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Abstract: In modern electronic warfare, multiple input multiple output (MIMO) radar has become an
important tool for electronic reconnaissance and intelligence transmission because of its anti-stealth,
high resolution, low intercept and anti-destruction characteristics. As a common MIMO radar signal,
discrete frequency coding waveform (DFCW) has a serious overlap of both time and frequency, so it
cannot be directly used in the current radar signal separation problems. The existing fuzzy clustering
algorithms have problems in initial value selection, low convergence rate and local extreme values
which will lead to the low accuracy of the mixing matrix estimation. Consequently, a novel mixing
matrix estimation algorithm based on data field and improved fuzzy C-means (FCM) clustering
is proposed. First of all, the sparsity and linear clustering characteristics of the time–frequency
domain MIMO radar signals are enhanced by using the single-source principal value of complex
angular detection. Secondly, the data field uses the potential energy information to analyze the
particle distribution, thus design a new clustering number selection scheme. Then the particle swarm
optimization algorithm is introduced to improve the iterative clustering process of FCM, and finally
get the estimated value of the mixing matrix. The simulation results show that the proposed algorithm
improves both the estimation accuracy and the robustness of the mixing matrix.

Keywords: underdetermined blind source separation; mixing matrix estimation; MIMO radar signals;
data field; particle swarm optimization

1. Introduction

Blind Source Separation (BSS) is used to solve the mixing matrix estimation. It can extract
the source signals from the observed signals under the condition that little priori knowledge
of sources or channel is obtained except for the independence of signals. In recent years, as a
popular signal processing method, it has been successfully applied to many fields, such as: voice
signal processing [1], biomedical engineering [2], array signal processing [3], image processing [4],
mechanical fault diagnosis [5] and so on. According to the different numbers of observed signals and
sources, blind source separation can be divided into three cases including undetermined, normal and
overdetermined. Among them, underdetermined blind source separation (UBSS) is most popular in
the current research because it best fits the practical application.

Sparse results analysis (SCA) [6] is the most representative method in blind source separation.
Its performance usually depends on the sparseness of the signal. However, many of the signals are
not sparse in real applications, which require the sparsity of the signals to be increased by means
of short-time Fourier transform (STFT), wavelet transform (WT) and other methods. In this paper,
the sparse time-frequency representation of the signal is obtained by short-time Fourier transform
and our work is mainly focused on the mixing matrix estimation of blind source separation [7,8].
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Abrard and Deville [9] proposed a time–frequency ratio of mixtures (TIFROM) algorithm, but the
algorithm requires the existence of an adjacent time–frequency domain in which only one source exists;
Puigt and Deville [10] applied the TIFROM algorithm into delay mixing model. Arberet [11] proposed
the direction estimation of mixing matrix (DEMIX) algorithm by extracting the time-frequency point
when there is only one source signal. Arberet [12] then extended the DEMIX algorithm to the no
echo mixing model, Kim and Yoo [13] also proposed a method of single source detection using the
mixing matrix ratio in the time–frequency domain. The ratio is real when just one source signal exists,
however, when two or more signals exist at that point, the ratio becomes plural. Dong [14] normalized
the time–frequency coefficients of the observed signals; Xu [15] extends the single-source detection
algorithm into image processing and realizes single-source detection in the Haar wavelet domain,
but still has high complexity and sensitivivity to noise. For MIMO radar signals, the time–frequency
overlap together with the low sparsity weaken the effect of the mentioned algorithms. Ai [16] proposed
a method using high-order cumulants and tensor decomposition, however, the great influence of noise
leads to low robustness. Guo [17] proposed a hybrid method based on single-source detection and
data field dynamics clustering, but the process of seeking the potential point is too slow.

On the analysis above, we propose a single-source principal value of complex angular detection
method based on the characteristics of MIMO radar signals. The orthogonal discrete frequency-coding
waveforms (DFCW) are processed by the STFT transform. The influence of noisy and isolated points
in the observed signal space is filtered out, which improves both the sparseness and linear clustering.
Due to the fact that the fuzzy C-means algorithm is easy affected by initial clustering centers, a data
field aided fuzzy C-means clustering algorithm is proposed. Firstly, a new clustering number selection
scheme is designed by constructing data field of the observed data particles. Since FCM may be
interpreted as an optimal problem, it could be integrated with particle swarm optimization (PSO).
Secondly, we introduce PSO to improve the iterative clustering process of FCM. The simulation results
show that the proposed method has improved accuracy of mixing matrix estimation.

This paper is organized as follows. In Section 2, we briefly introduce the model of MIMO radar
signals. In Section 3, the detection method of single-source principal value of complex angular is
described. In Sections 4 and 5, a novel estimation method based on two-step preprocessing of fuzzy
clustering is proposed. The experimental results are given in Section 6. Finally, some conclusions are
given in Section 7.

2. Model of MIMO Radar Signals

In order to avoid mutual interference among the transmission channels, MIMO radar transmits the
ideal orthogonal waveform through spatially distributed antennas, which mainly includes frequency
division waveform and code segment waveform. Thanks to its strong anti-detection ability and
simplicity of implementation, DFCW is commonly used in MIMO radar systems. The signal model
has the following form

sn(t) =
L−1

∑
l=0

pn
l (t− lTp), n = 1, · · ·, N , (1)

pn
l (t) =

{
ej2π f n

l t 0≤t≤Tp ,
0 otherwise,

(2)

where N is the total number of pulses, Tp the sub-pulse width, L is the number of sub-pulses in
n-th signal; the l-th sub-pulse frequency of the n-th signal is f n

l (t) = f n
0 + (l − 1)∆ f , ∆ f = 1/Tp,

the frequency coding sequence of the n-th signal is expressed as

{ fl} = {l1∆ f , l2∆ f , · · ·, lL∆ f }, (3)
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It can be further formulated as a sequence

L f = {l1, l2, · · ·, lL}. (4)

3. Detection Method Based on Single-Source Principal Value of Complex Angular

3.1. Model of Underdetermined Blind Source Separation

For MIMO radar systems, the observed signal obtained by the receiving antenna can be regarded
as the weighted sum of the transmitted signals. When the number of receiving antennas is smaller
than that of the transmitting antennas, the signal separation is in accordance with UBSS. And the UBSS
linear instantaneous mixing model can be expressed as

x(t) = As(t) + n(t), (5)

where x(t) = [x1(t), x2(t), . . . , xM(t)] T represents M observed signals, s(t) = [s1(t), s2(t), . . . , sN(t)]
T

represents N source signals, A = [a1, α2, . . . , aN ] ∈ RM×N(M < N) represents M× N order mixing
matrix, ak is the k-th column vector of mixing matrix, and n(t) = [n1(t), n2(t), . . . , xM(t)] T means
additive white noise.

3.2. Single-Source Principal Value of Complex Angular Detection

STFT transform is carried out on both sides of the Equation (5) to obtain the mixing model in the
time–frequency domain.

X(t, f ) =


X1(t, f )
X2(t, f )

...
XN(t, f )

 = AS(t, f ) =


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aM1 aM2 · · · aMN




S1(t, f )
S2(t, f )

...
SN(t, f )

, (6)

where [X1(t, f ), X2(t, f ), · · · , XN(t, f )] T and [S1(t, f ), · · · , SN(t, f )] T are complex coefficients after
the short-time Fourier transform of observed and source signal at the time–frequency point (t, f ),
respectively. If there is only one source Si at the time point (t1, f1), Equation (5) will have the
following form:

Re{X1(t1, f1)}+ jIm{X1(t1, f1)}
Re{X2(t1, f1)}+ jIm{X2(t1, f1)}

...
Re{XM(t1, f1)}+ jIm{XM(t1, f1)}

 =


a1iRe{S1(t1, f1)}+ ja1iIm{S1(t1, f1)}
a2iRe{S2(t1, f1)}+ ja2iIm{S2(t1, f1)}

...
aMiRe{SM(t1, f1)}+ jaMiIm{SM(t1, f1)}

, (7)

where Re{Xi(t1, f1)} and Im{Xi(t1, f1)} represent the real and imaginary parts of signal Xi,
respectively. In the complex plane, the angular θ is formed by the positive real axis and the vector
Z. The vector Z is made up of Xi and the origin of coordinates. It can be denoted as Arg(Z) = θ,
then we can conclude tan(θ) = Im{Xi(t1, f1)}/Re{Xi(t1, f1)}. However, any complex number of
vectors in the complex plane will have an infinite number of angles, so we take a value for θ0 that
satisfies −π < θ0 < π for the principal angular, representing the direction of the complex vector. From
Equation (7) we can get:

Arg{X1(t1, f1)} = Arg{X2(t1, f1)} = · · · = Arg{XM(t1, f1)}, (8)

that is, when only source Si acts, each channel signal has the same principal value of the complex
angular, and is located on the same line in the complex plane. According to the above inference,
the signal after STFT transformation is extracted by using Equation (8) as the constraint, consequently
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the directionality in frequency domain of the observed signal is more significant. But in the actual
signal detection, the constraints of Equation (8) are too harsh and can be relaxed as:

Arg{Xi(tk, fk)} − Arg
{

Xj(tk, fk)
}
≤ δ, (9)

where δ ∈ (0, 1) is the detection threshold, and when there is only one source Si, the signal detected by
the complex angular principal value will be linearly distributed in the complex plane. The direction
vectors of each line correspond to a column vector in the mixing matrix, respectively.

4. Mixing Matrix Estimation Based on Two-Step Preprocessing Fuzzy Clustering

4.1. Fuzzy C-Means Clustering Algorithm

FCM algorithm is an improvement of the early hard C-means clustering method. In this algorithm,
data classification is achieved by minimizing the objective function. Compared with K-means clustering
algorithm, the degree of membership defined in the range of [−1, 1] is used to determine the degree of
the element belonging to a cluster center in the cluster signal space.

Let X = {x1, x2, · · · , xk, · · · xn} ⊂ RS represent n signals to be clustered in S-dimensional
Euclidean space, where xk’s eigenvector is denoted as xk = (xk1, xk2, · · · , xkS)

T ∈ RS. The signals have
c (2 ≤ c ≤ n) clustering centers with position P = {p1, p2, · · · , pc}. The objective function of FCM is
shown below:  Jm(U, P) =

n
∑

k=1

c
∑

i=1
(µik)

m(dik)
2, m ∈ [1, ∞) ,

s. t. U ∈ M ,
(10)

Among them, m ∈ [1, ∞) is the weighting index through which the fuzzy degree of the clustering
can be adjusted. dik = ‖pi − xk‖ indicates the Euclidean distance of the k-th signal to the i-th clustering
center. The partitioning matrix is indicated as U = [µik]c×n.µik represents the membership degree of
the signal to be clustered. Moreover, the membership relationship between the clustering signal xk
and the set Xi (1 ≤ i ≤ c) is expressed as µik = µXi (xk). For ∀k, each membership degree has the
following relationship:

c

∑
i=1

µik = 1. (11)

The constraint condition is Equation (11). The purpose of clustering is to minimize the objective
function, i.e., min{J}. We introduce the Lagrangian multiplier so the new objective function
is constructed.

J(U, p1, · · · , pc, λ1, · · · , λn) = J(U, p1, · · · , pc) +
n
∑

k=1
λk

(
c
∑

i=1
uik − 1

)
=

c
∑

i=1

n
∑
k

um
ikd2

ik +
n
∑

k=1
λk

(
c
∑

i=1
uik − 1

)
. (12)

The membership degree and clustering center can be derived by the partial derivative of
Equation (12).

uik =
1

c
∑

j=1

(
dik
djk

) 2
m−1

, (13)

pi =

n
∑

k=1
um

ik xk

n
∑

k=1
um

ik

. (14)

The procedures for the FCM algorithm are as follows:
Step 1: Set the number of cluster centers c, weighted index m, iteration stop threshold epsm,

maximum iteration number Maxiter, initial cluster center P0, and initialization iteration number to 0;
Step 2: Calculate the initial distance matrix D;
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Step 3: The membership matrix is updated by Equation (13);
Step 4: The cluster center is updated by Equation (14), and the number of iterations is added one;
Step 5: Then the distance matrix is calculated again, and the objective function is calculated

by Equation (10). If the result is smaller than the iteration stop threshold or exceeds the maximum
iteration number, the algorithm terminates and outputs the result, otherwise it jumps to step 4.

The FCM algorithm requires setting the number of cluster centers and initializing the membership
matrix. Equations (13) and (14) are acquired by the Lagrangian multiplier method to calculate the
membership degree matrix and the value of the clustering center until reaching the terminal condition.
The FCM algorithm is a kind of good soft clustering method, but the algorithm has two principal
shortcomings: First, the number of clustering centers must be given in advance. For most of signals,
however, the optimal clustering number is unknown; second, the algorithm is an optimization method
based on gradient descent—essentially a local search algorithm which is sensitive to the initial value.
The clustering center generated by random initialization can easily lead to a local extreme value
problem in the clustering process.

4.2. Introduce Data Field to Select the Number of Cluster Centers

In view of the shortcomings of FCM, in this section, the theory of data field is proposed to estimate
the number of clustering signals in advance. And then guide the subsequent steps.

This method treats the signals to be clustered as particles with mass in the multidimensional
data space. The particles generate fields in the data space. As a result, they will produce forces on
the other particles as well as the other particles will also produce the corresponding forces. The data
space is denoted as Ω = {z1, z2, · · · zN}, M = {m1, m2, · · ·mN} represents the set of particles in the
data space. The theory of data potential field is augmented by the nuclear field concept in physics
and the interaction of all particles forms a data field, which can be analytically modeled by a scalar
potential function and a vector intensity function [18–20]. The Cartesian grid is used to divide the
space, so the potential function of the point vector Z is given as the formula:

ϕ(z) =
N

∑
i=1

ϕi(z) =
N

∑
i=1

(mi × e−(
‖zi−z‖

σ )
2

), (15)

where ‖zi − z‖ is the Euclidean distance between the point vector zi and z, mi satisfies the

normalization condition
N
∑

i=1
mi = 1, and σ is the radiation factor that controls the interacting distance

between two particles.
The distribution of potential function can be given by the equipotential diagram of each plane

projection in the coordinate system. The potential of a certain position in the graph and the intensity of
the equipotential line are proportional to the intensity of the position distribution. In the data field
space, the particle with the same clustering characteristics will show a distribution of concentric curve.
The method can be used effectively to specify the default parameter of clustering centers.

4.3. Using the Particle Swarm Optimization Algorithm to Optimize the Clustering Center

The particle swarm optimization algorithm is a swarm intelligence algorithm inspired by the
social behavior of the population. The PSO algorithm works with a population of possible solutions
rather than a single individual. Assuming that the population size is denoted by N. The position of i-th
particle in the S-dimensional spaces can be expressed as xi(t) = (x1

i , x2
i , · · · , xs

i , · · · xS
i ). The velocity

of i-th particle can be indicated as vi(t) = (v1
i , v2

i , · · · , vs
i , · · · vS

i ). Particle velocity can be dynamically
adjusted by its own and companions’ experiences to optimize the precision of the search process.
It indicates that if a particle discovers a promising solution, other particles will move toward to it and
explore this region more extensively. In order to reduce the likelihood of the particle leaving the search
place, the velocity of the particle is clamped to a maximum vmax, when vi > vmax, make vi = vmax.
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The quality of particles can be evaluated by the fitness function f (xi). In the process of single
particle and whole particle iterations, two variables are defined to record the location of the maximum
value of the fitness function. The position pi(t) = (p1

i , p2
i , · · · , pD

i ) of the maximum value of fitness
function in single particle iteration is called individual extremum, denoted as pbest; similarly the
position pg = (p1

g, p2
g, · · · , pD

g ) in whole particle iteration is called the global extremum gbest. In the
iterative process, vi(t) and xi(t) can be continuously updated according to pbest and gbest.

vi(t + 1) = ωvi(t) + c1r1(pi(t)− xi(t)) + c2r2(pg(t)− xi(t)), (16)

xi(t + 1) = xi(t) + vi(t + 1), (17)

In Equations (16) and (17), i = 1, 2, · · · , N, s = 1, 2, · · · , S, t represents the time of current iteration,
ω represents the inertia weight, c1c2 ∈ [0, 4] represents cognitive and social factors respectively,
r1r2 ∈ [0, 1] are regarded as two random numbers. The termination condition is the iteration time
has reached its maximum or the fitness value of global extremum satisfies the preset stop threshold.
The output result is the highest fitness in the whole iteration process, that is, the global extreme value
denoted as gbest.

The particle swarm optimization algorithm is introduced to improve the iterative clustering
process of FCM. The fuzzy C-means algorithm is a gradient descent based optimization algorithm.
Compared with FCM, particle swarm optimization is a kind of population-based optimization
algorithm. Through appropriate values of inertia weight, cognitive factor, social factor along with
other parameters, PSO can search for more areas in the solution space of the objective function to be
optimized. In this way, an improved accuracy of clusters and efficient method can be obtained.

5. Implementation Steps of the Improved Method

In order to overcome the shortcomings of the FCM algorithm mentioned in the first section,
we introduce the particle swarm optimization algorithm to increase the randomness of the search
process as well as increase the degree and uniformity of the initial solution space. By means of these,
a better global search ability is obtained. To be specific, by combining the PSO algorithm with the FCM
algorithm, the iterative updating process of the “membership degree matrix—clustering center” in
the FCM algorithm is optimized by the PSO optimization process. The velocity and position of the
iterative process is optimized by self and social cognition, breaking the shortcoming of lacking variety
in the search direction, and ultimately enhancing the ability of global optimization.

The purpose of the FCM clustering algorithm is to get the minimum value of the objective function,
as shown in Equation (10), whereas in the PSO algorithm, when the global optimal solution is searched,
the fitness function obtains the maximum value. Therefore, the fitness evaluation of the particle can
refer to the objective function of FCM and be improved as follows [21]:

f (xi) =
K

J(U, P)
=

K
c
∑

i=1

n
∑
k

um
ikd2

ik

, (18)

where K is a constant, U is the membership degree matrix obtained by FCM algorithm iteratively and
uik stands for the membership degree of sample i belonging to cluster center k.

In this paper, a mixing matrix estimation method based on data field aided fuzzy C-means
clustering algorithm is proposed. By introducing a data field and particle swarm optimization
algorithm, the effectiveness of the FCM algorithm can be improved. The implementation steps
of the proposed clustering algorithm are as follows:

Step 1: The data field of the aliasing MIMO radar observed signals with single-source principal
value of complex angular detection is obtained, and the number of the data center to be clustered is
acquired by the equipotential graph, denoted by c;
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Step 2: Initialize the parameters: N represents the population size, the number of clusters is
c, m stands for the weighting index, the cognitive and social parameters are expressed as c1 and c2

respectively. The inertia factor is denoted as ω, the maximum number of iterations is set as Maxiter,
the velocity upper limit to vmax and the iteration stop threshold are indicated as epsm and e;

Step 3: Initialize the population of particles and generate the initial population randomly;
Step 4: Initialize the membership degree matrix Uik, and use single step FCM to calculate the set

of initial clustering center;
Step 5: Initialize the value of fitness function by using Equation (18);
Step 6: The best judgment: The current fitness value of the particle is compared with its individual

extremum pbest, and if it is greater than pbest, the current position is assigned to pbest. Furthermore,
the individual extremum of the particle is compared with the global extremum gbest of the population,
and if it is greater than gbest, gbest will be updated to the current position;

Step 7: Population evolution: According to Equations (16) and (17), we can acquire the velocity
and position of the next generation of particles and produce a new generation of population to be new
cluster centers;

Step 8: We can achieve FCM clustering by using the number and locations of clustering centers
respectively obtained by the data field and PSO algorithm. The iteration times denoted as iter and the
value of the optimal clustering center in the iter-th iteration can be obtained;

Step 9: If the number of iterations reaches Maxiter or the fitness reaches the threshold, the global
optimal solution gbest and the current membership matrix U can be obtained, meanwhile, the algorithm
terminates; otherwise, returns to step 6.

6. Simulation Results and Analysis

In order to verify the effectiveness of the proposed method, this paper makes a comparative
experiment with the hierarchical clustering, K-means clustering, and tensor decomposition methods.
The computer hardware used in the experiment is configured as Intel (R) Pentium (R) CPU G3260
@ 3.30GHz, with 4GB memory, a Windows 7 operating system, and MATLAB 8.1.0.604 (R2013a,
MathWorks, Natick, MA, USA) as the development environment.

6.1. Evaluation Criteria of Estimation Error

The normalized mean square error is chosen as the evaluation criterion of the mixing matrix
estimation [14,22,23], which can be expressed as:

NMSE = −10 log10


M
∑

i=1

N
∑

j=1
a2

ij

M
∑

i=1

N
∑

j=1

(
âij − aij

)2

, (19)

where aij and âij represent the elements in the original and estimated mixing matrix, respectively.
The estimation accuracy of the mixing matrix will increase as the normalized mean square
error decreases.

6.2. Simulation Procedures

Suppose that the MIMO radar transmits four channel DFCW signals, i.e., m = 4. The pulse width
T is set to 16 µs and the sub pulse width has a relation denoted as Tp = T/N = 1 µs. The fundamental
frequency is 1 MHz, let the bandwidth be B = 16 MHz and the sampling rate fs = 64 MHz. Besides,
30 dB is set to the default value of SNR. After a series of experiments, the PSO algorithm has a
population size of 20, and the number of cluster centers cmax is equal to 4. The cognitive and social
factors are set as 2 and the inertia weight is 0.3. Moreover, the maximum number of iterations is set to
20, the velocity upper limit vmax is equal to 1.5, and the fitness function threshold e = 104. The value
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of the radiation factor in the data field is 0.1. The weighted index m in FCM algorithm is equal to 2,
and the iteration stop threshold epsm = 10−6. The time domain waveform of the four transmission
signals are shown in Figure 1.
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Figure 1. Time domain waveform of transmitted signals.

The mixing matrix A is chosen as the following form.

A =

 0.3864 0.7885 0.9127 0.4854
−0.4869 −0.2439 0.2823 0.4998
−0.7833 −0.5646 0.2955 0.7174

, (20)

The mixing matrix A is a 3× 4-dimensional matrix, and three different noisy observed signals are
received at the radar receivers. Figure 2 shows the distribution of the time–frequency points which
belong to the three observed signals after STFT transformation. It can be seen that the time–frequency
distribution in the figure is overlapped without obvious directionality.
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Figure 2. The time–frequency scatter plot of transmitted signals.

The observed signal is processed by a single-source principal value of complex angular detection.
After that, the direction of the observed signal is obviously improved, but there are still many noisy and
isolated points. As shown in Figure 3a, the measured data is regarded as particles in the data field and
projected onto the unit hemisphere with a positive axis of X1. The potential value of the particles are
calculated according to Equation (15). Using Cartesian grids, each dimension of data space is divided
into 50 equal parts. The potential values at each grid point are obtained to establish the potential field.
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The projection of the potential field on three planes is given by Figure 3b–d, respectively. Figure 4
shows the three-dimensional potentiometric map on the X2–3 plane. In the diagram, the concentration
of equipotential line and magnitude of the potential at a point are proportional to the density of the
data points. By obtaining the extrema distribution of the potential points in each projection surface,
initial values of the FCM algorithm can be provided. It can be determined that the number of clustering
centers is equal to four.
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The observed signal with obvious directivity after the test is iterated by the improved FCM
clustering algorithm, and four global optimal convergence points are obtained. The spatial position
vector of each convergence point corresponds to a column vector in the mixing matrix.

After the optimization of the cluster center by PSO and iterative clustering, the estimation result
of the mixing matrix is obtained.

Â =

 0.3898 0.7869 0.8931 0.4780
−0.4795 −0.2477 0.2977 0.5005
−0.7824 −0.5609 0.3175 0.7129

, (21)

then the normalized mean square error of the mixing matrix estimation is calculated.

NMSE = −10 log10

∑
i,j

a2
ij

∑
i,j

(
âij − aij

)2 = −40.25 dB. (22)

The method proposed in this paper is compared with the methods of hierarchical clustering,
K-means clustering, and tensor decomposition. Figure 5 shows the averaged normalized mean square
error obtained by 100 Monte Carlo independent tests when the signal-to-noise ratio (SNR) is in the
range of 5 dB∼30 dB for different methods. The simulation results show that with the increase of SNR,
the estimation accuracy of each method will be improved. In this paper, due to the improvement of
the iterative clustering process, the error value proposed by the method in question is the smallest,
so a precise mixing matrix estimation can be achieved.
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7. Conclusions

In order to improve the effect of mixing matrix estimation in the case of linear instantaneous
mixture of MIMO radar DFCW signals, according to the time–frequency-sparse nature of the signal,
firstly, the linear clustering characteristics are improved by single-source principal value of complex
angular detection. Then, we propose a new selection scheme of clustering numbers based on the
data field. And through the improved FCM clustering algorithm, mixing matrix can be estimated.
The experimental results show that the proposed method can achieve higher estimation accuracy and
robustness than other methods, which lays a good foundation for the accurate restoration of the MIMO
radar source signals.
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