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Abstract: Data hiding is an efficient technique that conceals secret data into a digital medium. In 2006,
Zhang and Wang proposed a data hiding scheme called exploiting modification direction (EMD)
which has become a milestone in the field of data hiding. In recent years, many EMD-type data
hiding schemes have been developed, but their embedding capacity remains restricted. In this paper,
a novel data hiding scheme based on the combination of Chinese remainder theorem (CRT) and
a new extraction function is proposed. By the proposed scheme, the cover image is divided into
non-overlapping pixel groups for embedding to increase the embedding capacity. Experimental
results show that the embedding capacity of the proposed scheme is significantly higher (greater
than 2.5 bpp) than previously proposed schemes while ensuring very good visual quality of the
stego image. In addition, security analysis is given to show that the proposed scheme can resist
visual attack.

Keywords: data hiding; exploiting modification direction (EMD); Chinese remainder theorem (CRT);
extraction function; embedding capacity

1. Introduction

The rapid developments of computer and network technologies led to an explosion in the
transmission of digital information over the Internet. The digital information mostly contains sensitive
and confidential contents that can be intercepted or tampered with during transmission. Therefore,
ensuring secure information communication has become a very important issue. There are two
main approaches to achieve this goal. One approach is cryptography [1], in which the message is
encrypted with a secret key and only the holder of the secret key can decrypt the cipher text to recover
the original message. RSA public-key cryptosystem using a pair of keys is the most widely used
cryptography. A public key is paired with a private key that is known only to the expected message
receiver. The sender encrypts a message with the public key and only the receiver who has the paired
private key can decrypt it. Unfortunately, disclosure of the message may happen if the private key
leaks. The other approach for information security is data hiding, and this has attracted a lot of
attention over the past few years [2–5].

Data hiding [2,3] is an efficient technique that conceals secret data into a medium. The differences
in the image before and after concealing data are so tiny that it is impossible for an observer to
visually perceive the presence of hidden data. A good data hiding scheme should both maintain good
image quality and preserve sufficient embedding capacity. However, it is difficult to satisfy the two
requirements at the same time in most cases. It is generally true that the image distortion increases
when the embedding capacity increases; on the other hand, the image quality is enhanced at the cost
of the embedding capacity. Therefore, how to achieve a satisfactory balance between the image quality
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and the embedding capacity has become a technically challenging topic and many researchers have
proposed various data hiding methods [4–6] focusing on this topic.

Data hiding for digital images is basically developed in three domains—the spatial domain,
the frequency domain and the compression domain. In the frequency domain, the cover image is
transformed into frequency coefficients via various discrete transform functions such as discrete
Fourier transform (DFT), discrete cosine transform (DCT), and discrete wavelet transform (DWT).
The primary property of frequency domain data is that low frequency coefficients contain more
important information, whereas in high frequency areas, information is less significant. Thus, the matrix
of frequency coefficients are divided into non-overlapping blocks and the secret data will be embedded
in those blocks. For data hiding in compression domain, the frequently used compression technologies
include vector quantization (VQ), block truncation coding (BTC) and joint photographic experts
group (JPEG). A milestone in the history of spatial domain-based data hiding is the method of
least-significant-bit (LSB) replacement [2]. LSB method is very simple as it just replaces the LSBs
in a cover image with secret bits to produce a stego image. The embedding capacity is satisfactory
along with a good image quality, but it is very vulnerable to statistical analysis of the stego image.
Westfeld and Pfitzmann [3] found that the statistics for the frequencies of neighboring pixel value
pairs in the stego image can easily detect the presence of hidden data. To resist statistical attack,
LSB matching [4] was introduced. It improves the way of modifying the cover image such that the
value of the cover pixel is either randomly increased or decreased by one in case the LSB of the cover
pixel is not identical to the secret bit. Later, Mielikainen [5] exploited the direction of modification
to the cover pixels for the first time to enhance the LSB matching scheme. A cover pixel pair is used
as a minimal unit to embed two consecutive secret bits according to a binary function. This scheme
outweighs LSB matching in terms of security and image quality degradation while keeping the same
embedding capacity. However, Zhang and Wang [6] pointed out that Mielikainen’s scheme [5] does
not fully exploit the modification directions, and they presented a novel data hiding scheme called
the exploiting modification direction (EMD) scheme. The EMD scheme first converts binary secret
data into a (2m + 1)-ary stream of secret digits, and then uses a group of m adjacent pixels to carry
one secret digit. Only one pixel value in the group is +1 or −1 according to a new extraction function,
thereby achieving very good image quality. The weakness of the EMD scheme is that the embedding
capacity decreases drastically if the number of pixels in a group increases.

In recent years, many data hiding schemes that are inspired by the concept of EMD have
been proposed to increase the embedding capacity [7–21]. Lee et al.’s scheme [7] employed a pixel
segmentation strategy to provide a larger payload than that of EMD, but this suffers from worse image
quality. Chang et al. [8] introduced a novel scheme based on EMD and Sudoku solutions. Each cover
pixel pair conceals one secret digit in the nonary numeral system by the reference matrix according
to a selected Sudoku solution. The scheme can achieve a higher embedding capacity of 1.5 bits per
pixel (bpp) and a very good image quality. Moreover, the scheme is more secure than the EMD
method since it is very difficult to determine which Sudoku solution is selected from a large number of
possible solutions. To minimize the image distortions, Hong et al. [9] proposed a new scheme that
searches embeddable positions using the nearest Euclidean distance, leading to a better image quality
than that of Chang et al.’s scheme [8] under the same embedding capacity. In 2010, Kim et al. [10]
introduced an EMD-2 scheme that changes the values of at most two pixels in a group. Experimental
results showed that EMD-2 is superior to EMD in larger payloads with similar image distortions.
In 2014, Chang et al. [11] proposed a novel data hiding scheme originating from EMD and turtle shell
structure. The binary secret stream can be embedded directly in such a way that three secret bits are
embedded in a pair of consecutive cover pixels with the guidance of a reference matrix based on turtle
shells. Experimental results revealed that this scheme has a higher embedding capacity than EMD
and Kim et al.’s scheme [10]. Also, it outperforms EMD, Chang et al.’s scheme [8] and Hong et al.’s
scheme [9] in better image quality under the same embedding capacity. Later, Liu et al. [12] improved
Chang et al.’s scheme [11] by constructing a location table from the turtle shell-based reference matrix
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to guide the modification of cover pixel pairs. This scheme achieves very good image quality above
45 dB and is better than Chang et al.’s scheme [11] with higher embedding capacity.

Recently, Kuo et al. proposed a series of EMD-type schemes [15–17] to further improve the
EMD method. In order to increase the embedding capacity, a generalized EMD (GEMD) scheme was
introduced in [16]. Unlike the EMD, the GEMD does not require the conversion of the binary secret
data before embedding so as to accelerate the embedding speed. The GEMD scheme maintains better
embedding capacity than EMD under different pixel group sizes. Later, a modified signed digit (MSD)
scheme [17] for data hiding was proposed that restricts the number of modified pixels to dm/2e when
the group size is m, while all group pixels may be changed in GEMD. Unfortunately, MSD sacrifices the
embedding capacity to obtain better image quality than GEMD. Recently, Kuo et al. [18] proposed a
new EMD-type scheme called binary power EMD (BPEMD) in which both the coefficient and modulus
of the extraction function are binary power. Experimental results reveal that BPEMD has higher
embedding capacity than EMD and MSD and withstands well-known attacks.

In order to further increase the embedding capacity, we propose an EMD-type data hiding scheme
based on Chinese remainder theorem (CRT) [22]. CRT can make a solution to determine an integer by
the given system of simultaneous congruencies in number theory. Nowadays, CRT is used extensively
in secret sharing and other applications of information security [22–24]. Fortunately, we also find that
CRT is very suitable for data hiding. To the best of our knowledge, no EMD-type schemes employing
CRT has been proposed. In this paper, for the first time, we propose a high capacity data hiding scheme
from the combination of CRT and a new extraction function. The characteristics of the proposed
scheme are listed below:

1. It is the first EMD-type data hiding scheme that uses CRT as its main building block. The cover
image is divided into non-overlapping m-pixel groups for embedding data. According to the CRT
and a new extraction function, the ith cover pixel in a group can directly embed (i + 1) binary
secret bits;

2. The coefficients of the constructed extraction function are pairwise coprime integers and the
modulus is the product of the coefficients, which is different from the extraction functions of
previous EMD-type schemes. Therefore, for data extraction, the embedded secret data is first
computed by the extraction function and then retrieved by a modular operation according to the
CRT. This two layer embedding strategy can further increase the security;

3. The embedding capacity of the proposed scheme is significantly high while guaranteeing good
image quality. In particular, the embedding capacity can maintain at least 2.5 bpp and increase
when the number of cover pixels in a group increases.

The rest of the paper is organized as follows. Section 2 briefly reviews typical EMD-type data
hiding schemes and basic knowledge about CRT. Section 3 describes our proposed data hiding scheme.
Experimental results are provided in Section 4, and conclusions are given in Section 5.

2. Preliminaries

In this section, we first give a review of typical EMD-type data hiding schemes, such as EMD [6],
GEMD [16] and BPEMD [18]. Then, we introduce essential knowledge about CRT since it is the most
important building element of our proposed scheme.

2.1. EMD Data Hiding Scheme

The EMD scheme proposed by Zhang and Wang [6] embeds one secret digit in a (2m + 1)-ary
numeral system into m cover pixels, among which at most one pixel is +1 or −1. Let a vector
Pm = [p1, p2, . . . , pm] denote a group of m pixel values and Pm in an m-dimensional space corresponds
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to a value of an extraction function gE, which is computed by the following equation as a weighed
sum modulo (2m + 1):

gE(p1, p2, . . . , pm) =

(
m

∑
i=1

pi · i
)

mod(2m + 1). (1)

According to the extraction function gE, the EMD embedding algorithm (Algorithm 1) is shown
as follows:

Algorithm 1 EMD Embedding Algorithm [6].

Input: cover image Ic and binary secret data stream S
Output: stego image Is

Step 1. Convert binary secret data stream S to a (2m + 1)-ary stream S′. First, S is divided into a sequence of
segments with l bits. Then, each l-bit segment is converted to r digits in a (2m + 1)-ary numeral
system, where

l = br · log2(2m + 1)c. (2)

Step 2. Divide the cover image Ic into non-overlapping groups, each of which consists of m adjacent pixels.
Step 3. Obtain an m-pixel group (p1, p2, . . . , pm) from Ic and one digit t from S′.
Step 4. Compute y = gE(p1, p2, . . . , pm) by Equation (1) and obtain the difference

DE = (t− y)mod(2m + 1).
Step 5. If DE = 0, set p′i = pi for i ∈ {1, 2, . . . , m}, where p′i is the stego pixel. If DE 6= 0 and DE ≤ m, set

p′DE
= pDE + 1 and p′i = pi for i ∈ {1, 2, . . . , m} and i 6= DE. If DE 6= 0 and DE > m, set

p′2m+1−DE
= p2m+1−DE − 1 and p′i = pi for i ∈ {1, 2, . . . , m} and i 6= (2m + 1− DE).

Step 6. Repeat Steps 3–5 until all secret data is embedded.

For the extraction, we retrieve all m-pixel group (p′1, p′2, . . . , p′m) from the stego image Is, and then
compute s = gE(p′1, p′2, . . . , p′m) for each group. Obviously, s is one digit in the (2m + 1)-ary secret
stream S′. Finally, S′ is converted back to the binary secret stream S. Here, we give an example to
illustrate how to embed secret data using the EMD scheme.

Example 1. Given three grayscale pixels (28, 35, 38) of a cover image and a binary secret data stream
S = (0101)2, embed S into the above three-pixel group using EMD when m = 3.

First, compute one digit t = (0101)2 = (5)7. Then, compute y = gE(p1, p2, p3) = (28× 1 + 35×
2 + 38× 3)mod7 = 2. Thus, the difference DE = (t− y)mod(2m + 1) = (5− 2)mod7 = 3 is obtained.
Because DE = m, we set p′1 = p1 = 28, p′2 = p2 = 35 and p′3 = p3 + 1 = 39 in the stego image.
To extract the hidden data, we just compute s = gE(p′1, p′2, p′3) = (28× 1 + 35× 2 + 39× 3)mod7 =

5 = (0101)2.

2.2. GEMD Data Hiding Scheme

From the EMD scheme, we can infer that its largest embedding capacity is achieved at 1.16 bpp
when there are two pixels in a group. The embedding capacity decreases drastically if the size of the
pixel group increases. To enhance the embedding capacity, Kuo and Wang [16] proposed the GEMD
scheme. GEMD has two main contributions: (1) it does not require the conversion of the binary secret
data to a specified numeral stream before embedding; and (2) its embedding capacity stays greater
than 1 bpp when the size of pixel group increases. A new extraction function gG is introduced in
GEMD as follows:

gG(p1, p2, . . . , pm) =

(
m

∑
i=1

pi · (2i − 1)

)
mod2m+1. (3)

According to the extraction function gG, the GEMD embedding algorithm (Algorithm 2) is
shown below:
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Algorithm 2 GEMD Embedding Algorithm [16].

Input: cover image Ic and binary secret data stream S
Output: stego image Is

Step 1. Divide the cover image Ic into non-overlapping groups, each of which consists of m adjacent pixels.
Step 2. Obtain an m-pixel group (p1, p2, . . . , pm) from Ic.
Step 3. Read (m + 1) secret bits from S and obtain the corresponding (2m+1)-ary secret data t.
Step 4. Compute y = gG(p1, p2, . . . , pm) by Equation (3) and obtain the difference DG = (t− y)mod2m+1.
Step 5. If DG = 2m, set p′1 = p1 + 1, p′m = pm + 1 and p′i = pi for i ∈ {2, 3, . . . , m− 1}, where p′i is the stego

pixel, and then go to Step 8; else if DG < 2m, go to Step 6; else go to Step 7.
Step 6. Transform DG to (m + 1)-bit data (dm+1dm . . . d2d1)2.

For i = 1 to m do

If (di+1 = 0 and di = 1) then p′i = pi + 1;

else if (di+1 = 1 and di = 0) then p′i = pi − 1;

else p′i = pi.

End For.

Go to Step 8.
Step 7. Compute DG = 2m+1 − DG and then transform DG to (m + 1)-bit data (dm+1dm . . . d2d1)2.

For i = 1 to m do

If (di+1 = 0 and di = 1) then p′i = pi − 1;

else if (di+1 = 1 and di = 0) then p′i = pi + 1;

else p′i = pi.

End For.
Step 8. Go to Step 2 until all secret data is embedded.

Similar to the EMD scheme, the GEMD scheme extracts the secret data by computing the extraction
function gG using stego pixels as its inputs. To make a clear comparison between GEMD and EMD,
we still take Example 1 to demonstrate the embedding and extracting processes using GEMD when
m = 3.

In the embedding process of GEMD, first, obtain 16-ary secret data t = (0101)2 = (5)16.
Then, compute y = gG(p1, p2, p3) = (28× 1 + 35× 3 + 38× 7)mod16 = 15. Thus, the difference
DG = (t− y)mod2m+1 = (5− 15)mod16 = 6 is obtained. Because DG < 2m = 8, transform DG to
(0110)2. According to Step 6, we set p′1 = p1 − 1 = 27, p′2 = p2 = 35 and p′3 = p3 + 1 = 39 in the
stego image. To extract the hidden data, we just compute s = gG(p′1, p′2, p′3) = (27× 1 + 35× 3 + 39×
7)mod16 = 5 = (0101)2.

2.3. BPEMD Data Hiding Scheme

Unlike the aforementioned EMD-type schemes, both the coefficient and modulus of the extraction
function are binary power in the BPEMD scheme (Algorithm 3) [18]. Since the multiplication of binary
numbers implemented by shifting bits is faster than that of numbers in other radices, BPEMD can
speed up the embedding process. Experimental results show that embedding capacity of BPEMD is
quite similar to that of GEMD but higher than that of EMD and MSD. The extraction function gB in
BPEMD is shown below:

gB(p1, p2, . . . , pm) =

(
m

∑
i=1

pi · 2i−1

)
mod2m+1. (4)



Symmetry 2018, 10, 19 6 of 17

Algorithm 3 BPGEMD Embedding Algorithm [18].

Input: cover image Ic and binary secret data stream S
Output: stego image Is

Step 1. Divide the cover image Ic into non-overlapping groups, each of which consists of m adjacent pixels.
Step 2. Obtain an m-pixel group (p1, p2, . . . , pm) from Ic.
Step 3. Read (m + 1) secret bits from S and obtain the corresponding (2m+1)-ary secret data t.
Step 4. Compute y = gB(p1, p2, . . . , pm) by Equation (4) and obtain the difference DB = (t− y)mod2m+1.
Step 5. If DB = 2m, set p′m = pm + 2 and p′i = pi for i ∈ {1, 2, . . . , m− 1}, where p′i is the stego pixel,

and then go to Step 8; else if DB < 2m, go to Step 6; else go to Step 7.
Step 6. Transform DB to m-bit data (dmdm−1 . . . d2d1)2.

For i = 1 to m do p′i = pi + di.

Go to Step 8.
Step 7. Compute DB = 2m+1 − DB and then transform DB to m-bit data (dmdm−1 . . . d2d1)2.

For i = 1 to m do p′i = pi − di.
Step 8. Go to Step 2 until all secret data is embedded.

From the embedding algorithm of BPEMD, it can be implied that pm can be modified by
{−1, 0, 1, 2}, whereas pi for i 6= m can be modified by {−1, 0, 1}. Obviously, the secret data can
be extracted easily by calculating the extraction function gB with stego pixels as its inputs. Here,
we also use Example 1 to explain the BPGEMD scheme with m = 3.

For the embedding, after obtaining 16-ary secret data t = (0101)2 = (5)16, we compute
y = gB(p1, p2, p3) = (28× 1 + 35× 2 + 38× 4)mod16 = 10. Thus, the difference DB = (t −
y)mod2m+1= (5− 10)mod16 = 11 is obtained. Because DB > 2m = 8, we compute DB = 2m+1−DB =

16 − 11 = 5 and then transform it to (101)2. According to Step 7, we set p′1 = p1 − 1 = 27,
p′2 = p2 = 35 and p′3 = p3 − 1 = 37 in the stego image. To extract the hidden data, we just
compute s = gB(p′1, p′2, p′3) = (27× 1 + 35× 2 + 37× 4)mod16 = 5 = (0101)2.

2.4. Chinese Remainder Theorem

The CRT [22–24], resulting from Bézout’s Lemma [25], is an approach to determine an integer in a
specific range by the given system of simultaneous congruencies in number theory. CRT is used as
a main building block in our proposed scheme and described as follows. Given n positive, pairwise
coprime integers, q1, q2, . . . , qn, and n positive integers, x1, x2, . . . , xn, for xi < qi, a system of equations
can be established for determining an integer X:

x1 = Xmodq1,
x2 = Xmodq2,

...
xn = Xmodqn.

Therefore, the unique solution X in ZP is computed by CRT as X =
n
∑

i=1
Mi ·M′i · ximod∏n

i=1 qi,

where Mi =
∏n

i=1 qi
qi

and Mi ·M′i ≡ 1(modqi).

3. Proposed CRT-Based Scheme for Data Hiding

In this section, we propose a novel EMD-type data hiding scheme based on CRT called CRT-EMD.
In the proposed scheme, the cover image is divided into non-overlapping m-pixel groups. According to
the CRT and a new extraction function, the ith cover pixel in a group can directly embed (i + 1) secret
bits so as to achieve high embedding capacity. In particular, the feasibility of data embedding by our
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proposed scheme is addressed in Section 3.1. In Sections 3.2 and 3.3, we elaborate the embedding and
extracting processes of the proposed scheme, respectively.

3.1. Feasibility Study

In our proposed data hiding scheme, an extraction function which is quite different from those of
previous EMD-type schemes is constructed as follows:

gC(p1, p2, . . . , pm) =

(
m

∑
i=1

pi · qi

)
mod

m

∏
i=1

qi, (5)

where (p1, p2, . . . , pm) is an m-pixel group in the cover image and q1, q2, . . . , qm are m positive,
pairwise coprime integers with qi ≥ 2i+1 for 1 ≤ i ≤ m. Denote the (2i+1)-ary value of (i + 1)
secret bits carried by pi as bi, where 1 ≤ i ≤ m. Now the key issue is whether it is feasible to modify
pi for embedding bi while minimizing the image distortion. In this subsection, we will analyze the
feasibility of the above issue by using CRT.

Let y = gC(p1, p2, . . . , pm) and thus the value of y is obviously in the range of [0, ∏m
i=1 qi).

Assume there is an integer y′ also in the range of [0, ∏m
i=1 qi). Then, we can establish the

following equations:
b1 = y′modq1,
b2 = y′modq2,

...
bm = y′modqm,

(6)

and easily compute the value of y′ by CRT. Therefore, if we can change y to y′ through modifying
p1, p2, . . . , pm, the secret data bi can successfully be embedded in pi. Let DC = (y′ − y)mod∏m

i=1 qi and
the modification on pi be εi (εi ∈ N). Therefore, we must prove

q1 · ε1 + q2 · ε2 + · · ·+ qm · εm = DC (7)

to ensure that y can be modified to y′.
In the following, we apply Bézout’s Lemma (also called Bézout’s identity) [25], a famous theorem

in number theory, to prove Equation (7). Bézout’s Lemma is described as follows:

Bézout’s Lemma [25]. Let a1 and a2 be nonzero integers and denote h as their greatest common divisor.
Then there exist two integers y1 and y2 such that

a1 · y1 + a2 · y2 = H, (8)

where H is a multiple of h.

It should be noticed that the integer pair (y1, y2) is not unique. When one pair of solution (y1, y2)

has been computed, all pairs can be obtained by

y1 = y1 + k · a2

h
, (9)

and y2 = y2 − k · a1

h
, (10)

where k is an arbitrary integer. Let a pair of solutions (y1, y2) that minimize the value of (|y1|+ |y2|)
be called minimal solution. Bézout’s Lemma has an attractive property that it is very easy to
determine the minimal solution. In fact, exactly two pairs of all the solutions satisfy |y1| ≤ |a2/h| and
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|y2| ≤ |a1/h|. The extended Euclidean algorithm [25] always produces one of the above two pairs
from which the minimal solution can be obtained immediately.

Lemma 1 [25]. Let c1 and c2 be coprime integers and H′ be a nonzero integer. Then there exist two integers
y1 and y2 such that

c1 · y1 + c2 · y2 = H′. (11)

Proof. Since the integers c1 and c2 are coprime, their greatest common divisor h is “1”. According to
Bézout’s Lemma, we can infer that c1 · y1 + c2 · y2 = H′ · h = H′. Therefore, Lemma 1 is a special case
of Bézout’s Lemma when a1 and a2 are coprime integers.

Both Bézout’s Lemma and Lemma 1 can be extended to more than two integers as follows:

Lemma 2 [25]. Let a1, a2, . . . , an be n nonzero integers and denote h as their greatest common divisor. Then there
exist integers y1, y2, . . . , yn such that

a1 · y1 + a2 · y2 + · · ·+ an · yn = H, (12)

where H is a multiple of h.

Lemma 3 [25]. Let c1, c2, . . . , cn be pairwise coprime integers and H′ be a nonzero integer. Then there exist
integers y1, y2, . . . , yn such that

c1 · y1 + c2 · y2 + · · ·+ cn · yn = H′. (13)

Now we present a very important theorem regarding our proposed scheme.

Theorem 1. In the CRT-EMD data hiding scheme, there exist integers, ε1, ε2, . . . , εm, satisfying q1 · ε1 +

q2 · ε2 + . . . + qm · εm = DC (Equation (7)). In addition, a minimal solution that minimizes the value of
(|ε1|+ |ε2|+ . . . + |εm|) can be obtained.

Proof. According to the CRT-EMD scheme, there are two integers y and y′ in the same range
of [0, ∏m

i=1 qi), where y = gC(p1, p2, . . . , pm) and y′ is computed by CRT through Equation (6).
Let DC = y′ − y and the modification on the cover pixel pi be εi (εi ∈ N). Since q1, q2, . . . , qm are
positive, pairwise coprime integers, we can hold that q1 · ε1 + q2 · ε2 + · · ·+ qm · εm = DC by Lemma 3.
Especially, we set ε1 = ε2 = · · · εm = 0 when DC = 0. Moreover, a minimal solution that minimizes
the value of (|ε1|+ |ε2|+ · · ·+ |εm|) can be obtained easily by the extended Euclidean algorithm as
stated previously in Bézout’s Lemma. This lemma indicates that the minimal image distortion can be
achieved by employing the minimal solution. In other words, the issue to embed the secret data bi into
the cover pixel pi while minimizing the image distortion is feasible by the CRT-EMD scheme.

3.2. The Embedding Process

Detailed description of the embedding process is provided in the following algorithm
(Algorithm 4).
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Algorithm 4 CRT-EMD Embedding Algorithm.

Input: cover image Ic and binary secret data stream S
Output: stego image Is

Step 1. Divide the cover image Ic into non-overlapping m-pixel groups.
Step 2. Select m positive, pairwise coprime integers, q1, q2, . . . , qm, where qi ≥ 2i+1 for 1 ≤ i ≤ m.
Step 3. Obtain an m-pixel group (p1, p2, . . . , pm) from Ic.
Step 4. For i = 1 to m do

Read (i + 1) secret bits from S;

Obtain the (2i+1)-ary value bi of these bits.

End For.
Step 5. Compute y = gC(p1, p2, . . . , pm) by Equation (5).
Step 6. Compute an integer y′ by CRT. First, establish Equation (6) by using b1, b2, . . . , bm and q1, q2, . . . , qm.

Finally, y′ is computed by CRT as y′ =
m
∑

i=1
Mi ·M′i · bimod∏m

i=1 qi, where Mi =
∏m

i=1 qi
qi

and

Mi ·M′i ≡ 1(modqi).
Step 7. Compute the difference DC = (y′ − y)mod∏m

i=1 qi.
Step 8. Let the modification on pi be εi (εi ∈ N) and find the minimal solution ε1, ε2, . . . , εm for Equation (7).
Step 9. Compute the stego pixel p′i = pi + εi for 1 ≤ i ≤ m.
Step 10. Go to Step 3 until all secret data is embedded.

From the above embedding process, it can be observed that the CRT-EMD scheme has a very
high embedding capacity since (i + 1) secret bits can be directly embedded into the ith cover pixel in a
group. Now let us give a clear explanation for the embedding process of the CRT-EMD scheme.

Given two grayscale pixels (43, 52) of a cover image and a binary secret data stream S = (01100)2,
we will show how to embed S into the above two-pixel group using CRT-EMD when m = 2.
Because m = 2, the cover image is divided into non-overlapping groups for embedding, each contains
2 pixels. Accordingly, the binary secret stream S is divided into a 2-bit segment b1 and 3-bit segment b2,
in which b1 = (01)2 = 1 and b2 = (100)2 = 4. Then, we select two coprime integers q1 = 5 and q2 = 8
and compute y = gC(p1, p2) = (p1 · q1 + p2 · q2)mod(q1 · q2) = (43× 5 + 52× 8)mod(5× 8) = 31
by Equation (5) (See Step 5). After that, we establish two equations y′mod5 = 1 and y′mod8 = 4
and compute y′ = 36 by CRT. We then find the minimal solution (ε1 = 1, ε2 = 0) for the equation
5 · ε1 + 8 · ε2 = DC = (36− 31)mod(5× 8) = 5 according to Step 8. Thus, we obtain stego pixels
p′1 = p1 + ε1 = 43 + 1 = 44 and p′2 = p2 + ε2 = 52 + 0 = 52.

3.3. The Extracting Process

Detailed steps of the extracting process are provided in the following algorithm (Algorithm 5).

Algorithm 5 CRT-EMD Extracting Algorithm.

Input: stego image Is and a sequence of integers q1, q2, . . . , qm

Output: binary secret data stream S

Step 1. Divide the cover image Is into non-overlapping m-pixel groups.
Step 2. Obtain an m-pixel group

(
p′1, p′2, . . . , p′m

)
from Is.

Step 3. Compute y′ = gC
(

p′1, p′2, . . . , p′m
)

by Equation (5).
Step 4. Compute bi = y′modqi and convert bi to (i + 1)-bit binary data for 1 ≤ i ≤ m.
Step 5. Go to Step 2 until all stego pixel groups have been processed. The binary secret data stream S is

exactly retrieved by concatenating all binary data.

The extracting process implies that the extraction function constructed in the CRT-EMD scheme
is different from those in previous EMD-type schemes. The secret data is computed directly by the
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extraction function in existing schemes. In contrast, the value y′ computed by the extraction function
in Step 3 of CRT-EMD is not the embedded secret data but just an intermediate. Then, the secret data
bi is obtained by bi = y′modqi. This two layer embedding strategy can further increase the security.
To extract the hidden data in the stego pixel pair (p′1, p′2) = (44, 52), we first compute y′ = gC(p′1, p′2) =
(44× 5 + 52× 8)mod(5× 8) = 36, and then obtain secret data b1 = y′modq1 = 36mod5 = 1 = (01)2
and b2 = y′modq2 = 36mod8 = 4 = (100)2.

4. Experimental Results

In this section, the experimental results are given to evaluate the performance of the proposed
scheme. Additionally, security analysis is given to demonstrate that the proposed scheme is immune to
malicious attacks. All experiments are implemented by Matlab R2010A in a PC with an Intel(R) Core™
i7-4790 CPU @ 3.6 GHz and an 8-GB RAM. The operating system is Windows 7 Professional 64-bit.

4.1. Performance Evaluation

Since the performance evaluation of our proposed scheme depends on the embedding capacity
and image quality, we will analyze them respectively and compare the results with previous schemes.

The embedding capacity (EC) of a data hiding scheme is defined as the number of secret bits
that can be hidden in every cover pixel. Theorem 2 implies that our proposed scheme can achieve an
extremely high embedding capacity.

Theorem 2. The embedding capacity of the CRT-EMD data hiding scheme is at least 2.5 bpp (bits per pixel) and
it increases when the number m of cover pixels in a group becomes larger.

Proof. In the proposed CRT-EMD scheme, the cover pixel pi in an m-pixel group can embed (i + 1)
secret bits, so the embedding capacity is computed as

ECCRT-EMD = (2 + 3 + · · ·+ (m + 1))/m = (m + 3)/2 bpp. (14)

From Equation (14), we can infer that ECCRT-EMD increases when the size of cover pixel group
increases and the minimal value of ECCRT-EMD is achieved at 2.5 bpp when there are two pixels in a
group (i.e., m = 2).

Figure 1 depicts the variation trend of embedding capacity of different schemes,
including EMD [6], EMD-2 [10], GEMD [16], Sun et al.’s scheme [15], MSD [17], BPEMD [18] and
the proposed CRT-EMD scheme. From Figure 1, we can observe that the maximum embedding
capacity of EMD is 1.16 bpp when m = 2 and the embedding capacity decreases drastically if the
size of pixel group increases. The embedding capacity of EMD-2 is a little bit better than EMD but
still decreases dramatically when m increases as EMD did. On the contrary, the embedding capacity
of GEMD, MSD, BPEMD and Sun et al.’s scheme can always maintain more than 1 bpp in spite of
what value of m is. In particular, the embedding capacity of Sun et al.’s scheme always approaches
1.6 bpp; the best embedding capacity of both GEMD and BPEMD is 1.5 bpp, which is better than that
of MSD under the same condition of m = 2. Compared to the aforementioned data hiding schemes,
the proposed CRT-EMD scheme can significantly increase the embedding capacity in such a way that
the embedding capacity can maintain at least 2.5 bpp and it increases when the number of cover pixels
in a group increases.
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Next, we investigate the image quality of our proposed scheme. In our experiments, ten 512 × 512
grayscale images, i.e., Baboon, Airplane, Fishing boat, Girl, Gold hill, Lena, Peppers, Sailboat,
Tiffany and Toys are used as the cover images. To evaluate the image quality, the peak signal to
noise ratio (PSNR) is used and defined as follows:

PSNR = 10 log10

(
2552

MSE

)
, (15)

where the mean square error (MSE) for a W × H grayscale image is defined as follows:

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(
xij − x′ij

)2
, (16)

where xij and x′ij are the cover pixel value and the stego pixel value at location (i, j), respectively.
As can be seen from Equation (15), a smaller MSE can lead to a larger PSNR which indicates that the
stego image is more similar to the original cover image.

Figure 2 illustrates the stego images produced by our proposed scheme when m = 2.
Figure 2a,c,e,g,i,k,m,o,q,s is the original cover images, and Figure 2b,d,f,h,j,l,n,p,r,t is the stego images.
It is can be observed that the image quality is not degraded by our proposed scheme even if there is a
large amount of data embedded in the cover image.

To thoroughly evaluate the performance of the proposed scheme, Tables 1 and 2 compare the
proposed scheme with four previous schemes [6,16–18] in terms of payload and image quality under
m = 2 and m = 3, respectively. In both tables, “Payload (bits)” represents the total number of secret
bits embedded in a 512 × 512 grayscale cover image and “PSNR (dB)” represents the visual quality
of the stego image after embedding. It can be implied from Table 1 that the payload for m = 2 of the
proposed scheme is significantly better than that of others, meanwhile PSNR value is greater than
41 dB. More specifically, the payload of the proposed scheme is about 262,144 to 340,788 bits larger
than that of others, especially twice larger than that of EMD and MSD. On the other hand, the payload
for m = 3 of the proposed scheme increases to 785,920 bits as shown in Table 2, making the payload
difference between the proposed scheme and other schemes even larger, achieving at least 445,133 bits.
Fortunately, PSNR value of the proposed scheme still maintains greater than 32 dB when m = 3,
which indicates that the distortion of the stego image cannot be detected by human eyes.
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Figure 2. Ten 512 × 512 grayscale cover images and their stego-images. (a) Original image, Baboon;
(b) Stego-image, Baboon; (c) Original image, Airplane; (d) Stego-image, Airplane; (e) Original image,
Fishingboat; (f) Stego-image, Fishingboat; (g) Original image, Girl; (h) Stego-image, Girl; (i) Original
image, Goldhill; (j) Stego-image, Goldhill; (k) Original image, Lena; (l) Stego-image, Lena; (m) Original
image, Peppers; (n) Stego-image, Peppers; (o) Original image, Sailboat; (p) Stego-image, Sailboat;
(q) Original image, Tiffany; (r) Stego-image, Tiffany; (s) Original image, Toys; (t) Stego-image, Toys.
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Table 1. Performance comparisons under m = 2. PSNR: peak signal to noise ratio.

m = 2
EMD [6] GEMD [16] MSD [17] BPEMD [18] Our Scheme

PayloadPSNR PayloadPSNR PayloadPSNR PayloadPSNR PayloadPSNR

Baboon 314,572 52.10 393,216 50.20 314,572 52.11 393,216 49.39 655,360 41.61
Airplane 314,572 52.10 393,216 50.16 314,572 52.11 393,216 49.43 655,360 41.63

Fishing boat 314,572 52.10 393,216 50.23 314,572 52.11 393,216 49.41 655,360 41.62
Girl 314,572 52.10 393,216 50.22 314,572 52.11 393,216 49.44 655,360 41.62

Gold hill 314,572 52.10 393,216 50.17 314,572 52.11 393,216 49.37 655,360 41.64
Lena 314,572 52.10 393,216 50.19 314,572 52.11 393,216 49.43 655,360 41.63

Peppers 314,572 52.10 393,216 50.23 314,572 52.11 393,216 49.36 655,360 4159
Sailboat 314,572 52.10 393,216 50.24 314,572 52.11 393,216 49.39 655,360 41.56
Tiffany 314,572 52.10 393,216 50.22 314,572 52.11 393,216 49.41 655,360 41.60

Toys 314,572 52.10 393,216 50.18 314,572 52.11 393,216 49.36 655,360 41.58

Table 2. Performance comparisons under m = 3.

m = 3
EMD [6] GEMD [16] MSD [17] BPEMD [18] Our Scheme

PayloadPSNR PayloadPSNR PayloadPSNR PayloadPSNR PayloadPSNR

Baboon 235,929 53.56 340,787 50.82 317,194 51.90 340,787 50.49 785,920 32.51
Airplane 235,929 53.61 340,787 50.84 317,194 51.90 340,787 50.46 785,920 32.50

Fishing boat 235,929 53.67 340,787 50.81 317,194 51.90 340,787 50.47 785,920 32.49
Girl 235,929 53.59 340,787 50.80 317,194 51.90 340,787 50.45 785,920 32.45

Gold hill 235,929 53.54 340,787 50.78 317,194 51.90 340,787 50.49 785,920 32.51
Lena 235,929 53.58 340,787 50.77 317,194 51.90 340,787 50.47 785,920 32.51

Peppers 235,929 53.68 340,787 50.83 317,194 51.90 340,787 50.43 785,920 32.59
Sailboat 235,929 53.63 340,787 50.75 317,194 51.90 340,787 50.47 785,920 32.53
Tiffany 235,929 53.61 340,787 50.81 317,194 51.90 340,787 50.46 785,920 32.49

Toys 235,929 53.51 340,787 50.81 317,194 51.90 340,787 50.45 785,920 32.53

Based on the above analyses, the proposed scheme outweighs other related schemes since it
can embed much more secret data into a cover image without any visual perception. Moreover,
the proposed scheme can achieve very good balance between the payload and the image quality
under different values of m, so that we can adjust m to meet different requirements. For instance,
the proposed scheme for m = 2 will be employed if better image quality is required and for m = 3 will
be used if higher payload is needed. In future work, we will focus on the combination of situations for
different m to achieve a better balance between the payload and the image quality.

4.2. Security Analysis

In this subsection, we first theoretically demonstrate the security of the proposed scheme, and
then analyze that the proposed scheme can withstand visual attacks [3]. Two analysis approaches of
visual attacks, i.e., bit plane attack [18] and enhancing LSBs attack [12] are applied to evaluate the
security of the proposed scheme.

The number of pixels change rate (NPCR) is used as a criterion to measure the security in theory.
NPCR is the percentage of different pixel numbers between the cover image and the stego image,
which is defined as follows:

NPCR(Ic, Is) =
∑i,j A(i, j)

W × H
× 100%, (17)

where W and H represent the width and the height of the cover image Ic and stego image Is while
A(i, j) is computed as:

A(i, j) =

1, xij 6= x′ij
0 xij = x′ij

. (18)
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The expected NPCR value is 99.61% for a grayscale image. Table 3 lists the NPCR values for
the proposed scheme and the average NPCR is about 86.13% for m = 2 and 84.82% for m = 3,
which are very close to the expected value. This provides a strong evidence to ensure that our scheme
is secure theoretically.

Table 3. Number of pixels change rate (NPCR) values of the proposed scheme.

Image
Our Scheme

NPCR (m = 2) NPCR (m = 3)

Baboon 86.04% 84.79%
Airplane 86.10% 84.87%

Fishing boat 86.12% 84.80%
Girl 86.26% 85.02%

Gold hill 86.27% 84.91%
Lena 86.11% 84.93%

Peppers 86.07% 83.73%
Sailboat 86.11% 84.90%
Tiffany 86.09% 84.81%

Toys 86.08% 84.43%
Average 86.13% 84.82%

In the bit plane attack [18], a plane image is constructed by extracting corresponding bit of each
pixel in the original image. The 512 × 512 8-bit grayscale cover image “Baboon” and its stego image
are used in our experiment to conduct the bit plane attack. Eight plane images for the cover image and
the corresponding stego image (m = 3) are shown in Figures 3 and 4, respectively. Results reveal that
a malicious attacker is unable to find any clues to embedded secret data by investigating Figures 3
and 4 because the modification on each cover pixel has no direct relationship with secret data. Thus,
the proposed scheme is secure against the bit plane attack.Symmetry 2018, 10, 19 15 of 17 
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we perform the enhancing LSBs attack (  3k ) on two stego images, one (see Figure 5a) is produced by 

LSB substitution and the other (see Figure 5c) by our proposed scheme. Obviously, Figure 5b shows 

that there is a specific pattern for LSB substitution when the enhancing LSBs attack is launched on 

Figure 5a. On the contrary, the proposed scheme embeds the secret data according to the CRT and an 

extraction function rather than using LSB substitution, so no specific pattern is determined (see Figure 

5d). Finally, Table 4 summarizes the features of typical EMD-type data hiding schemes. 
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Figure 4. Plane images of 512 × 512 stego image of “Baboon”. (a) 8th bit; (b) 7th bit; (c) 6th bit;
(d) 5th bit; (e) 4th bit; (f) 3rd bit; (g) 2nd bit; (h) 1st bit.

In the enhancing LSBs attack [12], a pattern image is generated by extracting k LSBs of each
pixel of the original grayscale image and then making them most-significant bits (MSBs) followed
by a sequence of “0” bits with length of (8− k). If a stego-image is produced by LSB substitution,
a specific pattern will appear in the pattern image so that the attacker can detect the use of LSB. In our
experiment, we perform the enhancing LSBs attack (k = 3) on two stego images, one (see Figure 5a)
is produced by LSB substitution and the other (see Figure 5c) by our proposed scheme. Obviously,
Figure 5b shows that there is a specific pattern for LSB substitution when the enhancing LSBs attack is
launched on Figure 5a. On the contrary, the proposed scheme embeds the secret data according to the
CRT and an extraction function rather than using LSB substitution, so no specific pattern is determined
(see Figure 5d). Finally, Table 4 summarizes the features of typical EMD-type data hiding schemes.
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Table 4. Comparisons of features of EMD-type schemes.

Feature EMD [6] GEMD [16] MSD [17] BPEMD [18] Our Scheme

Binary secret data embedded directly No Yes No Yes Yes
Maximum embedding capacity (bpp) 1.16 1.5 1.16 1.5 ≥2.5

Good PSNR (>30 dB) Yes Yes Yes Yes Yes
Coefficient and modulus are 2-power No No No Yes No

5. Conclusions

In this paper, we proposed a high capacity EMD-type data hiding scheme based on CRT. To the
best of our knowledge, it is the first EMD-type scheme that uses CRT as its main building block. In the
proposed scheme, a novel extraction function is constructed in which the coefficients are pairwise
coprime integers and the modulus is the product of the coefficients. According to the CRT and the
constructed extraction function, the cover image is divided into non-overlapping m-pixel groups and
the ith cover pixel in a group can directly embed as much as (i + 1) secret bits. The embedding capacity
of the proposed scheme is significantly high while guaranteeing good image quality. In particular,
the embedding capacity can maintain at least 2.5 bpp and increase when the number of cover pixels in
a group increases. Experimental results showed that the proposed scheme, in comparison with some
related schemes, outperforms in achieving a better balance between the embedding capacity and the
image quality.

Author Contributions: Yanjun Liu and Chin-Chen Chang proposed the idea of the paper; Yanjun Liu wrote the
paper; Peng-Cheng Huang conceived and designed the experiments; Cheng-Yi Hsu performed the experiments.

Conflicts of Interest: The authors declare no conflicts of interest.
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