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Abstract: NK cell ADCC supports monoclonal antibody anti-tumor therapies. We investigated serial
ADCC and whether it could be predicted by NK phenotypes, including expression of CD16A, CD2
and perforin. CD16A, the NK receptor for antibodies, has AA158 valine or phenylalanine variants
with different affinities for IgG. CD2, a costimulatory protein, associates with CD16A and can augment
CD16A-signaling. Pore-forming perforin is essential for rapid NK-mediated killing. NK cells were
monitored for their ADCC serial killing frequency (KF). KF is the average number of target cells killed
per cell by a cytotoxic cell population. KF comparisons were made at 1:4 CD16pos NK effector:target
ratios. ADCC was toward Daudi cells labeled with >'Cr and obinutuzumab anti-CD20 antibody.
CD16A genotypes were determined by DNA sequencing. CD2, CD16A, and perforin expression
was monitored by flow cytometry. Serial killing KFs varied two-fold among 24 donors and were
independent of CD16A genotypes and perforin levels. However, high percentages of CD2pos of the
CD16Apos NK cells and high levels of CD16A were associated with high KFs. ROC analysis indicated
that the %CD2pos of CD16Apos NK cells can predict KFs. In conclusion, the extent of serial ADCC
varies significantly among donors and appears predictable by the CD2posCD16Apos NK phenotype.

Keywords: ADCC; antibody-dependent cell-mediated cytotoxicity; CD2; CD16A; NK; natural killer
cell; serial killing

1. Introduction

Antibody-dependent cell-mediated cytotoxicity (ADCC) is critical for many monoclonal antibody
(mADb) therapies directed toward tumors. ADCC involves a virally infected or tumor “target” cell
with antigens, IgG1 or IgG3 antibodies that bind to the antigens, and effector cytotoxic cells with
receptors for the antibody, reviewed [1]. Both natural killer (NK) lymphocytes and macrophages can be
ADCC effector cells. NK cells mediate very fast cytotoxic destruction and over 75% of blood NK cells,
including most subsets, have receptors for antibodies [2]. Despite the potency of NK ADCC, some
patients’ tumors respond to mAb anti-tumor therapies while many do not [3-6]. Tumors can escape
from attack by outgrowth of variants lacking the critical antigen [7] but there has been little attention
given as to how the extent of variations in ADCC capacity could contribute to patient outcomes.
Cytotoxic capacity differs from recognition of antibodies. Cytotoxic capacity, affected by amounts of
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cytotoxic proteins, can be limiting despite optimal recognition of “target” cells. Recognition can also
be limiting and is affected by the properties of antibodies and by cellular Fc-receptor genetic variants
that differ in affinity for the Fc of IgGs. These variants have been extensively studied for their effects
on several anti-tumor immunotherapies, reviewed [8]. In this report, we focused on inter-individual
variation in serial ADCC. Serial ADCC is the sequential killing of multiple antibody-coated targets by
a single NK cell. It affects ADCC capacity. We tested for an immunophenotype that could predict high
serial ADCC.

Serial NK cell-mediated killing can be investigated by time-lapse cinematography [9-12], by
microscopy of single cells in microchip wells [10,13-15], and by a killing frequency (KF) approach [16].
KF is the average number of “target” cells killed per potential effector cell in a large population of
effector cells. When the KF exceeds one there is serial killing [16]. Inter-donor variations in KFs
were used to compare serial ADCC. Fc-receptor (CD16A) positive NK cells were used as the effector
cell population. These receptor-positive cells had to be determined because not all NK cells have
Fc-receptors. The effector cell population was left within the peripheral blood mononuclear cells
(PBMCs) and used without further isolation. Previously, isolated NK cells showed comparable ADCC
activity as unfractionated PBMCs (reference [17] Figure 4, d0i:10.1016/j.jim.2017.11.002). This figure
illustrates that ADCC by non-NK cells is negligible within the experimental conditions used. In order to
quantify the number of ADCC effector NK cells in the whole PBMCs, a panel of fluorescent antibodies
toward specific cell markers and Trucount® beads were used with flow cytometry. The population of
NK ADCC effector cells was specifically identified as being CD3negCD16posCD7posCD33negCD45pos,
which effectively excludes T cells, B cells, and monocytes.

The KF approach has one advantage over time-lapse cinematography and microchip microscopy
which provide information about the maximal serial killing by individual cells. KFs analyze thousands
of killer cells and include diverse NK subpopulations. There are over 6000 subgroups of NK cells,
each with different combinations of receptors and the ratios of the subgroups vary from donor to
donor [2]. Most of these NK subgroups have CD16A receptors for the Fc of antibodies. However,
the subgroups differ in additional, non-Fc receptors that can regulate ADCC [18-20]. Variability in
the frequencies of the subgroups with these receptors contributes to variability in cytotoxic capacity
among donors [2]. In the present study, there were thousands of NK cells per well, six effector to target
(E:T) ratios, and quadruplicate wells for each effector to target ratio (E:T),. When comparing human
subjects, it is important to utilize a large enough sample of NK cells so that the complex nature of each
individual’s NK cell population is truly represented.

In contrast to KF assays, time lapse cinematography and microchip assays track only a few cells
or a few hundred cells, respectively. However, information from cinematography and microchip
experiments can help in the interpretation of the KF ADCC assays. Time lapse cinematography
indicated that, in NK modes without antibody, there is heterogeneity in serial killing. Some cells within
the effector cell populations bound to targets without killing them while the cytotoxic cells killed 1, 2,
3, or even up to 5-7 times [16,21]. Microchip experiments also indicated cellular differences in killing
when the NK cells are in ADCC mode. A substantial fraction of the potential killers with CD16A killed
no targets at all while potent ADCC cells killed up to three target cells before they stopped killing [14].
KF assays average the activity of all the cells with receptors needed for recognition of the targets,
including those cells that kill and those that do not kill. Assays with KF values >1.0 indicate that there
is serial killing by a cell population but do so without revealing how many cells are actually killing or
how many times each killer kills. In this study, the KF assays indicate the overall net serial ADCC
capacity of the CD16Apos NK cells.

The inter-donor variability of KFs that we observed provided the data needed for prediction of
serial ADCC by immunophenotypic characteristics. Three proteins, CD16A, CD2, and perforin, were
selected for phenotyping. CD16A is the NK cell receptor that binds the Fc-region of IgG antibodies in
ADCC. Its variability among donors is partially determined by genetics. The FCGR3A gene has two
alleles that encode CD16A at AA158: one that encodes valine (V) and has twice the affinity for the



Antibodies 2020, 9, 54 30f18

Fc-IgG and two-fold more cell surface CD16A than the other, a phenylalanine (F) variant [8,22-24].
CD16A is lost by proteolytic cleavage during killing [25] and upon IL-2 activation [26] which makes
CD16A a candidate receptor to cause variations in serial ADCC. Because of the higher affinity and
cellular expression, we anticipated that cells with V alleles (V/F and V/V) would mediate more serial
killing than F/F cells.

CD2 is a costimulatory molecule that generates signals to increase the cytotoxicity of NK
cells [27-30], reviewed [31]. CD2 physically associates with CD16A [32]. Co-engagement of CD2 and
CD16A will result in a Ca?* influx and augment anti-CD16A redirected lysis by NK cells [18]. Among
healthy adults, the % of NK cells that are CD2positive (%CD2pos) varies widely, e.g., from 16% to
90% (median 66% for 103 donors, D. Redelman, unpublished results from a study of healthy adult
civilians that was funded by the US Office of Naval Research). Variability is needed as a basis for a
predictive test.

Perforin is a critical pore-forming protein that is stored in intracellular cytotoxic granules of T and
NK cells, reviewed [33] and released during killing. While only a few granules are necessary for a killing
event [34] and there are many cytotoxic granules per NK cell, depletion of perforin does occur upon
serial re-stimulation of NK cells [35]. Perforin levels in NK cells also vary among donors [36,37], making
the three proteins, CD16A, CD2, and perforin, candidates to limit NK cell-mediated serial ADCC.

Here we report ADCC killing frequencies by unstimulated freshly isolated NK cells that can be as
high as an average of four dead targets per killer cell. This observation indicates that substantial serial
ADCC can be mediated by NK cells before they lose their Fc-receptors. The CD16A expressed per NK
cell and the %CD2pos of the CD16A-positive NK cells varied widely among the 24 donors of this study,
providing a range for correlations with serial ADCC. Excess targets favored increased serial killing
and increased KFs. One effector to target ratio, 1:4, was used for inter-donor KF comparisons. Serial
killing correlated best with the percentage of CD16Apos NK effector cells that expressed CD2. Receiver
operating characteristic (ROC) analysis indicates that the %CD2pos of CD16Apos NK cells may be
suitable as a test to predict serial ADCC. These observations indicate that CD2 immunophenotyping of
NK cells may be worthy of consideration to select patients for antibody-directed anti-tumor therapies.

2. Materials and Methods

2.1. Human Subjects

The human subjects were the healthy family members and additional controls from a clinical
study [17]. Citrated blood was drawn in Salt Lake City, UT, USA, and shipped overnight to Reno, NV,
USA, where PBMCs were isolated [38]. Use of human subjects was approved by institutional review
boards for the Bateman Horne Center and for the University of Nevada, Reno School of Medicine.
Written informed consent was obtained from the blood donors. The ages, sex, and CD16A genotypes
of the blood donors are presented in Table 1. All blood donors were Caucasian. Blood samples
were coded in Salt Lake City. ADCC and EC50 assays, CD16A NK cell counts, immunophenotyping,
and CD16A genotypes were determined with the coded samples and decoded after completion of
the experiments.

Table 1. Characteristics of the Donors.

Characteristic All Female Male CD16A AA158
F/F F/V & V/V
Number of donors 24 16 8 12 12
Percentage 100% 67 33 50% 50%
Range, age in years 21to 85 21to 85 22 to 69 NA NA
Mean age +/— sd 45 +/—- 17 48 +/— 16 38 +/— 18 NA NA

Median age 42 47 33 NA NA
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2.2. Preparation of Peripheral Blood Mononuclear Cells (PBMCs)

The study involved 15 shipments with 2-6 blood samples per shipment. Forty milliliter of blood
was divided as follows: 8 mL for DNA extraction (PAXgene®, Qiagen, Germantown, MD, USA, a BD
company) and the remaining 32 mL into citrated tubes. The PBMCs were cultured overnight without
stimulation [39] at 1-2 x 10° cells/mL in 90% Dulbecco’ s complete media containing high (4.5 g/L)
glucose and L-glutamine (Corning), 10% fetal calf serum (Atlanta Biologicals, Atlanta, GA, USA),
10 mM hepes (Sigma-Aldrich, St. Louis, MO, USA), and 1% penicillin-streptomycin (Sigma-Aldrich).
Culture conditions and assay media were standardized with a single lot of fetal calf serum and one lot
of tissue culture flasks (Biolite, Thermo Scientific, Waltham, MA, USA) throughout the study.

2.3. ADCC Assays

2.3.1. ADCC Methods

The %'Cr-release ADCC assay [40] has three important features: (1) MHC class I-negative
Daudi target cells (to avoid variations contributed by KIR engagement with MHC-I proteins); (2) a
type 2 [41] anti-CD20 monoclonal antibody that is poorly cleared from the membranes of B cells
(so that Daudi B cells could be pretreated with antibodies and washed to prevent competitive
ADCC by B cells within the PBMCs that would occur if anti-CD20 antibody were present in the
assays); and (3) use of unfractionated PBMCs with TruCount® beads to determine the numbers
of CD16A receptor-positive effector (E) NK cells within the PBMCs (to reduce NK cell losses that
would occur during further isolation). The method is illustrated in a graphical summary [17] at
https://ars.els-cdn.com/content/image/1-s2.0-50022175917304295-fx1_Irg jpg.

ADCC toward the Daudi cells was mediated by six different concentrations of CD16Apos NK cells.
Daudi cells clear some of the type 2 anti-CD20 antibody during the 4 h assay; however, ADCC was
unaltered when freshly labeled and 4 hr-preincubated at 37 °C targets were compared (Hudig et al.,
unpublished results). The Daudi lymphoma target cell line [42] from the ATCC (catalog # CCL-213)
was routinely tested and negative for mycoplasma. Daudi cells were labeled with 0.5 mCi Na®'CrO,
(Perkin Elmer, Waltham, MA, USA), pretreated with an antigen-saturating concentration (1 pg/mL) of
Fc-engineered, non-fucosylated anti-CD20 monoclonal antibody obinutuzumab (Gazyva®) [43-45]
for 0.5 h at room temperature and then washed 5 times to remove unbound antibody. PBMCs
containing the NK effector cells were diluted two-fold in quadruplicate wells in 96-well V-bottom
plates (Costar 3894) to create six CD16Apos NK effector to target cell (E:T) ratios.

Daudi cells (with or without mAb), for ADCC or for killing in NK mode in the absence of
antibodies, respectively, were added at 10,000 cells in 0.1 mL to each well. Plates were centrifuged for
3 min at 1000 rpm and incubated for 4 h at 5% CO, and 37 °C. After incubation, plates were centrifuged
for 10 min at 1200 rpm and 0.1 mL of cell-free supernatant was counted for °!Cr-release in a Packard
Cobre II gamma counter. The percent specific release (SR) was calculated using the formula

% SR = [(Experimental counts — Spontaneous Release)/(Max — Spontaneous Release)] x 100.

Spontaneous release is the leak rate of targets without PBMCs and the Max is the radioactivity
released by targets lysed with 1% SDS. NK activity to Daudi cells without antibody was negligible
(<~5% at the highest E:Ts).

Percent ADCC was plotted as linear cytotoxicity with y = % specific °!Cr release vs. x = the logg
of the six TruCount® CD16Apos NK effector cell to Daudi target cell ratios. The linear cytotoxicity was
used to calculate y = mx + b, with the lytic slope = m, x = logjg of the E:T and b = the y intercept. The
p values for linearity were <0.05, with R? values >0.8. Because the slopes of the cytotoxicity varied
among donors, it was necessary to select one E:T (1:4) for inter-donor comparisons of killing frequencies.
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2.3.2. Killing Frequencies (KFs)

Killing frequencies are the number of “target” cells killed per cell within a cytotoxic cell
population [16]. In this study, KFs were calculated as the number of Daudi cells killed per CD16Apos
NK cell. The KFs can also be calculated by dividing the % of cells that are killed at a given E:T by
the % of target cells that would be killed if each CD16Apos NK (at that E:T) killed one target. For
example, at an E:T of 1:4, if every CD16Apos NK killed one target cell, one out of four available targets
would be killed: (1 + 4) = 25%. If the observed killing (at E:T = 1:4) was 50%, then the KF would
be (50% + 25%) = 2, indicating two targets were killed per “E” CD16Apos NK cell and that serial
ADCC killing had occurred (see Graphical Abstract). To repeat, ADCC KF is calculated by dividing
the number of antibody-coated Daudi target cells killed by the number of CD16Apos NK cells present.
The KFs increased as the available target cells increased: the highest KFs were always at the lowest E:T
for each donor (Appendix A Figure A2).

Killing frequencies at one E:T, 1:4, with 2500 effectors and 10,000 targets, were used for the
inter-donor comparisons. The numbers of CD16Apos NKs (Es) in the wells were based on their
Trucounts® within the PBMCs. As a result, the assays lacked exact 1:4 E:Ts in the wells but always had
E:Ts that were below and above 1:4 and that were always in the range of linear cytotoxicity. The %
killing at 1:4 was determined algebraically from the linear cytotoxicity described in method 2.3.a. It was
calculated as y = mx + b, with y = % killing, m = slope, x = 1og10 of 0.25 [an E:T of 1:4], and b = the y
intercept. Finally, in order to obtain the number of cells killed at an E:T of 1:4, because there were
10,000 Daudi cells per well the % killed was multiplied by 10,000. This number of killed cells was
divided by 2500 (the number of CD16Apos NK cells present) to obtain the KFs at 1:4.

2.3.3. EC50s for NK Recognition of Target-Bound Antibody

The EC50s (effective concentrations of antibody needed for 50% of maximal ADCC [46]) were
determined with one concentration of PBMCs with four-fold dilutions of obinutuzumab in the assays at
final concentrations from 0.04 to 625 ng/mL. EC50s were determined at 4 h, with duplicate or triplicate
wells for each antibody concentration.

2.4. TruCount® Determination of the Numbers of CD16A-Pos NK Cells in the ADCC Assays

Counts of the CD16A-pos NK cells within the PBMCS were as previously described [17].
Fifty-microliter aliquots of PBMCs were added to TruCount® tubes (Becton Dickenson no. 340334 [47])
with fluorescent beads, labeled for 30 min with antibodjies, fixed, and analyzed without washing to
count beads and cells. The cells were labeled with PacBlue anti-CD45 (clone HI30) to identify all
cells; FITC-anti-CD3e (clone UCHT1) to identify T cells; FITC-anti-CD7 (clone CD7-6B7), APC-Cy7
anti-CD56 (clone HCD56), and PerCP-anti-CD16A (clone 3G8) to identify ADCC effector cells, and
PE-Cy7 anti-CD33 (clone P67.6) to identify monocytes, purchased from BioLegend (San Diego, CA,
USA). The mAbs were all mouse IgG1 that do not bind to human CD16A. The ADCC effector NK cells
were distinguished as CD3negCD7posCD16posCD33negCD45pos and CD56variable. Inclusion of
anti-CD7 was critical to distinguishing the subgroup of CD56negCD7posCD16Apos NK cells [48] from
CD56negCD7negCD16Apos monocytes (that are largely CD33pos [49]). Cells were analyzed the same
day as the ADCC assays using a BD Biosciences Special Order Research Product LSR II analytical flow
cytometer with a high throughput sampler unit. The data were assessed with Flow]o software (Flow]o,
LLC, Ashland, OR, USA).

2.5. Immunophenotyping and Staining for CD2 Counter-Ligands

To monitor the %CD2pos cells and CD2 MFIs, PBMCs were stained with PacBlue anti-CD45,
FITC-anti-CD3e FITC T cells and FITC-anti-CD91 (clone A2MR-alpha2) to identify monocytes,
BV650-anti-CD19 (clone HIB19.11) to identify B cells, AF647-anti-CD16A and PE-anti-CD2 (clone
RPA-2.10), all purchased from BioLegend, San Diego, CA, USA, except for the anti-CD91 that was
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purchased from BD BioSciences, San Jose, CA, USA. To monitor intracellular perforin, cells were first
stained for extra cellular proteins with PacBlue anti-CD45, PE-Cy7 anti-CD3e, and PE-Cy7 antiCD33,
the same clones as above, then fixed and permeabilized using IntraPrep reagents (Beckman-Coulter,
Indianapolis, IN, USA), and stained with FITC-anti-perforin (clone delta-G9) or a FITC-isotype control
(clone MPC-11), from BioLegend. Cells were analyzed on the day of labeling for perforin expressed
by the NK cells. The lots of labeled antibodies were kept constant throughout the study to reduce
inter-experimental variability. Daudi cells and K562 cells (ATCC® CCL-243™) were stained for counter
ligands of CD2 with PE-anti-CD15 (clone SSEA-1) or PE-anti-CD58 (clone TS2/9), from BioLegend.

2.6. Genotyping of FCGR3A Alleles Encoding CD16A F and V Variants

CD16A genotypes at AA158 were determined by Stephen K. Anderson, Ph.D., by PCR and
DNA sequence analysis at the Frederick National Laboratory for Cancer Research, Frederick,
MD, USA and additionally by flow cytometry. Amplicons of the FCGR3A gene that excluded
the FCGR3B gene were generated with forward and reverse PCR primers, (5’ to 3’) for CD16
(TCCTACTTCTGCAGGGGGCTTGT) and (CCAACTCAACTTCCCAGTGTGATTG), respectively. The
amplicons were sequenced using Sanger methodology. The F/F genotype was also distinguished from
V/F and V/V genotypes by flow cytometry [17] using the clone MEM-154 anti-CD16 mAb. MEM154
reacts with the CD16A 158 V but not the 158 F [50] and also reacts with CD16B (that has only the valine
form). PBMCs were labeled with an antibody panel: FITC-anti-CD3e (cloneOKT3); PE-anti-CD16A
or PE anti-CD16A 158V selective-(MEM154); BV605-anti-CD19; PacBlue anti-CD45; FITC-anti-CD91
and APC-Cy7-anti-CD56, clones and sources previously indicated except for MEM154 mAD (Pierce
Chemical Co, Rockford, IL, USA).

2.7. Statistical Analyses

ADCC measurements and linear correlations were determined with the Excel Analysis Tool Pack,
using best fit for linear regressions to determine KFs. Student’s t-tests in Excel were used to compare
the groups of donors. Excel and GraphPad Prism 7 (San Diego, CA, USA) were used for illustrations.
Predictive potentials of the phenotypes were assessed using receiver operating characteristics (ROC)
analyses [51] with SAS software version 9.4. The comparison of %CD2pos and CD16A MFI ROCs was
made by Mann-Whitney two-sample rank measure (a generalized U statistic).

3. Results

3.1. Killing Frequencies Indicate Serial ADCC and Inter-Donor Variability

A few technical aspects [17] were critical to this study. The “effector” (E) cytotoxic lymphocytes
were freshly isolated, unstimulated blood NK cells that express CD16A receptors for antibodies. The
“target” (T) lymphocytes were Daudi B lymphoma cells bound with antibodies. It is important to realize
why Daudis were chosen and how they were prepared. Daudis lack MHC class I proteins (which
could increase vulnerability to NK but Daudis are nonetheless poor targets for NK activity without
antibodies). Without MHC-I, ADCC to Daudis will be unaffected by KIR-MHC-I inhibition. The
antibody, obinutuzumab anti-CD20, was produced without fucosylation (to better support ADCC [52])
and is Fc-engineered for high affinity for CD16A. Obinutuzumab, as a type-2 anti-CD20 mAb, will
remain on the surface of the lymphoma cells rather than be endocytosed like a type 1 anti-CD20
mAD. >!Cr-radioactive Daudi cells were obinutuzumab-labeled and washed free of excess antibody
so that unfractionated PBMCs could be used as the source of the NK effectors. If obinutuzumab
were in the assay, the non-radioactive B cells within the PBMCs would compete and reduce killing of
the 5!Cr-Daudis. Use of unfractionated PBMCs permitted maximal NK cell recovery with minimal
handling of the effector cells.

Killing frequency (KF) is a term [16] used for the average number of cells that a known number
of cells in a cytotoxic lymphocyte population will kill in a fixed period of time. Killing frequencies
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greater than 1.0 represent serial killing. Lower KFs could indicate that no serial killing takes place or
they could indicate that serial killing occurs but by only a fraction of the cells within the cytotoxic cell
population that are engaged in killing. KFs are useful for inter-donor comparisons because multiple
donors can be assessed concurrently, thereby reducing inter-experimental variability. Only a fraction
of the CD16Apos NK cells actually killed when observed by microscopy [14,16] so these KF numbers
represent an underestimation of serial killer activity.

The KFs can be directly determined for each E:T in the ADCC assays, by dividing the % target
cells killed by the % dead cells that would be expected under the assumption that each cell in the
cytotoxic cell population kills only one target cell. At an E:T of 1:4 one round of killing would kill
25% of the targets which would be a KF of 1.0. When the killing at this E:T was 48%, the KF was 1.9
(illustrated in Figure 1A). We selected a 4 h time point for determination of the KFs as ADCC was
nearly complete at this time (see Appendix A Figure Al).
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Figure 1. ADCC killing frequencies (KFs). (A) Methodology. KFs for comparisons were determined
at the CD16Apositive NK cell (E) to antibody-labeled target (T) cell ratio (E:T) of 1:4. The KF of 1.9
is indicated in the red box, the 48% target cells killed (arrow) divided by 25% (indicated by the blue
horizontal line for death predicted for a single round of killing by every receptor-bearing cell). (B)
and C. Individual variation in KFs. Variations in KFs at E:T 1:4 for 24 donors. (B) KFs vs. age. The
p values are indicated for linear fit. The p for women was influenced by inclusion of a very elderly
subject. (C) KFs vs. gender. The boxes illustrate the 2nd and 3rd quartiles, the X’s indicate the mean
values, the bars indicate the medians, and whiskers indicate the values for lower 1st and upper 4th
quartiles. Points would indicate outliers. Other whisker plots in this report follow this format.

3.2. ADCC Killing Frequencies of 24 Donors

KFs increased as the number of available target cells increased per CD16Apos NK cell, as illustrated
in Appendix A Figure A2. Six donors, including the one illustrated, had serial killing that averaged
4 or more dead targets per CD16Apos NK cell at their highest E:T ratios (of >1:28). At the highest
target ratios available for each donor, with average E:Ts of 1:18, 21 of 24 donors (88%) had KFs >1.5,
providing evidence for widespread serial ADCC. The pattern of increased serial killing with increased
availability of targets was reported previously for NK killing with or without antibodies [16].

The KFs at a 1:4 ratio of CD16Apos NK to Daudi cells were selected for inter-donor comparisons.
The 1:4 ratio was selected because it was within the six E:T ratios of the >!Cr-assays for all the donors
(as indicated by the red arrow, Figure 1A). At the E:T of 1:4, the KFs ranged between 1.1 and 2.2. The
mean KF was 1.6 +/— 0.3 for all donors, with mean KFs of 1.6 +/— 0.4 for females and 1.7 +/— 0.3 for
males. There was little evidence for correlation of KFs with age (Figure 1B) or gender (Figure 1C).

3.3. The Effect of CD16A Genotypes on ADCC KFs

We compared F/F vs. V/F and V/V genotypes. The V/V and V/F genotypes were combined for
comparisons because the effect of the V allele dominates in heterozygotes. The mean KF for the F/F
cells was 1.5 +/— 0.4, while the mean KF for the V/F and V/V donors was 1.7 +/— 0.3 (Figure 2A),
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indicating similar serial ADCC. The CD16A genotypes did have effects that have been reported before,
indicating that our samples have typical properties. The F/F genotype required more antibody to
support lysis, as indicated by the EC50s (effective concentration of antibody to support 50% lysis
(Figure 2B). The lower CD16A MFIs of the F/F genotype indicated lower numbers of CD16A receptors
per NK cell (Figure 2C), consistent with an earlier report using the 3G8 anti-CD16A antibody [22]. The
lack of CD16A genotypic effects on serial ADCC was determined with optimal anti-CD20 antibody.
Obinutuzumab, a type 2 anti-CD20 antibody, was non-fucosylated, Fc-engineered to improve binding
to CD16A, and at saturating antibody concentrations on the Daudi cells. Thus, inter-donor differences
in KFs occurred under antibody conditions that over-rode CD16A genotypic effects (e.g., EC50s) that
can occur at low antibody concentrations.
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Figure 2. Effect of CD16A genotypes on serial ADCC. The V/V and V/F genotypes were combined
for comparisons because the effect of the V allele dominates in heterozygotes. There was only one V/V,
11 V/E, and 12 F/F donors. p values represent 2-way T tests. (A) KFs at 1:4 E:Ts. The means (X’s) and
medians (bars in the boxes) were similar for the genotypes. (B,C) Effects of CD16A genotypes on NK
function and phenotype. (B) EC50s. More antibody was required to support ADCC by the F/F donors,
which was nearly significant p = 0.055 by a one-way T test, and is consistent with previously reported
EC50s for the F/F genotype [23,46]. Blue and red dots indicate outlier values. Representative EC50
determinations of the genotypes are illustrated in Appendix A Figure A3. (C) CD16A expression. The
V/F & V/V donors had ~1.7-fold more CD16A per cell than the F/F donors.

3.4. Assessment of NK Phenotypic Markers to Predict KF

To predict serial killing, we divided the samples into two groups, one with high and one with
low KFs. We used a KF of equal to or greater than 1.5 as the dividing cutoff. There were 14 donors in
the high KF and 10 in the low KF groups, with means of 1.8 +/— 0.02 and 1.3 +/— 0.04, respectively
(Figure 3A). CD16A expression was similar for both groups (Figure 3B). There were no detectable
differences in perforin levels (Figure 3C). Also, within each group, expression of CD16A and perforin
failed to correlate with KF (not illustrated). In marked contrast, the percentage of the CD2pos of
CD16Apos NKs was much greater for the donors with high KFs (mean 76.6%, p < 0.001) than with low
KFs (mean 53.3%) (Figure 3D). The amounts of CD2 expressed by these CD2pos cells were similar
for both groups (Figure 3E) and indicate that the CD2posCD16Apos NK cells have sufficient CD2 to
augment signaling, regardless of their KF status.

3.5. Tests of CD2 Immunophenotype to Support Prediction of Serial ADCC Capacity

The percentage CD2pos of CD16Apos NK cells correlated positively with KFs (Figure 4A).
The KF-%CD2pos correlations applied to both CD16A F/F and V/F and V/V donors. The statistical

significance of the V donors was affected by one outlier, but the significance for all donors was p < 0.001
(black dotted line).
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Figure 3. Assessment of CD16A, perforin and CD2 expression in CD16A-positive NK cells with
high vs. low killing frequencies (KFs). (A) Donors were divided into two groups by KFs using a
cutoff value of 1.5 (marked by the dashed line). (B—E) CD16A and perforin expression, % CD2pos of
CD16Apos NK cells and their CD2 expression. The PBMCs were labeled with a panel of antibodies to
identify the CD16Apos NK cells with CD2. Intracellular perforin was unimodal for NK cells identified
as CD3negative perforin-positive lymphocytes. Protein expression was measured by the median
fluorescence intensity (MFIs) of bound antibodies. Flow cytometric gating is depicted in Appendix A
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Figure 4. Prediction of KFs by the %CD2pos of CD16Apos NK cells. (A) Correlation of %CD2pos
of CD16Apos NK cells vs. KF. Correlations for the CD16A genotypes are illustrated separately (red
and blue) and combined (black dotted line). (B) ROC analyses. The sensitivities and specificities of a
set of 24 samples for %CD2pos values and for CD16A MFIs (median fluorescent indices). The AUC
was 0.89 for the %CD2pos (p < 0.001). The blue triangle indicates the donor with 63.7% CD2pos cells
and represents the lowest %CD2pos that supported 100% sensitivity. (C) Quadrants of a test using
60% CD2pos cells to predict a high KF. The positive predictive value was 0.88.

ROC analysis indicted good predictive value (Figure 4B) for KFs by the %CD2pos of CD16Apos
NK cells. ROC tests evaluate the reliability of a test, using a series of cutoffs based on experimental
data for trial evaluation. Donors were divided into two “true” groups (see Figure 3A) with high vs.
low KFs. The %CD2pos values used to determine sensitivity and specificity ranged between 51% and
96% for the 24 donors. The symbols on the graph illustrate these sensitivity and specificity values.
The area under the curve (AUC) represents the predictive value and was 0.89 (p < 0.001) (Figure 4B).
An AUC of 1 is a perfect test and an AUC of 0.5 is without any predictive value; 0.89 indicates good
predictability. The inflection point for 100% sensitivity occurred at 60% CD2pos of CD16Apos NK cells
and indicates a suitable cutoff to predict high ADCC KFs.

Quadrant analysis of a test using the 60% CD2pos cutoff provides additional information. Only
two false tests occurred for the 24 donors (Figure 4C). The predictive values were excellent: the positive
predictive value was 0.88 and the negative predictive value was 1.0. Suppose that this CD2 test was
applied to assign only donors with high KFs for immunotherapy. All the true high KF patients would
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be identified and receive therapy. Two false positives with high %CD2pos cells (but low KFs) would
be misidentified and undergo a therapy that might offer them less benefit.

In contrast to the value of the %CD2posof CD16Apos NK cells to predict KFs, the CD16A MFIs of
the effector cells were less suitable (Figure 4B). The AUC of 0.71 (p < 0.01) indicates potential predictive
value but was lower than the AUC of 0.89 for %CD2pos. Quadrant analysis with the best cutoff
for CD16A MFlIs indicated five false predictions for the 24 donors (not illustrated). The p value for
differences between the %CD2pos and CD16A MFI ROCs was 0.08. The data indicate that %CD2pos of
CD16Apos NK cells may be a suitable predictive test for serial ADCC capacity and is likely to be better
than CD16A MFIs.

3.6. Potential for CD2—Counter Ligand Engagement During ADCC

CD2 engages ligands and then transduces signals that support T-cell proliferation [53-55] and
NK responses [56]. For NK cells, CD2 engagement is important for antibody-induced cytokine and
cytotoxic responses by “adaptive” NK cells and is less important for “conventional” NK cells [57,58].
CD2 physically associates with CD16A [32]. Consequently, CD2 may be drawn into an NK-target cell
synapse that is initiated by CD16A binding to antibodies on target cells even without CD2-ligand
engagement. Human CD2 has two ligands, CD15 and CD58. We detected no CD15 and only low
levels of CD58 on Daudi “target” cells (Appendix A Figure A5A). Anti-CD58 antibodies failed to affect
ADCC (Figure A5C) even though they reduced NK activity toward K562 cells which have substantial
CD58 (Figure A5B). Thus, there was little evidence for important CD2-CD58 or CD2-CD15 interactions
during the ADCC assays toward Daudis.

4. Discussion

To the best of our knowledge, we are the first to characterize human variability in serial ADCC
capacity. We report variability in serial ADCC by an unstimulated NK cell population that represents
the state of NK cells in vivo. We investigated the capacity of the entire NK cell population and
expanded information provided by others who studied serial ADCC by cinematography of individual
NK cells [14,16]. Our observation of serial ADCC was facilitated by an experimental design that
resulted in the absence of spontaneous NK to the Daudi targets, by lack of spatial constraints (because
the target cells were non-adherent and could form a multi-layer cell pellet), and by a highly engineered
mAb. Serial killing with a KF =/ >1.5, at high target excesses was unequivocal for 88% of the donors.
At an absolute minimum of serial killing, 50% of the CD16Apos NK cells would have had to kill twice.
KFs of 4 or higher were observed for 25% of the donors with these high target cell excesses. This
activity is notable since it is widely believed that ADCC serial killers are rare due to the NK loss of
CD16A Fc-receptors during ADCC [25,59]. We observed that ADCC was of short duration, terminating
after about 4 h, consistent with limited rounds of ADCC before the loss of Fc-receptors.

Efforts to understand the inter-donor variation in serial ADCC led to three new insights. [1] The
serial ADCC appeared to be independent of CD16A AA158 genotypes (Figure 2A), which was contrary
to our initial expectation. Our expectation was that both F/V and V/V genotypes would have higher
KFs than the F/F genotype because a) fewer of the high affinity V Fc-receptors would be needed and b)
the greater density of the V Fc-receptors would leave more receptors after the first kill available to kill
again. Information is still needed as to whether these insights apply to mAbs that contain a mixture of
fucosylated and non-fucosylated antibodies and/or that retain unmodified native Fc’s. [2] Perforin
levels were similar for the high vs. low KFs, indicating that sufficient perforin was available for the NK
cells with low KFs. [3] The most notable finding was that the %CD2pos NK cells had predictive value
for KFs.

Few previous investigators have addressed serial ADCC. Perhaps researchers felt that serial
ADCC was unlikely because the CD16A receptor is cleaved away by metalloproteases during killing.
Two other groups have observed serial ADCC. Romain et al. [14], using microscopy of single NK
cells in microchip wells, observed serial ADCC of up to three target cells per effector cell. This
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team, using mouse EL4 targets transfected to express human CD33 as a ligand and an Fc-engineered
anti-CD33 mADb, found that 28% of the NK cells killed two or three targets. Drs. Rauf Bhat and Carsten
Watzl [16] used ®' Cr-release assays to observe antibody-dependent increases in killing of 722.221 B
lymphoma cells. The ADCC was supported by rituximab mAb that has a native Fc. There was also
some spontaneous NK killing of the target cells. For three donors, they observed an average NK KF
(without antibody) of 1 and an average ADCC KF of 3 (that included the NK activity) at 4 h. These
findings [16] are comparable to the results reported here. The two studies cited [14,16], together with
this report, indicate that substantial serial ADCC occurs toward different tumor target cells and with
antibodies that have either native or engineered Fc domains.

We wanted a simple test for inter-donor variability that could be used for clinical applications.
There is a real need for a simple predictive test to aid in selection of patients who are most likely
to respond to mAb anti-tumor therapies. A survey of recent papers on the subject reveals that only
25-30% of HER-2/neu—positive breast cancer patients responded to trastuzumab [3,6], only ~54%
of non-Hodgkin lymphoma patients responded to rituximab [4], and only 28% of metastatic colon
cancer patients responded to cetuximab [60]. For trastuzumab and cetuximab, considerations for
patient selection are complicated because these antibodies block receptors for growth factors as well
as support ADCC. Each tumor may differ in terms of growth arrest vs. death by ADCC. Even in the
face of these obstacles, the variability of in vitro serial ADCC correlated so well with the %CD2pos of
CD16Apos NK cells that this phenotype could be considered as a potential test to help identify the
patients who may respond best in anti-tumor immunotherapies directed by mAbs that bind to the
tumor cells. The ROC AUC value of 0.98 is encouraging. It should be noted that differences attributable
to a single variable are easier to observe in a homogeneous population than in a heterogeneous
one. The population of this study was entirely Caucasian and from Utah, USA, where most of the
population is of non-Finnish northern European descent [61]. It will take assessment of serial ADCC
from geographically and socio-economically diverse donors to determine if the predictive value of
the %CD2pos of CD16Apos NK cells applies to a more diverse population. Selection for serial ADCC
efficacy is of great importance, since CD16A-engagement can reduce subsequent general NK activity
after anti-CD20 immunotherapy [62].

The role of CD2 in serial ADCC is unclear; however, properties of CD2 underscore several
potential roles. CD2 is involved in NK cell “priming” by NK CD2-monocyte CD15 interactions that
increase subsequent cytotoxic activity [63]. The overnight culture of PBMCs in this study provided
an opportunity for NK priming by CD15pos monocytes. It would be worthwhile to isolate NK cells
prior to overnight culture to assess potential priming. CD2 increases signal transduction that directs
cytotoxic degranulation [18,32]. However, CD2 engagement alone is insufficient to trigger lysis [18].
Grier [32] found that CD2 and CD16A are non-covalently associated via extracellular domains and
that, curiously, CD2 can cause CD16A to signal even where there are no antibodies available to engage
CD16A. They demonstrated that NK CD2—K562 CD58 interaction coincidentally recruited CD16A
into the immunological synapse without involvement of antibody. In the present study, the Daudi cells
had low CD58 (and undetectable CD15). We were unable to block ADCC with anti-CD58 antibodies,
indicating that CD2-ligand engagement was probably unnecessary during killing. Finally, there is
evidence that CD2 participates in ADCC by “adaptive” NK cells [57,58]. To date, information is lacking
as to whether adaptive NK cells are serial killers.

5. Conclusions

In summary, we conclude that there are substantial differences in serial ADCC among human
donors. These differences appear to be predictable by tests for %CD2pos of CD16Apos NK cells.
Prediction of serial ADCC may be of clinical value to understand variations in patient responses to
anti-tumor monoclonal antibodjies.
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Figure Al. Completion of ADCC after 4 hrs. This donor is representative of the 24 donors in the
study. The same wells were sampled at 4 and 6 hrs. At 4 hrs, 0.1 mL of supernatant was removed
from each well and counted. At 6 h, 0.1 mL of media was added to each well, the plates centrifuged,
and a second 0.1 mL of supernatant removed and counted. The percent specific release at 4 h was
calculated as described in the methods. However, for the 6 hr samples, there had to be adjustments
for the counts removed earlier from the wells at 4 hrs. The % specific release for the 6 hr time points
was calculated as 100 times: [(0.5 * 4 hr supernatant cpm) — (0.5 * machine background cpm) + 6 hr
supernatant cpm]/[(0.5 * 4 hr SDS max cpm) — (0.5 * machine background cpm) + 6 hr SDS max cpm].
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additional debris was eliminated in (3). T and B cells were eliminated in (4). The CD16Apos NK cells

were gated in (5) and assessed for CD2 in (6).
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Figure A5. Ligands for CD2 on Daudi cells. CD58 and CD15 are ligands for CD2. NK to K562
targets is included as a positive control for ligand expression and for the effects of ligand blockade
on cytotoxicity. (A) Expression of CD58 on K562 and Daudi cells. Daudi cells have low CD58 and
undetectable CD15. (B,C) Anti-CD58 mouse monoclonal antibodies were added to the target cells first
and included in the assays for cytotoxicity. (B) Anti-CD58 antibodies can block NK to K562 cells.
Lysis was inhibited by ~2-fold based on the number of cells required to effect similar cytotoxicity.
Data are representative of 2 experiments. (C) Anti-CD58 antibodies were without effect on ADCC.

Experiments were concurrent with A5B.
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