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Abstract: An enzyme-linked immunosorbent assay (ELISA) using monoclonal antibody 
(MAb), Fab antibody, and single-chain variable fragment (scFv) antibody has become one 
of the most promising analytical methods owing to its rapidity, sensitivity, and reliability. 
Recently, a chimera of green fluorescent protein (GFP) with a scFv antibody, named 
fluobody, was proposed as a probe for an alternative immunosorbent assay; i.e., 
fluorescence-linked immunosorbent assay (FLISA). In this FLISA, an even more sensitive, 
simple, and rapid immunoassay can be performed by detecting the highly sensitive 
fluorophore of GFP that is genetically and directly fused to the scFv antibody. In addition, 
the time- and cost-consuming secondary antibody reaction and the following enzyme-
substrate reaction, necessary for conventional ELISA, can be avoided, making it possible 
to complete the assay more rapidly. Focusing on naturally occurring bioactive products, 
fluobody recognizing 1,4-naphthoquinone, plumbagin and triterpenoid saponin, 
ginsenosides were successfully expressed in Escherichia coli (E. coli) and applied to 
FLISA. The construction, the expression, and the potential use of fluobody in 
quantitative/qualitative analysis of bioactive natural products are reviewed in this article. 
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1. Introduction 

Antibody-based analytical methods have recently received much attention due to high-binding 
affinity and specificity of antibodies to target molecules. To date, the antibody-based analytical method 
has been expanded from enzyme-linked immunosorbent assay (ELISA) [1], surface plasmon resonance 
(SPR) [2,3], flow cytometry [4,5], hand-held immunochromatographic assay [6–8] to novel eastern 
blotting techniques [9–11]. Among them, ELISA has a great advantage in quantitative and qualitative 
analysis of bioactive natural products since multi-sample can be continuously determined /detected in 
the one plate. In addition, the accuracy and reliability of ELISA are sufficiently high enough to be used 
in the quality control of medicinal plants [12]. The probes used in ELISA are rich in variety such as 
monoclonal antibody (MAb) [13], polyclonal antibody (PAb), Fab antibody, single-chain variable 
fragment (scFv) antibody [14], and bispecific antibody [15]. 

In our previous study, we focused on the development of an antibody-based analytical method for 
two promising natural products, plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone; PL; Figure 1a) 
and ginsenoside Re (G-Re; Figure 1b) [16,17]. PL is a naturally occurring bioactive product mainly 
produced from the root of the family Plumbaginaceae which includes Plumbago zeylanica, P. indica, 
and P. europaea [18–20]. Much work has been carried out regarding PL since it was found to have 
diverse and interesting pharmacological properties such as anti-cancer, anti-cardiotonic, anti-microbial, 
anti-fertility, anti-atherosclerotic, anti-filarial, and anti-amyloidogenic activities [21–26]. Thus, PL has 
recently been a remarkable natural product as a drug candidate. However, the biokinetics of PL need to 
be monitored from the point of view of appropriate usage and the avoidance of adverse effects due to 
its strong pharmacological activities. To date, high-performance liquid chromatography (HPLC), 
coupled with a diode array detector (HPLC-DAD), and liquid chromatography with tandem mass 
spectrometry (LC-MS-MS) have been developed for quantitative/qualitative analysis of PL [27–29]. 
On the other hand, ginsenosides are major triterpenoid saponins mainly produced and isolated from the 
root of Panax ginseng (white ginseng) and its related species including P. japonicus (Japanese ginseng), 
P. quinquefolium (American ginseng), and P. notoginseng (Tienchi ginseng). Recently, their demand 
has been dramatically increased worldwide as ingredients of dietary health supplements and additives 
in foods and beverages due to their pharmacological activities such as tonic, immunomodulatory, anti-
mutagenic, and anti-aging activities [30,31]. Clinical studies have also raised the possibility that 
ginseng could be used for the treatment of psychological function, immune function, and conditions 
associated with diabetes [32–34]. Ginsenosides are featured as major components of ginseng and are 
classified into two groups, protopanaxatriol type which includes ginsenoside Re (G-Re) and Rg1  
(R-Gg1) and protopanaxadiol types which include ginsenoside Rb1 (G-Rb1), Rc (G-Rc), and Rd  
(G-Rd) as shown in Figure 1b. So far, various analytical methods for ginsenosides such as HPLC 
techniques, and ultra-performance liquid chromatography (UPLC), also coupled with tandem mass 



Antibodies 2012, 1           
 

241

spectrometry (UPLC-MS) have been developed [35–39] since the ginsenoside constituents controlling 
the value of the ginseng are different depending on their growing environment such as soil condition 
and season of harvest to which they are sensitive. 

Figure 1. Structures of 5-hydroxy-2-methyl-1,4-naphthoquinone (PL) (a) and major ginsenosides (b). 

 

Owing to the developed antibody-based analytical method, we primarily prepared MAb against PL 
(MAb 3A3) and G-Re (MAb-4G10) which possess high specificity to PL and wide cross-reactivity to 
ginsenosides, respectively [16,17]. The developed ELISA using MAbs showed potential as an accurate 
and reliable assay for assessing the quality of the host plant. We subsequently constructed scFv 
antibody against PL (PL-scFv) and G-Re (GRe-scFv) using the cDNA of their hybridoma cell lines 
secreting MAb 3A3 and MAb-4G10, respectively, and expressed in E. coli, Sf9 insect cells, and silkworm 
(Bombyx mori) to obtain the probes for ELISA more efficiently [40–43]. However, an even simpler, 
speedy, and sensitive immunoassay is required to deal with a large number of plant samples serially. 

A high level of sensitivity can be gained by fluorescent labels with a wide range of analytical 
procedures, thus, the conjugation between fluorescent labels and antibodies has conventionally been 
performed by chemical conjugation of organic fluorophores [44]. Fluorescein isothiocyanate (FITC) is 
one of the most popular organic fluorophores, which is widely utilized in various fields. It can be 
bound to the free amino group of the proteins and peptides, which leads to a stable thiourea bond 
formation. Therefore, FITC-labeled antibody has been used mainly for flow cytometry and 
immunohistochemical staining for over half a century [45,46]. With these procedures, however, a large 
amount of purified protein is required. Moreover, there is a possibility that the fluorophores conjugate 
with paratope, resulting in a partial or complete loss of reactivity of the antibody. To avoid the 
disadvantages of chemical conjugation, a fluorescent single domain antibody (fluobody) which is a 
fusion protein of a green fluorescent protein (GFP) and a scFv antibody has been genetically 
constructed and used alternatively. In this genetically engineered format, the resultant protein is always 

Ginsenoside R1 R2 R3

Protopanaxatriol
Re (G-Re) H Rha1-2Glc-O- Glc-
Rg1 (G-Rg1) H Glc-O- Glc-
Protopanaxadiol
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expressed in a one-to-one ratio between the fluorochrome and scFv, which should enhance the 
accuracy of the quantitative analysis. Currently, the usage of fluobody has been expanded from 
diagnosis, molecular targeted therapy, immunolabeling of cancer cells, probes for immunoassay, 
fluorescence-activated cell sorter (FACS) to fluorescent-linked immunosorbent assay (FLISA) for the 
detection of large molecular weight antigens such as proteins, peptides, and microtubules [47–51]. So 
far the application of a fluobody in FLISA for the detection of small molecules has been rarely 
reported except against herbicide, picloram [52] and s-triazine [53], and bioactive natural products, PL 
and G-Re [54–56] previously described by our group. 

In this study, the construction, bacterial expression, and characterization of fluobodies that have 
binding affinity to PL and G-Re have been demonstrated. Furthermore, the adequate formation of a 
fluobody has been assessed by constructing two chimera proteins of GFP fused at the C-terminus of 
scFv (C-fluobody) and the N-terminus of scFv (N-fluobody). The potential use of a fluobody in 
quantitative/qualitative analysis of bioactive natural products has been additionally reviewed in this article. 

2. Results and Discussion 

2.1. Construction and Expression of the Fluobodies 

Splicing by overlap extension PCR (SOE-PCR) is an effective technique to engineer hybrid genes 
for fusion of proteins [57]. To fuse scFv with AcGFP domains by SOE-PCR, they were primarily 
amplified by PCR from pET28a expression vector encoding PL-scFv and GRe-scFv gene and 
pAcGFP1-N1 vector encoding AcGFP gene. After purification of two domains, these domains were 
assembled by SOE-PCR to generate two constructs (C-fluobody and N-fluobody) with flexible linker 
(Gly4Ser)2 and restriction enzyme sites at both ends (BamH I and Sal I). The assembled fluobodies 
gene was purified, digested and ligated downstream of T7 promoter of pET28a vector to express it as 
chimera protein with His6-tag and T7-tag. Sequencing of the nucleotide acid revealed that C-, and  
N-fluobody against PL (C-, N-fluobody/PL) and C-, and N-fluobody against G-Re (C-, N-fluobody/ 
G-Re) possess 1461-bp nucleotides encoding 487 amino acids and 1446-bp nucleotides encoding 482 
amino acids, respectively. These results also indicated that the flexible linker sequences that are 
composed of repetitive sequences of four glycine and serine residues, (Gly4Ser)2, had been 
successfully placed between scFv and AcGFP genes but with a different format of AcGFP-linker-scFv 
(C-format) and scFv-linker-AcGFP (N-format) with each other (Figure 2). The plasmids encoding the 
fluobodies were transformed into the E. coli (BL21) strain for overexpression. The expression of the 
fluobodies was induced by the addition of 0.5 mM isopropyl-thio-β-D-galactopyranoside (IPTG) when 
the optimal density at 660 nm reached 0.6, with further culturing at 25 °C for 12 h. 

2.2. Purification and Refolding of the Fluobodies 

Purification and refolding of fluobodies that are mainly expressed as inclusion bodies were carried 
out by immobilized metal ion affinity chromatography (IMAC) using His-bind resin and stepwise 
dialysis following the Umetsu method [58], respectively. Sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE), followed by Coomassie brilliant blue staining was performed to estimate 
purity after IMAC. In this purification, the four kinds of the fluobodies, C-, N-fluobody/PL and C-,  
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N-fluobody/G-Re were estimated at more than 90% (Figure 3). The yields of each of the fluobodies 
were in the range of 29 to 53 mg per 1 L of bacterial cell culture as shown in Table 1. When MAb 3A3 
were prepared by culturing hybridoma cells, the yield was approximately 8 mg per 500 mL culture 
medium (equivalent to 16 mg per 1 L) [16]. Considering the labor-intensive and long-term culture of 
hybridoma cells, which requires advanced techniques to avoid contamination from microorganisms, 
bacterial expression using E. coli has a big advantage in preparing probes for immunoassay even if the 
refolding steps of inclusion bodies are sometimes required. SDS-PAGE analysis demonstrated that the 
fluobody monomer was successfully expressed and purified as a chimeric protein containing His6- and 
T7-tags with a molecular mass with theoretical values of fluobody/PL (57 kDa) and fluobody/G-Re 
(55.5 kDa).  

Figure 2. Schematic diagram of the construction of fluobody. The AcGFP and scFv genes 
were fused by splicing by overlap extension PCR (SOE-PCR) with the flexible linker 
sequence consisting of repetitive sequence of glycine and serine. 
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Table 1. The yields of fluobodies after purification by immobilized metal ion affinity chromatography. 

 C-format N-format 
Fluobody/PL 29.0 mg 41.4 mg 

Fluobody/G-Re 32.9 mg 52.6 mg 

Figure 3. Expression analysis of fluobody by SDS-PAGE. (a) SDS-PAGE analysis of C- 
and N-fluobody/PL. Lane 1; molecular protein marker, lane 2; C-fluobody in insoluble 
fraction after IPTG induction, lane 3; C-fluobody/PL after IMAC purification (1.5 µg), 
lane 4; N-fluobody in insoluble fraction after IPTG induction, lane 5; N-fluobody/PL after 
IMAC purification (1.5 µg). (b) SDS-PAGE analysis of C- and N-fluobody/G-Re. lane 1 
and 5; molecular protein marker, lane 2 and 6; total proteins before IPTG induction, lane 3; 
C-fluobody/G-Re in insoluble fraction after IPTG induction, lane 4; C-fluobody/G-Re after 
IMAC purification (2.1 µg), lane 7; N-fluobody/G-Re in insoluble fraction after IPTG 
induction, lane 8; N-fluobody/G-Re after IMAC purification (2.1 µg). 

 

2.3. Measurement of Fluorescence Intensity 

The fluorescence intensity of each fluobody was analyzed using the MTP-600FE fluorescent 
microplate reader at an emission wavelength of 490 nm and an excitation wavelength of 530 nm. In 
this assay, phosphate-buffered saline (PBS) was used as both a negative control and as solvent to adjust 
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Though the CRs of C-format fluobody were not different from that of N-format fluobody,  
C-fluobody was found to be superior to N-fluobody in the fluorescence intensity of AcGFP, using as a 
fluorophore. As we described in the previous paragraph, it may be due to the flexibility of the C-terminus 
of AcGFP.  

Table 2. Cross-reactivities (CRs) of fluobodies against PL or G-Re. 

Compounds 
CRs (%) 

C-fluobody/PL N-fluobody/PL 
Plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone) 100 100 
Menadion (2-methyl-1,4-naphthoquinone) 11 4.4 
Juglone (5-hydroxy-1,4-naphthoquinone) 20 22 
Lawsone (2-hydroxy-1,4-naphthoquinone) <0.005 <0.005 
1,4-Naphthoquinone 2.5 0.9 
1,2-Naphthoquinone 23 83 
Shikonin 0.4 0.1 
Sennoside A <0.005 <0.005 
Sennoside B <0.005 <0.005 
1-Naphthol <0.005 <0.005 
2-Naphthol <0.005 <0.005 

C-fluobody/G-Re N-fluobody/G-Re 
Ginsenoside Re (G-Re) 100 100 
Ginsenoside Rg1 (G-Rg1) 72 79 
Ginsenoside Rd (G-Rd) 15 13 
Ginsenoside Rb1 (G-Rb1) 0.4 0.4 
Ginsenoside Rc (G-Rc) 0.4 0.4 
Glycyrrhizin <0.005 <0.005 
Saikosaponin A <0.005 <0.005 
Digitonin <0.005 <0.005 
Swertiamarin <0.005 <0.005 
Sennoside A <0.005 <0.005 
Sennoside B <0.005 <0.005 
Deoxycholic acid <0.005 <0.005 

2.6. Indirect FLISA and Indirect Competitive FLISA (icFLISA) 

The characterized fluobodies were then applied to fluorescence-linked immunosorbent assay 
(FLISA) to develop a simple, speedy, and sensitive antibodies-based analytical method. Since scFv 
antibody was genetically fused with AcGPF which enabled it to be directly detected by the  
MTP-600FE fluorescent microplate reader (Corona), the time- and cost-consuming enzyme substrate 
reaction could be avoided, making it possible to complete the assay within 3 h.  

Indirect FLISA was carried out to evaluate the binding reactivity to coated antigen, PL-Ova or GRe-
HSA conjugates in a 96-well black microtiter plate (FluoroNunc). In the reactivity response curve in 
indirect FLISA using C-format fluobodies, the concentration of the C-fluobody positively correlated 
with the fluorescence intensity values in a logical manner, while the concentration of the N-format 
fluobodies did not show any correlation with the fluorescence intensity values (data not shown), as was 
predicted by the data in Figure 4. 
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We then analyzed the inhibitory activities of fluobodies against free antigen (PL or G-Re) in 
icFLISA. Figure 7 shows the calibration curves for various concentrations of PL or G-Re in diluted 
methanol solution. In this icFLISA, the detectable range of PL using C-fluobody/PL ranged from  
25 ng/mL to 3.1 μg/mL, whereas that of G-Re using C-fluobody/G-Re ranged from 10 ng/mL to  
3.1 μg/mL. However, in the case of N-format fluobody, the signal was undetectable due to its low 
fluorescence intensity as well as in indirect FLISA, even though competitive inhibitory activity was 
detected in the ELISA system. More interestingly, both limits of detection (LOD) for PL and G-Re 
determinations in FLISA system using the C-fluobody were found to be about 10-fold lower than that 
in the conventional ELISA using scFv (PL-scFv and GRe-scFv) [40,41] and their parental MAb (MAb 
3A3 and MAb-4G10) [16,17], where the LOD for PL and G-Re showed 200 ng/mL and 100 ng/mL, 
respectively. It was estimated that the improvement of LOD comes from the highly sensitive 
fluorescence of AcGFP detected by the fluorescent microplate reader compared to that of the enzyme. 
These results indicate not only a simple and speedy immunoassay but also that a sensitive 
immunoassay could be generally developed using C-fluobody instead of MAb or scFv. 

Figure 7. Calibration curve of PL (a) and G-Re (b) using C-fluobody in icFLISA. F/F0, F0 
is the absorbance in the absence of PL, and F is the absorbance in the presence of PL. 
Green squares and curves shows the standard curve produced using C-fluobody/PL (a;  
25 µg/mL) and C-fluobody/G-Re (b; 125 µg/mL).  

(a) (b) 
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HRP-labeled anti-mouse IgG goat antibody was obtained from Santa Cruz (CA, USA). DNA 
polymerase and DNA restriction enzyme were purchased from Takara (Kyoto, Japan). The pAcGFP1-
N1 vector was obtained from Clontech (Palo Alto, CA, USA). All other chemicals used in the 
experiments were standard commercial products of an analytical reagent grade.  

3.2. Preparation of PL-Ova and GRe-HSA Conjugates for Coated Antigen 

Since a free low molecular weight compound is usually hard to be adsorbed on a plate without 
modifications, PL and G-Re have thus been chemically conjugated to Ova and HSA by the 1-ethyl-3-
(3'-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) method [16] and the periodate oxidation 
method [62], respectively. Briefly, 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide hydrochloride 
(EDC; 6 mg) dissolved in MES buffer consisting of 0.1 M 2-(N-morpholino) ethanesulfonic acid and 
0.9% (w/v) sodium chloride (0.3 mL) were added to the 3'-(5-hydroxy-2-methyl-1,4-naphthoquinone-3-
yl) propanoic acid (3 mg) solution dissolved in 35% (w/w) pyridine (0.3 mL) and MES buffer (0.3 mL). 
The resultant mixture was then added dropwise to 3 mg Ova solution in MES buffer (0.3 mL), and 
stirred at room temperature for 13 h. Subsequently, the precipitates were then removed by centrifugation, 
and the supernatants were dialyzed against five batches of distilled water for 2 d at 4 °C and lyophilized 
to yield 1.0 mg of PL-Ova conjugates. In the case of synthesis of GRe-HSA conjugates, G-Re (3 mg) in 
dimethyl sulfoxide (0.4 mL) was added dropwise to 3 mg NaIO4 solution (0.6 mL) and then stirred at 
room temperature for 1 h. After that, 8 mg HSA in 50 mM carbonate buffer (pH 9.6; 1.0 mL) was 
added to the mixture and stirred for 5 h. The reaction mixture was dialyzed against five batches of 
distilled water and then lyophilized to yield 6.7 mg of GRe-HSA conjugates.  

3.3. Construction of Expression Vector for Fluobody 

To construct both C-format and N-format fluobody expression vector, pET28a expression vector 
(Novagen) encoding scFv gene, whose DDBJ accession numbers of PL-scFv and GRe-scFv are 
AB470492 and AB537502, respectively, and a pAcGFP1-N1 vector (Clontech) encoding AcGFP gene 
were used as templates. For constructing two kinds of chimera fused with scFv at the C-terminus of 
AcGFP (C-fluobody) or the N-terminus of AcGFP (N-fluobody), eight primers were designed based on 
the sequence information of scFv and AcGFP. 

The AcGFP domains for C-, and N-fluobody were primarily amplified from the pAcGFP1-N1 
vector by PCR using the two primers sets containing a BamH I restriction enzyme site at the 5′ end 
with a linker sequence at the 3′ end, and a linker sequence at the 5′ end with a Sal I restriction enzyme 
site at the 3′ end. Subsequently, scFv domains for C-, and N-fluobody were amplified from the pET28a 
expression vector by PCR using the two primers sets containing a linker sequence at the 5′ end with a 
Sal I restriction enzyme site at the 3′ end, and a BamH I restriction enzyme site at the 5′ end with a 
linker sequence at the 3′ end. The PCR conditions for both AcGFP and scFv domains were as follow: 
30 cycles of denaturation (98 °C, 10 s), annealing (55 °C, 5 s), and extension (72 °C, 1 min) with 
PrimeStar HS DNA polymerase (Takara, Kyoto, Japan). 

After amplification and gel purification of individual domains, these domains were combined 
together with the standard 10 amino acid linker (Gly4Ser)2 between two domains. C-fluobody was 
constructed by SOE-PCR using the purified AcGFP and scFv domains for C-fluobody and the primers 
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containing restriction enzyme site (BamH I and Sal I) with C-format as was described in Figure 2. 
While, N-fluobody was constructed by SOE-PCR using the purified scFv and AcGFP domains for  
N-fluobody and the primers containing restriction enzyme site at both ends (BamH I and Sal I) with  
N-format. The PCR conditions for amplification of C- and N-fluobody were as follows: 30 cycles of 
denaturation (98 °C, 10 s), annealing (55 °C, 5 s), and extension (72 °C, 3 min) with PrimeStar HS DNA 
polymerase (Takara). The amplified genes encoding the C-fluobody and N-fluobody were then purified, 
digested with BamH I and Sal I, and ligated downstream of the His6 and T7-tags of the pET28a 
expression vector (Novagen) to generate the pET28a/C-fluobody and pET28a/N-fluobody plasmids.  

3.4. Expression and Purification of Recombinant Fluobodies 

Resultant plasmids were then transformed into the E. coli BL21 (DE3) strain (Novagen) for the 
expression and purification of the fluobodies. The E. coli were cultured at 25 °C in 1 L of Luria-
Bertani (LB) supplemented with 25 μg/mL kanamycin until the optimal density at 660 nm reached 0.6. 
The expression of C-, and N-fluobody was induced by addition of 0.5 mM IPTG followed by shaking 
the culture for 12 h at 25 °C, and then the E. coli cells were harvested by centrifugation at 8,000 rpm 
for 10 min at 4 °C before being treated with lysis buffer (50 mM Tris-HCl, 500 mM NaCl, 10% (v/v) 
glycerol, and 0.01% (v/v) Nonidet P40; pH 8.0), and 1 mg/mL lysozyme. In this lysis step, 1 mL of 
lysis buffer was used to 1 g wet weight cell pellets. Next, the cells were ultrasonically lysated and then 
centrifuged at 14,000 rpm for 20 min at 4 °C to give pellets as inclusion bodies. Since the fluobodies 
were designed to be expressed as a chimera containing His6-tag at their N-termini, IMAC using  
His-bind resin (Novagen) could be a potentially effective tool in this purification. The pellets were 
suspended in binding buffer (50 mM Tris-HCl, 8 M urea, 500 mM NaCl, and 5 mM imidazole, pH 8.0) 
for further purification and ultrasonically extracted. The solubilized inclusion bodies were then applied 
to the resin column charged with Ni2+, and the resins were washed with binding buffer followed by 
washing buffer (50 mM Tri-HCl, 8 M urea, 500 mM NaCl, and 20 mM imidazole; pH 8.0) to remove 
nonspecific binding of background proteins. The target proteins were then eluted with elution buffer  
(50 mM Tri-HCl, 8 M urea, 500 mM NaCl, and 500 mM imidazole; pH 8.0). The yield of purified 
fluobodies was estimated by the method of Bradford [63]. 

3.5. Refolding of Recombinant Fluobodies 

The purified recombinant C-, and N-fluobody/PL (250 μg/mL) and C-, and N-fluobody/G-Re  
(200 μg/mL) were refolded by stepwise dialysis following the methods of Umetsu with slight 
modifications [56]. The fluobody protein was reduced by addition of 100-fold molar excess  
of β-mercaptoethanol (β-ME) in the dialysis buffer which consisted of 50 mM Tris-HCl, 8 M urea/6 M 
guanidine hydrochloride (GuHCl), 200 mM NaCl, 1 mM EDTA, and β-ME was then removed by 
dialysis against the same buffer lacking β-ME. After that, the fluobodies were refolded by gradual 
removal of urea/GuHCl using stepwise dialysis against Tris buffer containing urea (4, 2, 1, 0.5, 0.1, 
and 0 M) or GuHCl (3, 2, 1, 0.5, 0.1, 0 M). At the 2 M to 0.5 M urea or 1 M to 0.5 M GuHCl stages, 
400 mM L-arginine and 50-fold molar excess oxidized glutathione (GSSG) were added to facilitate the 
formation of disulfide bonds. At the last step, the fluobodies were dialyzed against PBS for 24 h at 
4 °C. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed 
according to the methods of Laemmli [64].  
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3.6. Measurement of Fluorescence Intensity 

To compare the fluorescence intensity between C-fluobody and N-fluobody, the concentrations of 
the purified fluobodies were equalized in PBS, which was also used as a negative control. A black 
microtiter plate (FluoroNunc, MaxiSorp) was used to reduce the background fluorescence. 50 μL of 
each of the samples (C-fluobody, N-fluobody, and PBS) were added to one-wells and the fluorescence 
intensity was measured with an MTP-600FE fluorescent microplate reader (Corona) at excitation and 
emission wavelengths of 490 nm and 530 nm, respectively. This assay was carried out at least five 
times for each sample. 

3.7. Indirect ELISA and icELISA 

Indirect ELISA was carried out to analyze the binding activity of fluobodies to the coated antigen, 
which is either PL-Ova or GRe-HSA conjugate. PL-Ova (1 µg/mL) or GRe-scFv (2 µg/mL) conjugates 
were dissolved in 50 mM carbonate buffer (pH 9.0), added to a 96-well immunoplate (100 µL/well) 
(Nunc, Maxisorb, Roskilde, Denmark), and incubated for 1 h. The plate was then washed three times 
with phosphate-buffered saline (PBS) containing 0.05% (v/v) Tween 20 (PBS-T) and then treated with 
300 µL of PBS containing 10% (w/v) skimmed milk (PBS-sm) for 1 h to reduce non-specific 
adsorption. Subsequently, various concentrations of fluobodies (100 μL/well) were incubated for 1 h. 
After washing the plate three times with PBS-T, the fluobodies bound to the coated antigen were 
incubated with 100 µL of a 5,000-fold diluted solution of secondary antibody, which is horse radish 
peroxidase (HRP)-labeled anti-T7-tag conjugates (Invitrogen) for 1 h. The plate was then washed with 
PBS-T, 100 µL of ABTS substrate solution mixed with 0.1 M citrate buffer (pH 4.0) supplemented 
with 0.003% (v/v) H2O2 were added to each well and incubated for 15 min. All incubation steps of the 
ELISA were carried out at 37 °C. Absorbance was measured at 405 nm with a microplate reader 
(Immuno Mini NJ-2300, Nalge Nunc International). 

An icELISA was also carried out to analyze the inhibitory activity of fluobodies against PL or G-Re. 
The same procedures as used in the indirect ELISA were used until the blocking step. After washing 
the blocked-plate three times with PBS-T, 50 µL of various concentrations of PL or G-Re in diluted 
methanol solution were incubated with 50 µL of each fluobody solution for 1 h. The plate was then 
washed three times with PBS-T, and the fluobody bound to GRe-HSA conjugates was combined with 
100 µL of a 5,000-fold diluted solution of HRP-labeled anti-T7-tag conjugates for 1 h. After washing 
the plate three times with PBS-T, 100 µL of ABTS substrate solution was added to each well and 
incubated for 15 min. Absorbance at 405 nm was measured using a microplate reader. 

To evaluate the specificity of fluobodies, the cross-reactivities (CRs) of the purified fluobodies 
against various compounds were calculated using the method of Weiler and Zenk [65] as follows:  

CRs ሺ%ሻ ൌ
Concentration of free antigen ሺPL or GReሻ yielding ܣ ⁄݋ܣ ൌ 50%

Concentration of test compound yielding ܣ ⁄݋ܣ ൌ 50% 
 

ൈ 100 

where A is the absorbance in the presence of the test compound, and A0 is the absorbance in the 
absence of the test compound. 
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3.8. Indirect FLISA and icFLISA  

For the indirect FLISA, a black microtiter plate (FluoroNunc, MaxiSorp, Roskilde, Denmark) was 
coated with PL-Ova (1 µg/mL) or GRe-HSA (2 µg/mL) conjugates in 100 µL of 50 mM carbonate 
buffer (pH 9) and incubated at 37 °C for 1 h. The plate was washed three times with PBS-T and then 
treated with 300 µL of PBS-sm for 1 h at 37 °C to reduce non-specific adsorption. Subsequently, 
various concentrations of fluobodies (100 μL/well) were incubated for 1 h at 25 °C. After washing the 
plate a further three times with PBS-T and adding 100 µL PBS to each well, the remaining 
fluorescence was measured at an excitation wavelength of 490 nm and an emission wavelength of  
530 nm using a fluorescent microplate reader (MTP-600FE, Corona). 

In icFLISA, the same procedure as was used in the indirect FLISA was used until the blocking step. 
After washing the blocked-plate three times with PBS-T, various concentrations of PL or G-Re (50 µL) 
in diluted methanol were incubated with 50 µL of purified fluobody solution for 1 h at 25 °C to 
observe the competition of fluobody between free antigen (PL or G-Re) and coated antigen (PL-Ova or 
GRe-HSA conjugates). After washing the plate a further three times with PBS-T and adding 100 µL  
of PBS to each well, the remaining fluorescence was measured with a MTP-600FE fluorescent  
microplate reader. 

4. Conclusions 

To date, many antibody-based analytical approaches have been developed, which include ELISA, 
SPR, flow cytometry, and hand-held immunochromatographic assay [1–11]. We have mainly focused 
on the preparation of monoclonal antibodies against natural products and the application in ELISA for 
the serial determination of bioactive compounds in medicinal plants in order to select high quality 
strains after breeding [12]. The advantage of the ELISA method using monoclonal antibody (MAb) is 
rapid determination/detection, easy handling, high sensitivity, and selectivity. However, even simpler, 
speedy, and sensitive immunoassay is required to deal with a large number of plant samples 
continually. Recent advance in gene technology makes it possible to construct various antibodies [14] 
by dealing with the original hybridoma and filamentous bacteriophage displaying antibody  
fragments [66,67]. 

In this review, construction of the fluobody, which is a chimera protein of GFP and scFv antibody, 
against PL and G-Re, and characterization has been described to develop fluorescence-linked 
immunoassay, FLISA. The fluobody used in FLISA can overcome the disadvantage of cost, time, and 
labor, when preparing MAb. To obtain MAb as a probe for ELISA, an expensive medium, sophisticated 
technique for culture of hybridoma cells to avoid contamination with microorganisms, and a long period 
of time are required. On the other hand, the fluobody can be easily expressed in E. coli or other  
hosts [42,43,56], when genes are constructed. In the case of E.coli expression as mentioned in this 
review, an adequate amount of fluobody can be obtained within 1 week including the refolding step. In 
addition, it can be commonly performed by using low-cost Luria-Bertani (LB) medium consisting of 
1% (w/v) polypeptone, 0.5% (w/v) yeast extract, and 0.5% (w/v) NaCl [68]. The FLISA itself can 
overcome the disadvantage of cost and time, when performing ELISA. The enzyme-substrate reaction 
that is necessary for ELISA can be avoided in FLISA. Therefore, the time-saving (1.5 h) and  
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cost-saving analysis, where the expensive secondary antibody is necessary in ELISA, can be carried 
out in FLISA.  

Characterization of fluobodies revealed that the sensitivity in FLISA could be improved by using  
C-fluobody. Moreover, the specificity of the fluobody is found to be the same as that of the original 
scFv antibodies. Thus, these results indicate that the rapid, sensitive, and specific immunoassay could 
be generally developed by using C-format fluobody once scFv antibodies that have interesting 
characteristics are obtained. Since applications using antibodies have been recently increasing in 
various fields, fluobodies against bioactive natural products would also be promising tools for 
qualitative/quantitative analysis in the next-generation. 
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