
with VO2 in the dielectric arm is shown in Figure 3.
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The black solid line in Figure 3 represents the absorbance of the dielectric absorber when VO2

operates as a semiconductor in the dielectric arm. There were four main resonant frequencies in this
case, with four main resonant frequency bands around 6.71 GHz, 12.89 GHz, 15.41 GHz, and 17.83 GHz.
The best absorbance efficiency was 99.97% when the absorber operated at 17.83 GHz. The electric and
magnetic field distributions at these four main resonant frequencies are shown in next section.

The red dotted line in Figure 3 shows the absorbance when the temperature was above 68 ◦C and
VO2 operated as a metal. Comparing the absorption to when VO2 is a semiconductor, the material
phase switch suppressed the resonance to around 6.71 GHz and 12.89 GHz. This is because the main
resonant part is the semiconductor plate in the dielectric arm, which means that these two resonant
modes are evanescent after the material phase switches. There were two main resonant peaks of the
red dotted line around 14.88 GHz and 17.88 GHz. The absorbance at these two frequencies was 86.4%
and 99.1%, respectively.

Figure 3b shows the effective constitutive parameters when VO2 operated as a metal phase in the
dielectric arms. Similar to the first case, the metamaterial absorber showed double-zero characteristics
at the resonant frequencies. It is therefore important to excite a double-zero electromagnetic response
in the design of a metamaterial absorber. The double-zero areas in Figure 3b are shown in shaded.
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3. Tunable Mechanism Illustration through Field Distribution

Tunable performance was achieved through material phase switching. By demonstrating the
electric and magnetic field distributions over resonant frequencies, the physical mechanism inside the
VO2-dielectric metamaterial absorber is illustrated.

3.1. Center Case

Figure 4 shows the field distribution at each resonant frequency while the temperature is above
68 ◦C and VO2 operates as a metal phase. Figure 4a,b shows that most of the incident wave was
concentrated in the dielectric arm along the X-axis. The incident electric field is along the Y-axis, and
at a resonant frequency of 12.92 GHz the incident electric wave was converted to form a circular field
distribution, resulting in a magnetic field enhancement in the dielectric arm which can also be verified
in Figure 4b. This resonant mode can therefore be regarded as a magnetic dipole, and this is a magnetic
resonant mode.
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In Figure 4c,d, the resonant frequency increased to 18.04 GHz. At this frequency, the incident
magnetic field was converted to form a circularly field distribution in the dielectric arm along the
Y-axis, resulting in the enhancement of the electric field. The dielectric absorber can therefore be
regarded as an electric dipole at this resonant frequency, and this resonant mode is an electric mode.
The incident energy was contained in the dielectric arm and reduced to a lower energy level.

The higher Mie resonance mode in the dielectric absorber can be observed in Figure 4e,f.
These two figures show the electric and magnetic field distribution at 19.6 GHz. In this resonant
mode, both the electric and magnetic field were circularly distributed, so this absorption peak resulted
in a quadrupole-like resonant. However, the absorption at this frequency was not over 80% because
this frequency corresponds to a higher resonant mode in the dielectric absorber, and the resonant
intensity was not that strong. It is not difficult to see that all these resonant modes were excited in
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the dielectric arm along the X-axis or Y-axis instead of at the center of the cross shape. This can
be explained by the phase of VO2. When VO2 operates as a metal, it prevents the electromagnetic
field from forming normal Mie resonance modes. In this case, all the resonance concentrated in the
center is suppressed and the resonance within the dielectric arm is enhanced. From this point of view,
the basic mechanism of the tunable dielectric VO2 metamaterial absorber lies in the suppression and
enhancement of Mie resonant modes in the high-permittivity dielectric cubes.

Figure 5 shows the electric and magnetic field distributions with VO2 operating as a semiconductor
at the center of the dielectric absorber. Figure 5a,b,g,h correspond to the field distributions at 8.11 GHz
and 16.6 GHz, respectively. Neither of these resonant frequencies were strong enough when VO2

operated as a metal (the two slight resonant modes at 7.79 GHz and 15.79 GHz). The metal phase VO2

prevented the field distribution from the center of the cross shape, so all the resonances were excited
in the dielectric arm. As the temperature decreased, VO2 turned into a semiconductor. The phase
transformation allowed the electromagnetic field to excite in the cross-shaped center and enhanced its
resonance. This greatly increased the absorption across these frequency bands. Both resonances at
8.11 GHz and 16.6 GHz generated a strong resonant and higher resonant mode in the center of the
cross shape. There were also 0.32 GHz and 0.81 GHz frequency shifts towards a higher-frequency
band accompanying the VO2 phase switching.

The first resonant frequency was 12.92 GHz when the VO2 phase was a metal. This resonant
mode split into two resonant modes when the VO2 phase switched from metal to semiconductor.
The field distribution of these two resonant modes can be seen in Figure 5c–f. Comparing Figure 5c,e
to Figure 4a, it is clear that the electric field distribution did not change very much. The field remained
concentrated in the dielectric arm along the X-axis while VO2 switched phase. We can therefore
conclude that these two resonant frequencies in the semiconductor VO2 phase split from the resonant
frequency at 12.92 GHz when VO2 was in the metal phase. Additionally, comparing Figure 5d,f to
Figure 4b, the material phase had a great impact on the magnetic field distribution in the center of the
cross shape. The magnetic field distribution at 12.43 GHz and 12.84 GHz was formed by the reflection
of the metal ground plane and the incident wave. Additionally, the field distribution in the center was
anisotropic along the Z-axis when affected by the dielectric arm resonant. This is why the magnetic
field presented several circles at these two resonant frequencies. The initial resonance also split into
two resonant modes, and the resonant intensity as well as the absorbance were decreased at these
two frequencies.

The field distribution shown in Figure 5i,j was at the same resonant mode as the one shown
in Figure 4d,e but with different VO2 material phases. The electric field in the dielectric arm
remained firm to keep this resonant mode an electric mode while changing the VO2 phase from
metal to semiconductor, but generated another resonant in the cross-shaped center at the same time.
As also displayed with frequencies 12.43 GHz and 12.84 GHz, this resonant mode was formed by
the incident wave, the reflection from the ground plane, and the influence from the dielectric arm.
The absorption increased at this frequency because another resonant was excited at the cross-shaped
center. This ensured that the resonant was strong enough to keep the absorbance efficiency.
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Figure 5. Field distributions at different frequencies when VO2 operates as a semiconductor in the
center. (a) Electric field distribution at 8.11 GHz; (b) Magnetic field distribution at 8.11 GHz; (c) Electric
field distribution at 12.43 GHz; (d) Magnetic field distribution at 12.43 GHz; (e) Electric field distribution
at 12.84 GHz; (f) Magnetic field distribution at 12.84 GHz; (g) Electric field distribution at 16.6 GHz;
(h) Magnetic field distribution at 16.6 GHz; (i) Electric field distribution at 18.34 GHz; (j) Magnetic field
distribution at 18.34 GHz.
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3.2. Dielectric Arm Case

Figure 6 shows the electric and magnetic field distribution at different frequencies. Figure 6a,b
respectively show the electric and magnetic field distributions at 6.71 GHz. The excited electric field
formed a circular distribution in the dielectric arm along the X-axis. In Figure 6b, it is clearly shown that
most of the incident wave was concentrated in the semiconductor VO2 plate. In Figure 6a, the electric
distribution showed a higher resonant intensity in the dielectric cube near the ground plane than
in the part near air. Thereby, most incident energy was transformed into a lower energy level in
the bottom of VO2 at this resonant mode. Just as when the resonant was at 6.71 GHz, the resonant
at 12.89 GHz was also gathering the incident energy in the semiconductor VO2 plate, as shown in
Figure 6c,d. The difference is that the absorption occurred in the whole VO2 plate at 12.89 GHz instead
of only around the bottom.
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Figure 6. Field distributions at different frequencies when VO2 operated as a semiconductor in the
dielectric arms. (a) Electric field distribution at 6.71 GHz; (b) Magnetic field distribution at 6.71 GHz;
(c) Electric field distribution at 12.89 GHz; (d) Magnetic field distribution at 12.89 GHz; (e) Electric field
distribution at 15.41 GHz; (f) Magnetic field distribution at 15.41 GHz; (g) Electric field distribution at
17.83 GHz; (h) Magnetic field distribution at 17.83 GHz.

Figure 6e,f show the electric and magnetic field distributions at 15.41 GHz. In this resonant
mode, the incident energy was no longer completely concentrated in the semiconductor VO2 plate.
The cross-shaped center and the distance between the center and the plate also played important
roles in the absorption. The VO2 phase did have an impact on this resonant mode, but this impact
was not as strong as in the first two resonant modes. In the last resonant mode at 17.83 GHz, all of
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the incident wave vector was converted and formed a circle in the cross-shaped center, as shown in
Figure 6g,h. This resonant mode is completely independent from the dielectric arm, so the phase of
VO2 had little effect.

Figure 7 shows the electric and magnetic field distributions of a dielectric metamaterial absorber
with VO2 in the cross-shaped arm at the two main resonant frequencies of 14.88 GHz and 17.88 GHz.
At a frequency of 14.88 GHz, the field distribution was composed of two parts: one in the cross-shaped
center, and the other around the VO2 plate. This resonant was therefore affected by the VO2 phase.
This can also be confirmed from the absorbance efficiency line. When VO2 transformed from a
semiconductor into a metal, the resonant mode around 15.41 GHz decreased to 14.88 GHz, and the
absorbance efficiency was increased from 82.3% to 86.4%. In Figure 7c,d the field distribution was
fully concentrated in the cross-shaped center, and there was no effect when the VO2 phase switched.
This result can also be confirmed by the absorbance efficiency line.Symmetry 2018, 10, x FOR PEER REVIEW  9 of 11 
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Figure 8 shows the absorption results of the structure tuned by varying temperatures.
VO2 operates as a semiconductor when the temperature is lower than 68 ◦C and presents different
dielectric permittivity with different temperatures. The VO2 material properties used in this paper
were adopted from Wu work group [20]. When the temperature is above 68 ◦C, VO2 presents as a
metal. The material property of VO2 changes gradually when the temperature increases towards 68 ◦C.
The effect that material property has on absorption can therefore be observed by equally dividing the
temperature into three curves before it reaches 68 ◦C. This method guarantees a clear explanation
while keeping the figure distinguishable. Therefore, the tunable performance was observed at 20 ◦C,
40 ◦C, 60 ◦C, and above 68 ◦C.

Figure 8a shows the absorption when VO2 was placed in the cross-shaped center. When VO2

operated as a semiconductor phase, the absorption frequency was decreased when the temperature
increased. Temperature affected the first resonance the most. The first resonant frequency shifted to
the left by 1.48 GHz when the temperature increased from 20 to 60 ◦C. When the temperature was
low, some of the resonances in the dielectric absorber were not excited because of the low dielectric
permittivity. With increased temperature, the dielectric absorber also excited new resonant modes.
As the temperature continued to increase, VO2 changed its material phase into metal and suppressed
the resonance within. Figure 8b shows that the same performance could also be observed when VO2

was placed in the dielectric arm. The resonance around 7.44 GHz was excited at 60 ◦C when the
dielectric permittivity was high enough, and was subsequently suppressed once the temperature rose
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above 68 ◦C. As the resonances were all excited in the higher frequency band, continuous frequency
absorption was achieved when the temperature increased from 20 to 68 ◦C.
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Dielectric metamaterial absorbers based on Mie resonance have a wide range of applications,
such as telecommunications, nanoelectronics, antennas, and automotives [30–32], all of which
require multiple operating bands. The hybrid VO2 and dielectric metamaterial can easily tune
the operating band stably and with high efficiency. By tuning the VO2 material phase, the Mie
resonance manipulation method proposed here can be an excellent candidate for absorption control in
these applications.

4. Conclusions

In this paper, a tunable dielectric metamaterial absorber with temperature-based VO2 is proposed
and simulated. By combining VO2 with traditional dielectric cubes, multiple control methods can
be applied in the Mie resonances, including the suppression and enhancement of the Mie resonance
intensity, as well as the offsetting and splitting of the resonant frequency, and also the combination of
different frequencies nearby. The metal phase of VO2 has a strong inhibitory effect on the dielectric
resonance at its location. These regulation methods over dielectric metamaterials proposed in this
paper can be used not only in absorber design, but also in any other Mie resonant-based dielectric
metamaterial. In this study, the Mie resonance manipulation method based on VO2 phase change did
not realize wideband absorption due to the isolation of resonant modes. This tuning method could be
applied in tandem with equivalent circuit model theory in future studies to overcome the resonant
modes isolation in the dielectric materials.
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