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Abstract: Recent progress in epitope prediction has shown promising results in the development
of vaccines and therapeutics against various diseases. However, the overall accuracy and success
rate need to be improved greatly to gain practical application significance, especially conformational
epitope prediction. In this review, we examined the general features of antibody–antigen recogni-
tion, highlighting the conformation selection mechanism in flexible antibody–antigen binding. We
recently highlighted the success and warning signs of antibody epitope predictions, including linear
and conformation epitope predictions. While deep learning-based models gradually outperform
traditional feature-based machine learning, sequence and structure features still provide insight into
antibody–antigen recognition problems.
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1. Introduction

Monoclonal antibodies (mAbs), including antibody-based therapeutic modalities, such
as bispecific antibodies [1,2], antibody–drug conjugates (ADC) [3,4], and chimeric antigen
receptors (CARs) [5,6], are the most important biological drugs that are widely used to
treat infectious diseases, autoimmune diseases, and cancer [7–9]. The antibody monomer
consists of two light and two heavy chains. The two antigen-binding fragments (Fabs)
recognize the specific molecular target, and the Fc region binds to immune receptors to
activate effector actions. Both the light and heavy chains have three complementarity-
determining regions (CDR) loops (paratopes) that bind to the antigen interface. An epitope,
also known as an antigenic determinant, is a specific region on the surface of an antigen
that is recognized and bound by an antibody. Epitopes can be linear or conformational,
meaning that they can either be a linear sequence of amino acids or a three-dimensional
(3D) structure formed by the folding of the protein. Around 10% of B-cell epitopes are
linear, while the rest are non-contiguous sequences and conformational [10]. When the
3D structure of the antibody–antigen complex is available, the interactions between the
paratope and epitope can be mapped and characterized well. Otherwise, as in many cases,
epitopes need to be inferred or predicted by computational or experimental approaches.
The characterization and prediction of antigen epitopes are not only important when
designing therapeutic or diagnostic antibodies, but they are also crucial in the development
of vaccines, as epitopes allow the immune system to recognize and respond to specific
pathogens or abnormal cells.

Experimental techniques such as peptide microarrays or phage display libraries can
be used to identify linear epitopes on a protein. Peptide microarrays involve synthesizing
overlapping peptides which span the protein sequence before screening them with an
antibody to identify the binding regions. Phage display libraries use bacteriophages that
display peptide sequences on their surface, which can be screened for antibody binding.
The native epitopes of different chemical species, including protein-, polysaccharide- and
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DNA-epitopes, can be replaced by peptide mimics (mimotopes). These mimotopes can
be used in vaccines and diagnostics [11]. Protein sequencing analysis can also be used
to identify potential linear epitope regions by probing regions with high hydrophilicity,
surface accessibility, flexibility, and antigenicity. This approach can be time-consuming and
may require expertise in the protein structure and function.

In contrast to linear epitopes, conformational epitopes are more difficult to map when
a complex structure is not available. The hydrogen/deuterium exchange (HDX) experiment
can be used to infer the antibody–antigen binding site; however, a significant drawback
of using the HDX is that it can be confounded by ‘allosteric’ structural perturbation when
the protein-binding effect is not limited to the binding site [12]. Not all amino acid patches
on protein surfaces are suitable as an epitope for antibody binding. Current antibody
technologies have difficulties when targeting several important drug targets, especially
for membrane-related proteins such as G protein-coupled receptors and ion channels. To
experimentally probe the possible antibody binding patches, Trkuljia et al. developed a
protease incision-based method to first identify the peptide related to the binding surface
and then use it to develop an antibody [13]. They use sequential protease digestion
under controlled kinetic conditions to cut and release protease-accessible peptides, which
are denoted as the protease-identified cut site (PIC). Using bioinformatics and structural
modeling, the produced PICs are translated into a central point or coordinate in the linear or
conformational epitope. Importantly, when correlated with possible functional information,
the PIC can be binders, agonists, or antagonists. Eventually, synthetic antigens mimicking
the PIC are used to produce optimized antibodies. This method has been demonstrated in
antibody discoveries targeting the transient receptor potential vanilloid 1 (TRPV1) channel
and KRAS-mutated cells [13].

The mappings of conformational epitopes are mainly predicted by various computa-
tional methods, such as homology modeling and docking simulations [14,15], molecular
dynamic simulations, and quickly evolving machine learning approaches. The ML method
can be roughly divided into three basic elements: the model, learning criteria, and opti-
mization algorithm. Two commonly used ML models include Support Vector Machine
(SVM) [16] and Random Forest (RF) [17]. SVM is a generalized linear classifier with a
maximum–margin hyperplane to separate different data. RF combines multiple weak clas-
sifiers to produce a voted or average prediction. Recently, deep neural network algorithms
have been heavily developed to study proteins and other biological molecules. Each neural
network has its own strengths and is suitable for different tasks. Common deep learning
(DL) models include the convolutional neural network (CNN, especially suitable for image
processing) [18], variational autoencoder (VAE), and graph neural network (GNN). The
VAE can capture the most critical factors which represent the input information, and the
output content is trained to preserve the essential characteristics of the input [19]. GNN
processes graph structure data that are represented by the nodes and edges of the graph [20],
which is suitable for tasks such as node classification, edge information dissemination, and
graph clustering.

It is still a challenging problem to predict the binding sites on the antigen (epitope)
corresponding to a specific antibody. Traditional computational methods and ML methods
are used either alone or in combination with experimental methods to characterize or pre-
dict antibody epitopes in the applications of antibody and vaccine development. Here, we
provide a brief review of the antibody–antigen interaction and epitope-related predictions.

2. General Mechanism and Feature of Antibody–Antigen Recognition

After initial exposure to the antigen, antibodies evolve quickly in weeks from a pre-
cursor form to a mature one to recognize the antigen tightly and specifically. Based on the
molecular type, we can classify three types of large molecular antigens: protein, nucleic acid,
and carbohydrates. Anti-nuclear antibodies (ANAs) are often related to disease-associated
autoantibodies, for example, in the case of a chronic autoimmune disease of systemic
lupus erythematosus (SLE) [21]. Carbohydrate-specific antibodies occur broadly and are
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widespread either as natural antibodies or when produced by pathogen stimulations [22].
Most antigens are proteins, and antibody protein antigen recognition is often comparable
with normal protein–protein interactions but with distinct features. Unlike epitopes, anti-
bodies have different preferential amino acid usage for CDR’s paratope [23]. For example,
Tyr and Ser dominate paratopes that are used to interact with antigen residues since Tyr
can effectively interact with a broad range of antigen amino acids, including hydrophobic,
polar, and charged sidechains [24].

Under the functional pressure to recognize diverse antigens through antigen-directed
isolated pathways of maturation, initially linked antibodies can diverge to exhibit distinct
recognition potential and recognize a wide range of antigens [25]. Kaur et al. compiled a co-
herent database of germline-linked mouse and human antibodies bound with distinct anti-
gens. As expected, with common structural constraints in some CDRs, somatic mutations
altered the geometries of individual antibodies. Molecular dynamic simulations provided
an additional conformational landscape which indicated how the incoming pathogen led
to further CDR conformational divergence while maintaining a similar overall backbone
topology [25]. The analysis of multiple liganded and unliganded crystal structures of the
near-germline anticarbohydrate antibodies S25–2 and S25–39 confirmed conformational
flexibility [26] in antibody-antigen recognition, enabling their limited germline repertoire
to match the overwhelming diversity of potential antigens [27]. Conformational selection
has been proposed to be a common ligand–receptor interaction mechanism in addition
to lock-and-key and induced fit [26,28–30]. The systematic study of antibodies S25–2 and
S25–39 highlighted the conformational selection available as an evolved mechanism that
preserves the inherited ability to recognize common pathogens but is still able to adapt to
new threats [27]. The Molecular dynamics-based approach also captured a diverse confor-
mational ensemble of the CDR-H3 loop to support a conformational selection mechanism
upon antibody binding [31,32].

Efficient interactions between antigens and antibodies rely on conformational mobility
and some on the disorder of their binding sites [33]. Like the CDR conformation changes,
epitope structural flexibility represents fuzzy binding sites. Intrinsically disordered pro-
teins exist in highly flexible conformational states and can be congruent T-cell and B-cell
antigens [34]. This is consistent with the conformational selection mechanism and has been
described as a “flexible lock—adjustable key” model. Even though the extreme disorder is
not compatible with efficient antigen–antibody interactions and is not present in immune
interactions [33], the antibody recognition of disordered antigens has the advantage of
much more extensive contacts per epitope residue and better shape complementarity [35].
This can be demonstrated by many anti-amyloid antibodies [36,37] and a recent finding that
antibodies specifically recognize structurally disordered Pro/Ala-rich sequences (PAS) [38].
In certain cases, protein flexibility is shown to outperform the solvent-accessible surface
area as an epitope discovery metric, as illustrated in the first protein flexibility-based
algorithm and its application in the Zika virus’ conserved epitope characterization [39].

Though it is not typically the primary method used for epitope prediction, MD sim-
ulations were frequently used to study the mechanism and feature of antibody–antigen
recognition. Jun Zhao et al. [40] explored the recognition of monomeric, oligomeric, and
fibril forms of amyloid-β (Aβ) by three homologous antibodies, namely solanezumab,
crenezumab, and creneFab. Through a combination of homology modeling, molecular
docking, and molecular dynamic simulations, stable complexes of antibodies with Aβ were
successfully identified. The investigation revealed distinct epitopes of Aβ when interacting
with each antibody. Mateusz Sikora et al. [41] conducted extensive multi-microsecond
molecular dynamic simulations of fully glycosylated and palmitoylated S proteins to un-
veil potential antibody binding sites. Employing steric accessibility, structural rigidity,
sequence conservation, and generic antibody binding signatures, this study successfully
identified and established epitopes on S and introduced novel epitope candidates for a
structure-based vaccine and antibody design. Luca Mollica et al. [42] employed molecular
dynamic (MD) simulations in conjunction with NMR and X-ray crystallography data gath-
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ered on the wild-type HuPrP to investigate the conformational states that are present in
disordered epitopes prior to Nb484 binding. This study provides valuable insights into the
immunotherapeutic potential of antibodies for targeting the aggregation of flexible proteins.

New experimental assays have been developed to detect and verify antibody epitopes.
For example, VirScan is an application of the phage immunoprecipitation sequencing (PhIP-
Seq) method for profiling the specificities of human antiviral antibodies [43]. VirScan, and
more generally PhIP-Seq, are technologies that enable high-throughput antibody analysis
by combining high-throughput DNA oligonucleotide synthesis and phage display with
next-generation sequencing.

Phage display can also be integrated with computational approaches to address the
needs of the large-scale mapping of antigens and epitopes. For example, antibody binding
epitope mapping (AbMap) can determine phage-displayed peptides bound by 202 anti-
bodies in a single test, which are suitable for both linear and conformational epitopes [44].
An integrated platform for genome phage display (gPhage) used libraries produced from
genetic material (cDNA or genomic DNA) and isolated from an organism instead of the
random peptide library to represent possible linear or conformational epitopes [45]. In
the case of using serum samples from patients with Chagas disease to build unbiased
libraries of the eukaryotic parasite Trypanosoma cruzi, a total of 30,430 unique phage in-
serts encoding T. cruzi-derived antigens were identified and analyzed using bioinformatics
methods to bin and cluster the possible peptides representing epitopes. The identified
epitopes were further validated and complemented by online searches of the Immune
Epitope Database and Analysis Resource (IEDB; www.iedb.org, acessed on 7 August 2023)
for the simultaneous identification of epitopes [45].

3. Linear Epitope Prediction

There are two types of antigen epitope prediction methods: one with the presence
of antibodies and another without. Predictions with antibodies can be used to find the
most probable epitopes of the antigen, while the second group of methods can be used to
identify the epitope that a known antibody binds to. Early epitope prediction methods
used propensity scales to search contiguous epitope residues as long as hundred linear
epitopes. Such methods include BcePred [46], ABCPred [47], and iBCE-EL [48]. BcePred
used 1029 non-redundant B cell epitopes (obtained from the Bcipep database) and 1029 non-
epitopes (randomly selected from SWISS-PROT database). Each physicochemical property
scale consisted of 20 values, which were assigned to each of the amino acid types on the basis
of their relative propensity. Prediction is based on the normalization score, which measures
an average of seven maximum/minimum values from the physicochemical scale and is
divided by the difference between the maximum and minimum scores. The prediction
using individuals (for example, hydrophobicity, surface area, flexibility, and polarity) and
their combinations generated an accuracy that was barely between 50 and 60% [46]. The
BcePred was refined to ABCpred using (1) a reduced clean dataset of 700 B-cell epitopes
(non-redundant, from Bcipep database) and 700 non-epitopes (randomly selected Swiss-
Prot database), and (2) recurrent neural network with a single hidden layer of 35 hidden
units with different peptide lengths. The new approach increased the accuracy to 65.93%.

The low performance of the individual method could be corrected using combined ensem-
ble models (or meta-models). The iBCE-EL is an ensemble method that combines extremely
randomized tree and gradient-boosting algorithms to predict the class and probability val-
ues of a given peptide. Its input features are a combination of amino acid composition and
physicochemical properties. Its major features include the amino acid composition (AAC),
amino acid index (AAI) [49], chain-transition-distribution (CTD), DPC, the physicochemical
properties of amino acids (PCP), and various combinations of individual compositions. Using
a non-redundant dataset of 5550 experimentally validated BCEs and 6893 non-BCEs from the
Immune Epitope Database, six different ML algorithms (including SVM, RF, ERT, GB, AB, and
k-NN) were used to select appropriate features. Finally, a combination of the above prediction
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models made the final prediction as commonly used in the ensemble model (EM), which
performed better than individual classifiers [48].

Recently, with the development of deep neural networks, sequence-only approaches
have been increasingly used in protein property predictions. When trained with the IEDB
Linear Epitope Dataset, EpiDope used the peptide sequence as an input and trained a
deep neural network for linear B-cell epitope prediction [50] with a ROC of 0.67, which
is among the top results using several other methods. The ‘IEDB Linear Epitope Dataset’
has 1798 proteins and represents a large pathogen variety. Usually, each protein family has
distinct epitope features [51]. The 1798 proteins contain 30,556 marked protein sequences,
which is much larger than the 5550 sequences used in the iBCE-EL study. The improvement
in EpiDope’s performance could be due to the increasing dataset and the better deep neural
network architecture used (for example, bi-directional long short-term memory network
(LSTM)). Indeed, a recent study using a dataset of 62,730 known linear B cell epitope
sequences showed that the sequence BLAST-based method could be used to predict linear B
cell epitopes. Any peptide can be considered a B cell epitope if producing ungapped BLAST
hits this database with an identity ≥ 80% and length ≥ 8. Interestingly, the BLAST-based
approach obtained values for the accuracy, specificity, and sensitivity of 72.54 ± 0.27%,
81.59 ± 0.37%, and 63.49 ± 0.43%, respectively [52].

4. Conformational Epitope Prediction

Nearly any antigen surface accessible region recognized by an antibody can be epi-
topes [53]. One unique cysteine scan offers better sensitivity than an alanine scan to
determine conformational epitopes. Najar et al. replaced all surface residues of CcdB, a
101 residue, with a homodimeric bacterial toxin. The cysteine mutants expressed on the
yeast’s surface were labeled by biotin-PEG2-maleimide. Subsequently, antibodies were
screened by fluorescence-activated cell sorting (FACS) for the loss of binding to the dis-
played labeled mutant proteins [54]. This kind of epitope mutational analysis is better than
peptide screen methods since peptide conformations are often flexible and differ from their
real conformation on the folded protein surface.

Traditional computational methods tend to find specific structural features that can be
used to distinguish epitope residues. Ferdous et al. studied 488 B-cell epitope structures
and identified 1282 regions and 1018 fragments. Very few eiptopes (14%) contain only
one region, and only 4% are truly linear, while 90% of epitopes have five or fewer regions
and five or fewer fragments [55]. While some conformational epitope information can
be obtained from sequence information, the accuracy is not high [56]. Conformational
epitope prediction methods are usually trained with antibody–antigen structures and then
characterize antigen structures using traditional geometric features, such as the number of
neighbors. DiscoTope [57] defines the epitope propensity scale by a weighted sum of the
contact number and the average of nearby residues’ epitope log-odds ratios. PEPITO [58]
combines half-sphere exposure values at multiple distances and amino-acid propensity
scores to differentiate epitope and non-epitope residues, with a performance of 75.4 AUC
on the Discotope dataset. SEPPA [59] used the following procedure to analyze each antigen
protein from the input:

Step 1: Determine all the surface residues in the protein antigen;

For each surface residue r:

Step 2: Search all possible unit patches within a 15 Å atom distance of residue r, map the
pre-calculated propensity indices to the above unit patches, and calculate the propensity
index avgr;
Step 3: Calculate the clustering coefficient (ccr) for residue r using the Equation;
Step 4: Summarize avgr and ccr as the antigenicity score for residue r;
Step 5: Give the antigenicity score for each residue and highlight those residues with scores
higher than a threshold.
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EpiPred [60] identifies the epitope region by a combination of the specific antibody–
antigen score and the conformational matching of antibody–antigen structures. The score
function uses a graph-based approach by defining the node as a possible intermolecular
contact between the antibody and antigen residues. Two nodes may be connected by an
edge only if the difference in their intramolecular distances on the antibody and the antigen
is below 1 Å. Finally, the score is the sum of the products of a degree of node n, and the
preference of two amino acids conforms to a node.

The surface spiral vector has been used to characterize conformational epitope patches [61].
The procedure to generate the surface spiral vector starts by obtaining all the adjacent
residues of each surface residue first. Then, the shortest distance between all pairs of
neighboring surface residues was calculated and ranked. Finally, the sequence of contact
residues was obtained as the spiral feature with the shortest distance (Figure 1). Thus,
sequence and surface patch matching were combined for conformational epitope prediction.
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Many conformational epitope predictors have been published and are available
online as web servers. Hu et al. evaluated the performance of the ensemble model
(or meta-learning model) for conformational epitope prediction [62]. The base features
used included the propensity score of amino acids in the spatial neighborhood, residue
accessibility (all-polar, nonpolar, total-side, and main-chain), an accessible surface area,
the solvent excluded surface, antigenic propensity, secondary structure, B factor, etc.
They have shown that the meta-learning approach for epitope prediction integrated
the complementary predictive strengths of different models, and this combined ap-
proach is much better than single epitope predictors [63]. However, Cia, Pucci, and
Rooman tested nine conformational epitope predictor webservers on a dataset of over
250 antibody–antigen structures. Unfortunately, all the methods, including generic and
antibody-specific methods, achieved very low performances. Commonly used con-
sensus ensemble strategies are only marginally better than random selection. Using
the SARS-CoV-2 spike protein as an independent case study largely recapitulated the
benchmarking conclusions. Apparently, to improve the performance of conformational
epitope prediction methods, new strategies are definitely needed [63].

With the introduction of deep learning models, conformational epitope predictions
can combine the sequence and structure with local and global features to improve antibody
epitope predictions. BCEs [64] extracted the antigen’s local and global features using
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two parallel modules. The local features were at the residues level, which were processed
using Graph Convolutional Networks. The global features describe the entire antigen using
all sequence information extracted with Attention-Based Bidirectional Long Short-Term
Memory networks. SEMA [65] used a transfer learning approach to predict epitopes based
on the primary antigen sequence and tertiary structure. The authors generated a non-
redundant dataset of antigen–antibody complexes in the PDB database. The pretrained
protein large language model, ESM-1v, was used to re-train the conformational epitope
dataset and predict the linear epitope (SEMA-1D). Interestingly, the protein structure
prediction model ESM-IF was used in parallel to quantitatively predict antibody–antigen
interaction features and predict conformational epitope residues (SEMA-3D).

Epitope3D is a novel scalable machine-learning method that is capable of accurately
identifying conformational epitopes when trained and evaluated on the largest curated
epitope dataset to date. The method models epitope and non-epitope regions as graphs
using graph-based signature concepts and extracts distance patterns as evidence for the
training and testing of predictive models [66]. The results showed Epitope3D to be superior
to existing alternative methods with cross-validated Mathew correlation coefficient and
f1 scores of 0.55 and 0.57, respectively, and an independent blind test Mathew correlation
coefficient and f1 scores of 0.45 and 0.36, respectively.

5. Epitope Prediction Based on Paratope–Epitope Interactions

It is still a great challenge to map and predict the paratope, epitope, and paratope–epitope
interactions [67]. Due to the special sequence feature, paratope prediction is usually more
accurate than epitope prediction. Similar to the methods used in conformation epitope
prediction, Parapred incorporates both local residue neighborhood information and the
overall sequencing information [68] of CDR without the consideration of the antigen.
Using structural alignments of similar antigen–antibody complexes, Paramatome identifies
consensus antigen-binding regions and uses them as a reference set of antibody–antigen
complexes to identify the antibody-binding regions [69]. Using self-attention convolutions,
AG-Fast-Parapred [70] significantly reduces computation time and moderately improves
accuracy (AUC = 0.90) compared to Parapred (AUC = 0.88).

Using the antigen sequence and structural features only may not provide enough
information to predict the antibody epitope. It is natural to hope that a combination of
known paratope–epitope pairing features can boost accuracy. While the antibody–antigen
interaction prediction could be more complex than only predicting the epitope, the correct
prediction of association between the paratope and epitope implies predicting the epitope
correctly. Indeed, a unified DL-based antibody–antigen predictor PECAN predicted epi-
topes by the paratope prediction networks, which was better than the networks trained
solely for epitope prediction [71]. It uses transfer learning. A base graph convolutions
network trained on general proteins is used as the initialization for training the epitope
and paratope prediction networks. In the graph representation of protein, the amino acid
residues are nodes and edges connected to residues with a Cβ–Cβ distance less than 10 Å.
Nodes in the antibody graph are limited to ‘CDR clouds’ by considering two sequentially
adjacent CDR residues and other residues within 6 Å in the structure [71].

In addition to the CDR graph, the PECAN predicts the paratope and epitope ‘sym-
metrically’ since both the paratope and epitope information are trained in one model. To
separately train the paratope and epitope and make use of antibody sequence informa-
tion, asymmetrical training models were developed in EPMP for prediction (Para-EPMP)
and epitope prediction (Epi-EPMP) predictors [72]. This method adopts separate neural
message-passing architectures that are specifically designed for paratope and epitope pre-
diction and improved in both tasks. Para-EPMP combined sequence and structural graphs
as input features, while Epi-EPMP only used structural information [72].

Jespersen et al. studied the geometric and physicochemical features that are corre-
lated in interacting paratopes and epitopes derived from the antigens and their cognate
antibodies structures [73]. In addition to the commonly used amino acid composition and
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hydrophobic score, they generated and characterized conjoint triads amino acid classes
and surface patches for actual epitope–paratope pairs. Amino acids were assigned to one
out of seven classes (Figure 2A). The geometric features included principal components
calculated on patches of x, y, z coordinates and Zernike moments. Zernike moments are
an image descriptor that is used to characterize the shape of an object in an image. The
shape to be described can either be a segmented binary image or the boundary of the object
(Figure 2D). They investigated correlations between the physicochemical and structural
properties of known paratope and epitope patches. As expected, a high correlation between
the corresponding structural properties of the paratope and epitope was found (Figure 2E).
Finally, these features were used to train AI models to predict epitopes.
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The above examples used different descriptors for surface structural features. Akbar et al.
extensively examined antibody–antigen structural interaction motifs [74]. This motif was
composed of interacting paratope and epitope amino acid residues, which were encoded
as capital X. The non-interacting residues (gap) were encoded as integers, which quantified
the number of non-interacting amino acid residues (Figure 3). They found that using
less than 104 commonly shared structure motifs, it was possible to enable the machine
learnability of antibody–antigen binding on the paratope–epitope level using generative
machine learning [74]. These motifs are unique for antibody–antigen recognition and are
distinct from non-immune protein–protein interactions. The commonly shared motifs
mediate specific oligo- and polyreactive interactions between paratope–epitope pairs. The
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uniqueness of these motifs is understandable since amino acid preference in mediating
antibody–antigen interactions is totally different from normal protein–protein interactions.
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The existence of 104 commonly shared structure motifs implies polyreactive inter-
actions. One interesting observation in antibody–antigen recognitions is that sequence-
dissimilar antibodies can bind to the same epitope. Such examples include anti-lysozyme
antibodies, the anti-HIV core protein gp120, and, recently, anti-COVID-19 antibodies. All
these groups have dissimilar CDRH3 sequences against highly similar epitopes. Trained
from 920 antibody–antigen complexes, Ab-Ligity is able to predict antibodies that could
bind to highly similar epitopes (precision of 0.95 and recall of 0.69) [75]. The coding of
paratope–epitope interaction pairs considers all combinations of triplets formed from a
set of tokenized residues in a binding site. The edge of each triplet is represented by its
vertices’ tokens and length. Each combination of tokens has a unique six-letter hash code.
One may notice that Ab-Ligity shares similar features highlighted in Figure 3.

The Bepar (B-cell epitope prediction through association rules) method analyses
association patterns between antibody and antigen residues that have cooperativities
within the binding site, providing spatial relations within the paratope and epitope [76].
Based on the statistics of antibody–antigen complexes, Zhao and Li found that the top ten
frequent association (bi-cliques: Ab-Ag) was D-K, Y-E, Y-N, S-E, Y-K, N-R, Y-R, (D,Y)-K,
(S,Y)-Q, and G-R. In the meantime, they also identified co-occurrent epitope–paratope
interacting residue pairs; for example, the frequent interaction residue pairs Y-K and S-Q
often came with Y-Q as a co-occurrent pair. One could notice from their study that most
paratope residues were Y and S, and the associated epitope residues included charged
residues [76]. This trend has been confirmed in a later study that antibodies frequently use
Tyr to interact with charged residues in antigen residues [24].

6. Using Antibody–Antigen Dock to Predict Conformational Epitope

With a similar argument to improve epitope prediction by considering the anti-
body paratope interaction, protein docking has been frequently used in epitope predic-
tion and provides additional information about the overall quaternary structure of the
antibody–antigen complex from their separate tertiary structures. Again, despite consid-
erable progress in protein docking, selecting near-native models out of many structural
combinations remains a challenging task [77].
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Ambrosetti et al. compared four different docking methods (ClusPro, LightDock,
ZDOCK, and HADDOCK) for their ability to predict antibody–antigen binding interfaces,
including 16 antibody–antigen complexes [78]. When a single structure was used, all
methods achieved good results for the most rigid structures when a vague definition of the
epitope was provided. In the case of allowing a limited conformational change in the anti-
body, HADDOCK and LightDock did not achieve a striking better performance compared
with rigid ClusPro or ZDOCK. When experimental information about the interface was
provided, HADDOCK led to the generation of a much higher number of good models [78].

As one of the best protein–protein dock search engines, the ZDock docking algorithm
was widely used in protein–protein docking, even though it was not specifically optimized
for antibody–antigen docking. Therefore, it was expected to improve the ranking of ZDock
and predict antibody–antigen binding, as DLAB-Re did [79]. DLAB retrained a CNN with
a dataset of 1216 antibody–antigen complexes. In total, 759 non-redundant complexes were
selected if their CDR sequence was only present once in the dataset. The CNN input was
derived from the atom information in four-dimensional grids: three for the interaction site
and one for atom types.

For antibodies or antigens without a 3D structure available, homology models can also
be used in the docking procedure to predict paratopes and epitopes. As expected, studies
using MAbTope [15] and homology models indicated that overall accuracies depend on
the method chosen for homology modeling and the templates used [14]. For antibody
modeling, the highest sequence identity often comes from the framework region, whereas
antibody specificity is mostly due to CDRs. Nevertheless, they have shown that even low-
quality models can be used to predict epitopes. Using this method, the epitope of an anti-IL4
receptor alpha subunit therapeutic antibody (dupilumab) of an unknown 3D structure
was predicted and validated experimentally [14]. Even though the docking result could
not be 100% right, large-scale docking could be combined with the experimental “epitope
binning” of monoclonal antibodies using a high-throughput surface plasmon resonance
to reveal which antibodies competed and why and where they might compete in terms of
possible binding sites on the antigen [80]. Brooks et al. combined experimental binning with
“dock binning”. This approach is useful when a group of antibodies targeting a common
antigen is known. Therefore, based on homology models of all these known antibodies,
docking results can be grouped for “binning” to compare with the experimental antigen
screening using these antibodies. The cross-comparison/validations among experimental
and computational docking results provide information on the group-level identification
of functionally related monoclonal antibodies (i.e., communities) and the identification of
their general binding regions on the antigen [80]. The Bailey–Kellogg group also developed
a docking-based strategy to experimentally test the docking results and correlate this with
epitope identification. Based on docking poses, three amino acid mutations on the putative
antibody–antigen binding surface were designed and tested experimentally. In the case of
positive identification, the mutations should disrupt the antibody–antigen binding, thus
confirming their computational predictions [81].

With the widely available use of an accurate protein structure predictor like Al-
phaFold2, a better docking prediction of the epitope could be achieved compared to
traditional homology modeling. AbAdapt is a pipeline that integrates AlphaFold structural
modeling with antibody and antigen rigid docking in order to derive antibody-antigen-
specific features for epitope prediction. Incorporating more accurate antibody models,
an improvement in docking, paratope prediction, and the prediction of antibody-specific
epitopes can be achieved [82].

7. Conclusions

We have discussed traditional and current approaches for the prediction of antibody-
antigen epitopes, many of which are available online (Table 1). The prediction and identifi-
cation of antibody epitopes are important for disease diagnostics, vaccine development, and
the development of antibody therapy. With advances in the application of deep learning-
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based AI in protein science, the prediction of antibody epitopes and their interactions with
the antibody are more and more accurate. The current structural-based dataset provided
information on the static features of antibody–antigen binding, yet how to include confor-
mation dynamics in flexible antibody–antigen binding remains a challenge. The increasing
entries of linear epitope sequence greatly improved prediction accuracy, and prediction con-
formation epitope could be helped by considering paratope–epitope association patterns.
Deep learning-based models gradually outperform traditional feature-based machine learn-
ing; however, sequence and structure features still provide insights into antibody–antigen
recognition problems. The current structural-based dataset provides information on the
static features of antibody–antigen binding, yet how to include conformation dynamics in
flexible antibody–antigen binding remains a challenge.

Table 1. List of epitope prediction severs discussed in this work. (all accessed on 7 August 2023).

Method Name Year Methodology/Approach Link

Bcepred 2004 prediction of linear B-cell epitopes, based on
physicochemical properties http://crdd.osdd.net/raghava/bcepred

ABCpred 2006 prediction of linear B-cell epitopes, based on
recurrent neural network http://crdd.osdd.net/raghava/abcpred

iBCE-EL 2018
prediction of linear B-cell epitopes, based on a
fusion of randomized tree (ERT) and gradient
boosting (GB) classifiers

http://thegleelab.org/iBCE-EL

EpiDope 2021
prediction of linear B-cell epitopes, based on
bi-directional long short-term memory
network (LSTM)

http://github.com/mcollatz/EpiDope

PECAN 2020

prediction of B-cell epitopes by
paratope–epitope interactions, based on graph
Convolution Attention Network and
transfer learning

https://github.com/vamships/PECAN.git

EPMP 2021
prediction of B-cell epitopes by
paratope–epitope interactions, based on
separate neural message passing architectures

https://arxiv.org/abs/2106.00757

Jespersen et al. 2019

prediction of B-cell epitopes by
paratope–epitope specific interaction rules,
based on geometric and physicochemical
features, statistical and machine
learning algorithms

https://doi.org/10.3389/fimmu.2019.00298

Akbar et al. 2021
prediction of B-cell epitopes by
paratope–epitope interactions, based on
antibody–antigen interaction motifs

https://doi.org/10.1016/j.celrep.2021.108856
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67. Robert, P.A.; Akbar, R.; Frank, R.; Pavlović, M.; Widrich, M.; Snapkov, I.; Slabodkin, A.; Chernigovskaya, M.; Scheffer, L.;
Smorodina, E.; et al. Unconstrained generation of synthetic antibody-antigen structures to guide machine learning methodology
for real-world antibody specificity prediction. bioRxiv 2022. [CrossRef]

68. Liberis, E.; Velickovic, P.; Sormanni, P.; Vendruscolo, M.; Lio, P. Parapred: Antibody paratope prediction using convolutional and
recurrent neural networks. Bioinformatics 2018, 34, 2944–2950. [CrossRef]

69. Kunik, V.; Ashkenazi, S.; Ofran, Y. Paratome: An online tool for systematic identification of antigen-binding regions in antibodies
based on sequence or structure. Nucleic Acids Res. 2012, 40, W521–W524. [CrossRef]

70. Deac, A.; Velickovic, P.; Sormanni, P. Attentive Cross-Modal Paratope Prediction. J. Comput. Biol. 2019, 26, 536–545. [CrossRef]
71. Pittala, S.; Bailey-Kellogg, C. Learning context-aware structural representations to predict antigen and antibody binding interfaces.

Bioinformatics 2020, 36, 3996–4003. [CrossRef]
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