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Abstract: Studying the impact of land urbanization on smog pollution has important guiding
significance for the sustainable development of cities. This study adds the spatial effect between
regions into the research framework of smog pollution control in China. On the basis of a panel dataset
of 31 province-level administrative regions in China from 2000 to 2017, we investigate the impact of
land urbanization on smog pollution. We construct a spatial weight matrix and use Moran’s I statistic
and the spatial autoregressive panel data model. The research results show that land urbanization and
smog pollution have an inverted U-shaped relationship. With the advancement of land urbanization,
the area’s smog pollution first increases and then decreases. However, in general, China has not
passed the inflection point and is still at a stage where increasing land urbanization rate aggravates
smog pollution. Moreover, the country’s smog pollution has a significant spatial positive correlation
that shows agglomeration. In that context, multiple environmental governance entities, including the
government, enterprises, and the public, need to collaborate on measures to reduce smog pollution.
Future urban construction in China will need to integrate solutions that address the current nexus
between urbanization and smog pollution to achieve green and sustainable development.
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1. Introduction

Since their reform and opening up, cities in China have been expanding with the continuous
growth of the total economic volume [1,2]. The National Bureau of Statistics reported that China’s
urbanization rate increased from 17.9% in 1978 to 60.6% in 2019 [3]. However, the rapid growth of
the Chinese economy and the expansion of the city scale come at the cost of considerable energy
consumption and severe environmental pollution [4–7], especially smog pollution. Smog is a mixture
of smoke and fog, and an important measure of smog pollution is the peak hourly concentrations
of ambient fine particulate matter (PM2.5) [8]. Industrial sectors, such as automobile manufacturing,
coal mining, construction and cement manufacturing, are known to generate large quantities of air
pollutants, especially PM2.5 particles [9]. In recent years, smog pollution has occurred frequently,
posing a great health hazard to the public [10,11]. Reports show that ambient particulate matter
pollution is the fourth-leading risk factor for deaths in China, behind dietary risks, high blood
pressure, and smoking [12]. The ever-increasing smog pollution has attracted the attention of the public.
Consequently, policymakers have begun to adopt many strategies to control smog pollution. In 2013,
the Chinese government deployed 10 measures to prevent and control smog pollution and released the
Action Plan for Preventing and Controlling Air Pollution [13,14]. The implementation of these policies
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has begun to suppress the intensification of smog pollution, but the overall levels of smog are still
a cause for concern. The latest data showed that in 2019, the days with PM2.5 as the main pollutant
accounted for 78.8% of the days with severe pollution and above in China, and the days with PM10 as
the main pollutant also reached 19.8% [15].

Numerous research results from ecological economics show that the increase in smog
pollution is related to many factors, such as economic development, coal consumption, industrial
structure, transportation, and environmental governance efficiency [16–20]. The impact of accelerating
urbanization on smog pollution needs more special attention than these direct causes of
pollution [21]. Urbanization has produced agglomeration effects and promoted economic development,
but the rapidly expanding city scale has also brought about “urban diseases,” such as traffic
congestion and smog pollution [22]. Previous research results described the relationship between
urbanization and atmospheric environment from different perspectives and by using different
methods [23–26]. However, these studies focus on the changes in population size and the impact
of social and economic development on the atmospheric environment in the urbanization
perspective [27]. Urbanization is a process of transformation of land usable functions [28]. In this process,
land plays an extremely important role. Industrial structure adjustment, population agglomeration,
and infrastructure construction must be realized through the reconfiguration of land [29,30].
Land urbanization is embodied in the process of converting agricultural land into non-agricultural
land and rural land into urban land [31]. Moreover, tracts of natural vegetation (nature-spaces) are
also converted at the peri-urban fringe and within the built environment of new and growing cities.
The changes in land use patterns and structure, the allocation of land indicators, the resulting changes
in economic development space, and the adjustment of industrial structure have an impact on
air quality [32].

In addition, spatial factors play an important role that cannot be ignored in the study of
environmental economic issues [33]. Due to the existence of natural and geographical factors, such as
water flow and wind direction, the environmental problems of an area will inevitably be affected by its
neighboring areas. Human factors, such as industrial transfer and trade, further deepen the spatial
linkage between regional environmental quality and economic development. Previous studies on
the relationship between urbanization and smog pollution confirm the existence of spatial spillover
effects of air pollution and its governance [34–36]. However, those studies assumed environmental
independence between regions, which is inconsistent with reality.

This study advances understanding of the relationship between urbanization and smog pollution
in China by adding the spatial effect between regions into the research framework. We propose the
first research hypothesis, that is, smog pollution has a significant spatial correlation. According to the
Environmental Kuznets Curve (EKC) hypothesis, we propose the second research hypothesis, that is,
land urbanization and smog pollution have an inverted U-shaped relationship. On the basis of a panel
dataset of 31 province-level administrative regions in China from 2000 to 2017, we constructed a spatial
weight matrix and used Moran’s I statistic and spatial autoregressive (SAR) panel data model. We tested
these research hypotheses and found the inflection point of the inverted U-shaped curve. With this
study, we aim to provide a reference for China’s urban construction and sustainable development.

The remainder of this study is organized as follows. Section 2 introduces the materials and methods
commonly used in spatial measurement research, including the spatial weight matrix, Moran’s I
statistic, and the SAR panel data model. It also lists the variables and original data sources used in the
proposed model. Section 3 presents the results of the research that used software, such as Stata, ArcGIS,
and GeoDa, to analyze in detail the spatiotemporal distribution characteristics of smog pollution and
land urbanization in China, the spatial autocorrelation of smog pollution, and the impact of land
urbanization on smog pollution. It also explains the series of robustness tests conducted on the results.
Section 4 discusses the empirical results on the basis of the reality of land urbanization and smog
pollution in China. Finally, Section 5 provides a summary of the results and conclusions.
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2. Materials and Methods

2.1. Spatial Weights Matrix

The spatial weights matrix is a necessary element in most regression models where a presentation of
spatial structure is needed [37]. Common spatial weight matrices include three types: contiguity-based
spatial weights, distance-based spatial weights, and economic-based spatial weights [38]. These three
spatial weight matrices are defined as follows:

wC
ij =

{
1, i and j are neighbors
0, i and j are not neighbors

(1)

wD
ij =

{
1/d2, i , j
0, i = j

(2)

wE
ij =

{
1/

∣∣∣pgdpi − pgdp j
∣∣∣, i , j

0, i = j
(3)

where i and j are regions, and d is the distance between the geographic centers of the two regions.
We selected the location of the provincial capitals. pgdp is per capita GDP. We used contiguity-based
spatial weights to reflect whether area i and area j are adjacent, distance-based spatial weights to
reflect the geographic spatial distance between area i and area j, and economic-based spatial weights to
reflect the economic distance between area i and area j. Following previous research, we mainly chose
contiguity-based spatial weights for spatial measurement analysis [39,40]. We also used distance and
economic-based spatial weights to test the robustness of the results.

2.2. Moran’s I Statistic

This study uses Moran’s I statistic to examine the spatial autocorrelation of smog pollution.
Moran’s I statistic is the most popular test for spatial correlation, including global Moran’s I and local
Moran’s I [41,42]. The calculation is formulated as follows:
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n
∑n

i=1
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j=1 wi j(ρi − ρ)
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∑
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∑
i(ρi − ρ)

2

n
(5)

where ρi is smog pollution of area I, ρ is the mean of smog pollution, wi j is the spatial weights matrix.
The value range of Moran’s I statistic is from −1 to 1, and a value greater than 0 indicates spatial positive
correlation, that is, the spatial distribution characteristics of high value and high value aggregation or
low value and low value aggregation. By contrast, a value less than 0 is a spatial negative correlation,
that is, a spatial distribution characteristic in which a high value surrounds a low value or a low value
around a high value. A value equal to 0 is irrelevant. To investigate the local spatial autocorrelation
of smog pollution, we further used Stata to generate a local Moran scatter plot maps of China’s
smog pollution for each year. We also used GeoDa and ArcGIS to produce local indicators of spatial
association (LISA) agglomeration maps of smog pollution for each year.

2.3. SAR Panel Data Model

The SAR panel data model is used to estimate the impact of land urbanization on smog pollution.
The traditional panel measurement model does not consider the possible spatial correlation of
dependent variables. From the perspective of externality, the SAR panel data model examines the
impact of changes in a region’s elements from other regions. The SAR panel data model in this study is
defined as follows:
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smogit = ui + γt + ρw′i smogt + β1landurbanit + β2landurban2
it + β′control′it + εit (6)

where i is the region; t is the time; smog is the dependent variable, that is, smog pollution; landurban is
the independent variable that this study focuses on, that is, land urbanization; control refers to all
control variables; ui and γt represent individual effects and time effects, respectively. According to the
EKC hypothesis, we add the quadratic term of land urbanization to the proposed model to investigate
the possible non-linear effects of land urbanization on smog pollution. β1, β2 and β′ are the coefficients
of each variable [43,44].

2.4. Variable Definitions and Data Description

The eight variables included in the SAR panel data model constructed through this study
(Table 1) are:

(1) Dependent variable: Smog pollution is the dependent variable in the proposed model. We selected
the PM2.5 concentration, which is the main source of smog pollution and that which most concerns
the Chinese public, as the measurement index. The original data come from the American
Atmospheric Composition Analysis Group. The data type is gridded datasets (resolution is
0.01◦ × 0.01◦) [45]. We used ArcGIS to analyze the original data packet and match them with
the maps of China’s provinces to obtain the average PM2.5 concentration. Finally, we obtained
the panel datasets of 31 province-level administrative regions in China from 2000 to 2017.
The advantage of this analysis is the comprehensive integration of satellite monitoring data and
ground monitoring data, which can accurately and objectively reflect the true situation of China’s
smog pollution.

(2) Independent variable: Land urbanization is the independent variable that this article focuses
on. With reference to Liu and Wang’s approach [46,47], we used land urbanization rate in the
measurement, and the specific calculation formula is as follows:

landurbanit =
Uareait
Tareait

× 100% (7)

where i is the region, t is the time, Uarea is the built-up area of each province’s city, and Tarea is
the total land area of each province.

(3) Control variable: To improve the accuracy of the model estimation results, we selected some
relevant factors that may affect smog pollution as control variables and put them in the model.
First, considering the traditional stochastic impacts by regression on population, affluence,
and technology (STIRPAT) model, we controlled the impact of population, wealth, and technology
on smog pollution [48,49]. Second, we measured the demographic factor by the population per km2,
the wealth factor by per capita GDP, and the technical factor by the number of patent application
authorizations. Third, informed by other studies, we considered the impact of industrial structure,
education level, and degree of openness on smog pollution [50–52]. We model industrial structure
by the proportion of the added value of tertiary industry to GDP, the education level by the
number of college students per 10,000 people, and the degree of openness by the proportion of
total import and export to GDP.

After data collection, this study analyzed the panel dataset of 31 provincial administrative regions
in China from 2000 to 2017. Due to the lack of data, the research area of this study does not include
Hong Kong, Macau, and Taiwan. Table 2 lists the descriptive statistical and multicollinearity test of all
the original data. According to the results of variance inflation factor (VIF), the VIF of the independent
variable and all the control variables are less than 10, thereby indicating that the variables selected in
this paper do not have multicollinearity [26,53].
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Table 1. Variable definitions.

Types Variables Symbol

Dependent variable PM2.5 concentration (µg/m3) PM2.5

Independent variable
Land urbanization rate (%) landurban

Square of land urbanization rate landurban2

Control variable

Population per km2 (logarithm) lnpop
Per capita gross domestic product (logarithm) lnpgdp

Number of patent application authorization (logarithm) lnrd
Proportion of the added value of tertiary industry to GDP (%) third

Number of college students per 10,000 people (logarithm) lnedu
Proportion of total imports and exports to GDP (%) open

Note: Symbols are set in italics to distinguish them from the main text.

Table 2. Descriptive statistics and multicollinearity test.

Variable Obs Mean SD Min Max VIF

PM2.5 558 38.06 16.30 4.730 84.50 —
landurban 558 1.547 2.770 0.00562 15.75 4.16

lnpop 558 5.266 1.477 0.742 8.249 4.23
lnpgdp 558 10.01 0.841 7.887 11.77 7.79

lnrd 558 8.589 1.837 1.946 12.72 5.07
third 558 41.66 8.546 28.60 80.56 2.05
lnedu 558 4.835 0.589 3.055 5.876 4.10
open 558 30.47 38.15 1.688 172.2 2.55

3. Results

3.1. Spatiotemporal Distribution of Land Urbanization and Smog Pollution

Figure 1 displays the spatial distribution characteristics of land urbanization and smog pollution in
China wherein (a) and (b) reflect the mean distribution, and (c) and (d) reflect the distribution of growth.
The areas with severe smog pollution are mainly concentrated in the four regions: Central, North,
East, and Northwest China. Northeast, Southwest, and South China have small degrees of smog
pollution. From the perspective of changes, smog pollution is rapidly increasing in various areas,
including Beijing, Tianjin, Shanghai, Shandong, Jiangsu, Anhui, and Jilin. The growth of PM2.5 in
all area exceeds 20 µg/m3, and in some areas even exceeds 50 µg/m3. In terms of land urbanization,
the mean and the growth distributions show an increasing distribution characteristic from west to
east. This finding is also consistent with the distribution of regional differences in China’s economic
development level.

3.2. Spatial Autocorrelation of Smog Pollution

We used Stata to measure the global Moran’s I of China’s PM2.5 concentration from 2000 to 2017.
The test results reported in Table 3 show that the global Moran index values over the years are roughly
distributed between 0.4–0.5 and all passed the 1% significance test. Thus, China’s smog pollution
shows a significant positive spatial correlation. The spatial distribution of smog pollution in China
presents the “club” distribution characteristics of high value and high value agglomeration and low
value and low value agglomeration. This result also indicates the necessity of adding spatial influencing
factors to the measurement model that examines the impact of land urbanization on smog pollution.

Figures 2 and 3 show local Moran scatter plot maps and LISA agglomeration maps of China’s
smog pollution. Due to space limitations, this article only shows the results at the beginning (2000)
and the end (2017) of the investigation period.
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Figure 1. Spatial distribution characteristics of land urbanization and smog pollution in China. (a) Mean
of ambient fine particulate matter (PM2.5) concentration; (b) mean of land urbanization rate; (c) growth
of PM2.5 concentration; (d) growth of land urbanization rate.

Table 3. Global Moran’s I of China’s PM2.5 concentration, 2000–2017.

Year Global Moran’s I Z-Statistic p-Value Sig

2000 0.405 3.653 0.000 ***
2001 0.434 3.877 0.000 ***
2002 0.432 3.867 0.000 ***
2003 0.486 4.333 0.000 ***
2004 0.409 3.693 0.000 ***
2005 0.451 4.046 0.000 ***
2006 0.498 4.455 0.000 ***
2007 0.500 4.464 0.000 ***
2008 0.453 4.067 0.000 ***
2009 0.448 4.045 0.000 ***
2010 0.425 3.838 0.000 ***
2011 0.496 4.423 0.000 ***
2012 0.444 3.990 0.000 ***
2013 0.493 4.419 0.000 ***
2014 0.417 3.762 0.000 ***
2015 0.486 4.341 0.000 ***
2016 0.505 4.511 0.000 ***
2017 0.451 4.041 0.000 ***

Note: *** p < 0.01.

The results of the Moran scatter plot map show that whether in 2000 or 2017, the local Moran’s I
of most provinces are distributed in the first quadrant characterized by high–high agglomeration and
the third quadrant characterized by low–low agglomeration. The results of the LISA agglomeration
map show that, in terms of spatial distribution, the high-value accumulation areas of smog pollution
are mainly distributed in the northern and central provinces of China. By contrast, the low-value
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accumulation areas of smog pollution are distributed in the northeast and the southwest and southern
provinces. In terms of dynamic changes, the high-value agglomeration areas of smog pollution
are shrinking, and the pollution center is shifting from the central and western regions to the east.
Specifically, Gansu, Shaanxi, Shanxi, and Hubei in the central and western regions withdrew from
high-value groups, whereas Beijing and Jiangsu in the eastern regions joined. Although the low-value
accumulation areas of smog pollution in the northeast have not changed (Heilongjiang and Jilin),
the low-value accumulation areas of smog pollution in the south and southwest have expanded.
Compared with the data gathered in 2000, Chongqing, Sichuan, and Tibet also joined the low-value
group of smog pollution in 2017.
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period; (b) End of the investigation period.

3.3. Regression Results

Table 4 reports the estimation results of the SAR panel data model under different conditions.
Columns 1 and 2 are the estimation results without the addition of control variables. The difference
between Columns 1 and 2 adds a quadratic term with the dependent variable to the model to examine
whether land urbanization has a nonlinear impact on smog pollution. Column 3 is the estimated
result after adding control variables on the basis of the STIRPAT model, and Column 4 is the estimated
result after adding all control variables to the model. From the results in Table 4, we can conclude
the following:

(1) The estimation results in Columns 1–4 show that under different constraint conditions,
the estimated coefficient of W * PM2.5 is significantly positive, thereby indicating that China’s smog
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pollution has a significant positive spatial correlation. This result is consistent with Moran’s I test
result. The estimated coefficient value shows that an increase of 1 µg/m3 in the PM2.5 concentration
in the neighborhood increases the local PM2.5 concentration by more than 0.7 µg/m3.

(2) The estimation results in Columns 2–4 show that without the addition of control variables, the
estimated coefficient of the first-order term of landurban is significantly positive. By contrast,
the estimated coefficient of the quadratic term is significantly negative. After gradually adding
the control variables, the estimated coefficient of the first-order term of landurban is still
significantly positive. The estimated coefficient of the quadratic term is still significantly
negative. These results indicate that land urbanization has a nonlinear impact on smog pollution.
Specifically, land urbanization and smog pollution have an inverted U-shaped relationship, that is,
with the increase in land urbanization rate, the level of smog pollution shows a trend of first
rising and then falling.

(3) The estimated results in Columns 3–4 also show the impact of each control variable on smog
pollution. The estimated coefficients of lnpop, lnpgdp, third, and lnedu are all significantly negative,
thereby indicating that the improvement of regional economic level, the agglomeration effect
brought about by the increase in population size, the improvements of industrial structure and
education level significantly reduce the concentration of PM2.5 in the region. The estimated
coefficients of lnrd and open fail to pass the significance test. As far as the data used in this study
are concerned, the evidence to prove that the level of technology and openness of the region have
a statistically significant impact on smog pollution is insufficient.

Table 4. Estimation results of the spatial autoregressive (SAR) panel data model.

(1) (2) (3) (4)

W * PM2.5 0.7459 *** 0.7392 *** 0.7282 *** 0.7407 ***
(0.0325) (0.0332) (0.0340) (0.0332)

landurban 0.6292 *** 1.4049 *** 2.1935 *** 2.2452 ***
(0.2086) (0.5274) (0.5938) (0.6060)

landurban2 −0.0391 * −0.0611 ** −0.0677 **
(0.0244) (0.0259) (0.0266)

lnpop −13.1397 *** −19.4974 ***
(3.4545) (3.6331)

lnpgdp −3.6263 *** −4.6639 ***
(1.2787) (1.3778)

lnrd 0.0166 0.0978
(0.4676) (0.4654)

third −0.2035 ***
(0.0470)

lnedu −3.8029 ***
(1.1180)

open −0.0194
(0.0129)

Ind fixed Yes Yes Yes Yes
Time fixed Yes Yes Yes Yes

N 558 558 558 558
R2 0.2176 0.2301 0.1462 0.1937

Inflection point 17.96 17.95 16.58
Cross the inflection point None None None

Note: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The estimation results of the SAR panel data model show that land urbanization and smog
pollution have an inverted U-shaped relationship. We aimed to find the inflection point of this inverted
U-shaped relationship and identify the provinces that have crossed this inflection point. On the basis
of the regression results in Table 4, we calculated the inflection point values of the inverted U-shaped
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curve in Columns 2–4, which are 17.96, 17.95, and 16.58, respectively. Compared with the original
data, we find that as of the end of the investigation period (2017), no area has crossed the inflection
point and entered the stage where increasing land urbanization promotes the improvement of smog
pollution. Moreover, most areas are still far from the inflection point. This result indicates that although
land urbanization and smog pollution have an inverted U-shaped relationship, China is still on the
left of this inverted U-shaped curve as a whole, that is, increasing land urbanization rate aggravates
smog pollution.

3.4. Robustness Test

3.4.1. Change the Regression Method

To verify the robustness of the conclusions drawn in Section 3.3, we performed a series of tests.
We changed the regression method to re-estimate the coefficients of the independent variables in
the proposed model. Table 5 lists the estimated results. Column 1 is the Ordinary Least Squares
(OLS)method not considering the spatial correlation, and Columns 2–4 are the other three panel space
measurement models. They are the Panel Space Error Model (PSEM) that only contains the spatial
autocorrelation of the error term, the Panel Space Autocorrelation Model (PSAC) that contains the
spatial lag of the explained variable and the spatial autocorrelation of the error term, and the Panel
Space Dubin Model (PSDM) that considers the spatial lag of independent variables on the basis of SAR
panel data model. Table 5 shows that no matter which method is used, the estimated coefficient of the
first-order term of the independent variable landurban, which is the focus of this study, is significantly
positive. By contrast, the estimated coefficient of the quadratic term is significantly negative. On the
basis of the estimation results of OLS, PSEM, and PSAC, only Shanghai has passed the inflection point.
The PSDM estimation results are consistent with SAR panel data model, and no province passed the
inflection point.

Table 5. Estimated results of different methods.

OLS PSEM PSAC PSDM

landurban 5.4874 *** 8.3873 *** 9.0453 *** 1.7832 ***
(0.8481) (1.0444) (1.0890) (0.6627)

landurban2 −0.1955 *** −0.3972 *** −0.4159 *** −0.0497 *
(0.0374) (0.0510) (0.0519) (0.0289)

Control variable Yes Yes Yes Yes
Ind fixed Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes
N 558 558 558 558
R2 0.5772 0.2605 0.1466 0.1640

Inflection point 14.03 10.56 10.01 17.94
Cross the inflection point Shanghai Shanghai Shanghai None

Note: Standard errors in parentheses. *** p < 0.01, * p < 0.1. Due to space limitations, the estimated results of the
control variables are not listed in the table. The complete estimated results can be found in Appendix A.

3.4.2. Change the Spatial Weight Matrix

For the spatial measurement model, the choice of the spatial weight matrix has a great impact
on the results. To test this influence, we re-estimated the SAR panel data model by changing the
spatial weight matrix. Columns 1–2 of Table 6 are the estimated results by using the distance and
economic-based spatial weights. Table 6 shows that no matter which spatial weight matrix is used, the
estimated coefficient of the first-order term of landurban is significantly positive, and the estimated
coefficient of the quadratic term is significantly negative. Land urbanization and smog pollution have
maintained a significant inverted U-shaped relationship. The calculation result of the inflection point
shows that only Shanghai has passed the inflection point and entered the right half of the inverted
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U-shaped curve. In general, the abovementioned series of tests proved that the conclusions drawn in
this article are robust.

Table 6. SAR panel data model estimated results of different spatial weight matrices.

Distance Economic

landurban 3.4904 *** 5.9174 ***
(0.6671) (0.8228)

landurban2 −0.1226 *** −0.2131 ***
(0.0292) (0.0362)

Control variable Yes Yes
Ind fixed Yes Yes

Time fixed Yes Yes
N 558 558
R2 0.1771 0.1821

Inflection point 14.23 13.88
Cross the inflection point Shanghai Shanghai

Note: Standard errors in parentheses. *** p < 0.01. Due to space limitations, the estimated results of the control
variables are not listed in the table. The complete estimated results can be found in Appendix A.

4. Discussion

4.1. The Inverted U-Shaped Relationship between Land Urbanization and Smog Pollution

The estimation results of the SAR panel data model show that land urbanization and smog
pollution have an inverted U-shaped relationship. From other perspectives of urbanization, such as
population urbanization, the results of this study are similar to the previous research. For example,
Liu et al. (2015) found the same inverted U-shaped relationship between population agglomeration
brought about by urbanization and smog pollution by using panel threshold model [54]. Based on the
structural equation model, Li et al. (2017) also found that the impact of urban population density on
smog pollution shows as an inverted U-shape [55]. Moreover, the results of this study are also different
from the previous research. In Wang’s (2019) research, he found that there is a significant U-shaped
relationship between land urbanization and atmospheric ecological environment quality. The reason
for this difference may be that he used SO2 emissions to define air pollution [56]. This study expands the
research on the impact of urbanization on smog pollution and indicates that the relationship between
land urbanization and smog pollution conforms to the EKC hypothesis, as an important feature
of economic development. Referring to previous studies, we can discuss this influence mechanism.
In periods when low land urbanization is rate, the regional economic development level is low,
the technical level is not high, the industrial structure level is low, and the economic development
is mainly based on the extensive development model [56]. The central government assesses local
governments with economic development indicators, such as GDP and taxes. To increase the total
amount of local GDP and taxes, the local governments allocate the indicators of construction land to
industrial land in the secondary industry [57]. However, industrial land causes great air pollution [58].
In periods of high land urbanization rate, the local economy has developed to an advanced stage,
and the development model is mainly characterized by intensive development [59]. The government
and urban residents are aware of the importance of environmental protection, and the reality of high
pollution forces the central government to issue environmental regulations and policies to restrict the
development of industries in various regions. To meet the requirements of the central government’s
environmental regulations and policies, local governments’ land and industrial policies favor the
service industry and high-tech industries in the tertiary industry. Local governments also reduce
the proportion of industrial land transfers and allocate considerable construction land indicators to
tertiary industry land, thereby reducing pollutant emissions and realizing economic transformation
and green development [56].
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4.2. The Current Stage of China

By calculating the inflection point, we find that China is still at a stage where increasing land
urbanization rate exacerbates smog pollution, although land urbanization and smog pollution have an
inverted U-shaped relationship. The contradiction between urban development and smog pollution
is still prominent, and thus resolving this contradiction is an important issue currently in China’s
urban construction. According to the theory of ecological modernization, urbanization essentially
embodies the modernization of individuals and societies. The mitigation of environmental problems,
such as air pollution, is the result of the joint efforts of various actors at multiple levels in the process of
balancing economic development and environmental protection [60]. These actors include government,
enterprises, and the public. To formulate a reasonable urban plan, the government cannot blindly
pursue the expansion of the city scale [61]. Instead, policymakers need to focus on the compact and
intensive development of cities [22]. In addition, a series of policies is needed to guide the development
of urban industrial structure and promote the rational allocation of urban resources. Enterprises need
to enhance their sense of social responsibility and continuously reduce the proportion of industries
with high energy consumption, high pollution, and high emissions. In addition, they must strengthen
the research and development of pollution control technologies to realize clean and sustainable
production methods [62]. As far as the public is concerned, they must take on the responsibility of
supervising the government and enterprises and promoting environmental protection awareness and
knowledge. The public should not simply regard themselves as the victims of smog pollution, but
more importantly, realize how to move from a comfortable but high energy consumption lifestyle to
a green and sustainable way of life and consumption as citizens [63,64]. Through the joint efforts of
different governance entities, the positive externalities of regional, social, and economic development
brought about by land urbanization on smog pollution can be stimulated, and a win–win situation
between urban development and smog governance can be realized.

4.3. The Positive Spatial Correlation of Smog Pollution in China

A series of spatial measurement methods indicate that China’s smog pollution has a significant
positive spatial correlation that shows agglomeration. One or more higher areas are adjacent to a high
area. Similarly, at least one lower area is adjacent to a low area. The results of the global Moran’s I show
that from 2000 to 2017, the positive spatial correlation of smog pollution fluctuated between 0.4 and 0.5,
indicating that this spatial correlation continues to be at a high level. The SAR panel data modelling
of this study shows that increase of 1 µg/m3 in the PM2.5 concentration in a neighboring region
increases the local PM2.5 concentration by 0.7407 µg/m3. This study demonstrates that in the process of
smog pollution control, local governments should not only focus on the remediation of “heavy-hit
areas,” such as North and Central China. They should also realize that the control of smog is not the
responsibility of a certain province [65]. The spatial relevance of smog pollution requires each province
to break down their own administrative barriers; strengthen regional cooperation and information
sharing; promote the flow of technology, talent, capital, and other elements of smog governance among
different regions; and improve the efficiency of smog governance to comprehensively improve China’s
smog pollution problem [66,67].

5. Conclusions

This study adds the spatial effect between regions into the research framework of smog pollution
control in China. On the basis of a panel dataset of 31 province-level administrative regions in China
from 2000 to 2017, we investigated the impact of land urbanization on smog pollution. We constructed
a spatial weight matrix and used Moran’s I statistic and the SAR panel data model. The modelling
of this study demonstrates that land urbanization and smog pollution have an inverted U-shaped
relationship. With the advancement of land urbanization, an area’s smog pollution first increases and
then decreases. However, in general, China has not passed the inflection point and is still at a stage
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where increasing land urbanization rate aggravates smog pollution. Moreover, the country’s smog
pollution has a significant spatial positive correlation that shows agglomeration. That evidence of
agglomeration means that an increase in smog pollution in one city or region will lead to an increase in
smog pollution in neighboring cities and regions.

While advancing smog pollution research in China, there are some shortcomings in this study.
For example, due to the difficulty of collecting data, this article still uses the panel dataset at the
provincial level in China. If a city-level panel dataset can be used in future research, it will more
objectively reflect the relationship between land urbanization and smog pollution in China. In addition,
the existence of this inverted U-shaped relationship between land urbanization and smog pollution does
not mean that the smog pollution problem will be automatically solved when the land urbanization rate
exceeds a certain level. Instead, multiple environmental governance entities, including the government,
enterprises, and the public, need to collaborate on measures to reduce smog pollution. In that context,
future urban construction in China will need to integrate solutions that address the current nexus
between urbanization and smog pollution to achieve green and sustainable development.
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Appendix A

Table A1. Estimated results of different methods.

OLS PSEM PSAC PSDM

landurban 5.4874 *** 8.3873 *** 9.0453 *** 1.7832 ***
(0.8481) (1.0444) (1.0890) (0.6627)

landurban2 −0.1955 *** −0.3972 *** −0.4159 *** −0.0497 *
(0.0374) (0.0510) (0.0519) (0.0289)

lnpop −25.3098 *** 1.8561 ** 0.7898 −18.1424 ***
(5.2241) (0.8062) (0.8947) (4.7883)

lnpgdp −8.9677 *** −4.0329 ** −5.9698 *** −3.8970 ***
(1.9668) (2.0239) (2.1397) (1.3824)

lnrd −0.6272 0.1825 0.3155 0.8311
(0.6693) (0.4837) (0.4833) (0.5145)

third −0.1878 *** −0.9008 *** −1.0591 *** −0.1824 ***
(0.0678) (0.0723) (0.0760) (0.0486)

lnedu −4.6847 *** −0.8077 −0.1635 −3.6917 ***
(1.6107) (1.6918) (1.6795) (1.2361)

open 0.0071 −0.0234 −0.0167 −0.0102
(0.0186) (0.0228) (0.0229) (0.0132)

Ind fixed Yes Yes Yes Yes
Time fixed Yes Yes Yes Yes

N 558 558 558 558
R2 0.5772 0.2605 0.1466 0.1498

Note: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A2. SAR panel data model estimated results of different spatial weight matrices.

Distance Economic

landurban 3.4904 *** 5.9174 ***
(0.6671) (0.8228)

landurban2 −0.1226 *** −0.2131 ***
(0.0292) (0.0362)

lnpop −18.8221 *** −25.4375 ***
(4.0371) (4.9237)

lnpgdp −5.7109 *** −9.1912 ***
(1.5281) (1.8563)

lnrd −0.1388 −0.7187
(0.5149) (0.6321)

third −0.1589 *** −0.1926 ***
(0.0520) (0.0639)

lnedu −3.1253 ** −5.0727 ***
(1.2413) (1.5281)

open −0.0023 0.0100
(0.0143) (0.0175)

Ind fixed Yes Yes
Time fixed Yes Yes

N 558 558
R2 0.1771 0.1821

Note: Standard errors in parentheses. *** p < 0.01, ** p < 0.05.

References

1. Gu, C.L.; Pang, H.F. Evolution of Chinese urbanization spaces: Kernel spatial approach. Sci. Geogr. Sin.
2009, 29, 10–14. [CrossRef]

2. Liu, Z.F.; He, C.Y.; Zhang, Q.F.; Huang, Q.X.; Yang, Y. Extracting the dynamics of urban expansion in China
using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan 2012, 106, 62–72. [CrossRef]

3. NBS. China Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
4. Peng, S.J.; Bao, Q. Economic growth and environmental pollution: An empirical test for the environmental

Kuznets curve hypothesis in China. Res. Financ. Econ. Issues 2006, 8, 3–17. [CrossRef]
5. Rao, C.J.; Yan, B.J. Study on the interactive influence between economic growth and environmental pollution.

Environ. Sci Pollut. R. 2020. [CrossRef] [PubMed]
6. Wu, Y.; Zhu, Q.W.; Zhu, B.Z. Comparisons of decoupling trends of global economic growth and energy

consumption between developed and developing countries. Energy Policy 2018, 116, 30–38. [CrossRef]
7. Wang, S.J.; Li, Q.Y.; Fang, C.L.; Zhou, C.S. The relationship between economic growth, energy consumption,

and CO2 emissions: Empirical evidence from China. Sci. Total Environ. 2016, 542, 360–371. [CrossRef]
8. Zhou, M.G.; He, G.J.; Fan, M.Y.; Wang, Z.X.; Liu, Y.; Ma, J.; Ma, Z.W.; Liu, J.M.; Liu, Y.N.; Wang, L.H.; et al.

Smog episodes, fine particulate pollution and mortality in China. Enviton. Res. 2015, 136, 396–404. [CrossRef]
9. David, H.; Jiang, J.Y. A study of smog issues and PM2.5 pollutant control strategies in China. J. Environ. Prot.

2013, 4, 746–752. [CrossRef]
10. Sram, R.J.; Binkova, B.; Dostal, M.; Merkerova-Dostalova, M.; Libalova, H.; Milcova, A.; Rossner, P.;

Rossnerova, A.; Schmuczerova, J.; Svecova, V.; et al. Health impact of air pollution to children. Int. J. Hyg.
Environ. Health 2013, 216, 533–540. [CrossRef]

11. Matus, K.; Nam, K.M.; Selin, N.E.; Lamsal, L.N.; Reilly, J.M.; Paltsev, S. Health damages from air pollution in
China. Glob. Environ. Chang. 2012, 22, 55–66. [CrossRef]

12. Wong, E. Air Pollution Linked to 1.2 Million Premature Deaths in China. Available online: https://www.
nytimes.com/2013/04/02/world/asia/air-pollution-linked-to-1-2-million-deaths-in-china.html (accessed on
12 July 2020).

13. Zhang, D.Y.; Liu, J.J.; Li, B.J. Tackling air pollution in China—What do we learn from the great smog of 1950s
in London. Sustainability 2014, 6, 5322–5338. [CrossRef]

http://dx.doi.org/10.3969/j.issn.1000-0690.2009.01.002
http://dx.doi.org/10.1016/j.landurbplan.2012.02.013
http://dx.doi.org/10.3969/j.issn.1000-176X.2006.08.001
http://dx.doi.org/10.1007/s11356-020-10017-6
http://www.ncbi.nlm.nih.gov/pubmed/32651783
http://dx.doi.org/10.1016/j.enpol.2018.01.047
http://dx.doi.org/10.1016/j.scitotenv.2015.10.027
http://dx.doi.org/10.1016/j.envres.2014.09.038
http://dx.doi.org/10.4236/jep.2013.47086
http://dx.doi.org/10.1016/j.ijheh.2012.12.001
http://dx.doi.org/10.1016/j.gloenvcha.2011.08.006
https://www.nytimes.com/2013/04/02/world/asia/air-pollution-linked-to-1-2-million-deaths-in-china.html
https://www.nytimes.com/2013/04/02/world/asia/air-pollution-linked-to-1-2-million-deaths-in-china.html
http://dx.doi.org/10.3390/su6085322


Land 2020, 9, 337 14 of 16

14. Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.;
Canonaco, F. High secondary aerosol contribution to particulate pollution during haze events in China.
Nature 2014, 514, 218–222. [CrossRef]

15. CMEE. Bulletin on the State of China’s Ecological Environment in 2019. Available online: http://www.mee.
gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf (accessed on 11 August 2020).

16. Sueyoshi, T.; Yuan, Y. China‘s regional sustainability and diversified resource allocation: DEA environmental
assessment on economic development and air pollution. Energy. Econ. 2015, 49, 239–256. [CrossRef]

17. Qi, Y.; Stern, N.; Wu, T.; Lu, J.Q.; Green, F. China‘s post-coal growth. Nat. Geosci. 2016, 9, 564–566. [CrossRef]
18. Wang, K.L.; Miao, Z.; Zhao, M.S.; Miao, C.L.; Wang, Q.W. China’s provincial total-factor air pollution

emission efficiency evaluation, dynamic evolution and influencing factors. Ecol. Indic. 2019, 107, 105578.
[CrossRef]

19. Gurram, S.; Stuart, A.L.; Pinjari, A.R. Agent-based modeling to estimate exposures to urban air pollution
from transportation: Exposure disparities and impacts of high-resolution data. Comput. Environ. Urban 2019,
75, 22–34. [CrossRef]

20. Betsill, M.M.; Bulkeley, H. Transnational networks and global environmental governance: The cities for
climate protection program. Int. Stud. Q. 2004, 48, 471–493. [CrossRef]

21. Parrish, D.D.; Stockwell, W.R. Urbanization and air pollution: Then and now. Earth Space Science News
2015, 96. [CrossRef]

22. Shao, S.; Li, X.; Cao, J.H. Urbanization promotion and haze pollution governance in China. Econ. Res. J. 2019,
54, 148–165.

23. Liu, Y.; Arp, H.P.H.; Song, X.D.; Song, Y. Research on the relationship between urban form and urban smog
in China. Environ. Plan B Urban 2017, 44, 328–342. [CrossRef]

24. Wang, S.J.; Gao, S.; Li, S.J.; Feng, K.S. Strategizing the relation between urbanization and air pollution:
Empirical evidence from global countries. J. Clean. Prod. 2020, 243, 118615. [CrossRef]

25. Barbera, E.; Curro, C.; Valenti, G. A hyperbolic model for the effects of urbanization on air pollution.
Appl. Math. Model. 2010, 34, 2192–2202. [CrossRef]

26. Fang, C.L.; Liu, H.M.; Li, G.D.; Sun, D.Q.; Miao, Z. Estimating the Impact of Urbanization on Air Quality in
China Using Spatial Regression Models. Sustainability 2015, 7, 15570–15592. [CrossRef]

27. Liang, W.; Yang, M. Urbanization, economic growth and environmental pollution: Evidence from China.
Sustain. Comput. Inform. 2019, 21, 1–9. [CrossRef]

28. Lv, P.; Zhou, T.; Zhang, Z.F.; Tian, Z. Construction and application of land urbanization and corresponding
measurement index system. China Land Sci. 2008, 22, 24–28+42. [CrossRef]

29. Lin, X.Q.; Wang, Y.; Wang, S.J.; Wang, D. Spatial differences and driving forces of land urbanization in China.
J. Geogr. Sci. 2015, 25, 545–558. [CrossRef]

30. Mohan, M.; Pathan, S.K.; Narendrareddy, K.; Kandya, A.; Pandey, S. Dynamics of urbanization and its impact
on land-use/land-cover: A case study of megacity Delhi. J. Environ. Prot. 2011, 2, 1274. [CrossRef]

31. Deng, X.Z.; Huang, J.K.; Rozelle, S.; Zhang, J.P.; Li, Z.H. Impact of urbanization on cultivated land changes
in China. Land Use Policy 2015, 45, 1–7. [CrossRef]

32. Wei, Y.D.; Ye, X.Y. Urbanization, urban land expansion and environmental change in China. Stoch Environ.
Res. Risk A 2014, 28, 757–765. [CrossRef]

33. Anselin, L. Spatial effects in econometric practice in environmental and resource economics. Am. J. Agric. Econ.
2001, 83, 705–710. [CrossRef]

34. Fang, D.L.; Chen, B.; Hubacek, K.; Ni, R.J.; Chen, L.L.; Feng, K.S.; Lin, J.T. Clean air for some: Unintended
spillover effects of regional air pollution policies. Sci. Adv. 2019, 5, 4707. [CrossRef]

35. Feng, T.; Du, H.B.; Lin, Z.G.; Zuo, J. Spatial spillover effects of environmental regulations on air pollution:
Evidence from urban agglomerations in China. J. Environ. Manag. 2020, 272, 110998. [CrossRef] [PubMed]

36. Jerrett, M.; Burnett, R.T.; Beckerman, B.S.; Turner, M.C.; Krewski, D.; Thurston, G.; Martin, R.V.; van
Donkelaar, A.; Hughes, E.; Shi, Y.L.; et al. Spatial Analysis of Air Pollution and Mortality in California. Am. J.
Respir. Crit. Care Med. 2013, 188, 593–599. [CrossRef] [PubMed]

37. Getis, A.; Aldstadt, J. Constructing the spatial weights matrix using a local statistic. Geogr. Anal. 2004, 36,
90–104. [CrossRef]

38. Getis, A. Spatial weights matrices. Geogr. Anal. 2009, 41, 404–410. [CrossRef]

http://dx.doi.org/10.1038/nature13774
http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf
http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf
http://dx.doi.org/10.1016/j.eneco.2015.01.024
http://dx.doi.org/10.1038/ngeo2777
http://dx.doi.org/10.1016/j.ecolind.2019.105578
http://dx.doi.org/10.1016/j.compenvurbsys.2019.01.002
http://dx.doi.org/10.1111/j.0020-8833.2004.00310.x
http://dx.doi.org/10.1029/2015EO021803
http://dx.doi.org/10.1177/0265813515624687
http://dx.doi.org/10.1016/j.jclepro.2019.118615
http://dx.doi.org/10.1016/j.apm.2009.10.030
http://dx.doi.org/10.3390/su71115570
http://dx.doi.org/10.1016/j.suscom.2018.11.007
http://dx.doi.org/10.3969/j.issn.1001-8158.2008.08.004
http://dx.doi.org/10.1007/s11442-015-1186-7
http://dx.doi.org/10.4236/jep.2011.29147
http://dx.doi.org/10.1016/j.landusepol.2015.01.007
http://dx.doi.org/10.1007/s00477-013-0840-9
http://dx.doi.org/10.1111/0002-9092.00194
http://dx.doi.org/10.1126/sciadv.aav4707
http://dx.doi.org/10.1016/j.jenvman.2020.110998
http://www.ncbi.nlm.nih.gov/pubmed/32854900
http://dx.doi.org/10.1164/rccm.201303-0609OC
http://www.ncbi.nlm.nih.gov/pubmed/23805824
http://dx.doi.org/10.1111/j.1538-4632.2004.tb01127.x
http://dx.doi.org/10.1111/j.1538-4632.2009.00768.x


Land 2020, 9, 337 15 of 16

39. Anselin, L.; Rey, S.J.; Li, W.W. Metadata and provenance for spatial analysis: The case of spatial weights.
Int. J. Geogr. Inf. Sci. 2014, 28, 2261–2280. [CrossRef]

40. Anselin, L.; Kim, Y.W.; Syabri, I. Web-based analytical tools for the exploration of spatial data. J. Geogr. Syst.
2004, 6, 197–218. [CrossRef]

41. Bivand, R.; Müller, W.G.; Reder, M. Power calculations for global and local Moran’s I. Comput. Stat. Data Anal.
2009, 53, 2859–2872. [CrossRef]

42. Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
43. Belotti, F.; Hughes, G.; Mortari, A.P. Spatial panel-data models using Stata. Stat. J. 2017, 17, 139–180.

[CrossRef]
44. Lee, L.F.; Yu, J.H. Estimation of spatial autoregressive panel data models with fixed effects. J. Econom. 2010,

154, 165–185. [CrossRef]
45. Hammer, M.S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.;

Kalashnikova, O.V.; Kahn, R.A.; et al. Global Estimates and Long-Term Trends of Fine Particulate Matter
Concentrations (1998-2018). Environ. Sci. Technol. 2020, 54, 7879–7890. [CrossRef] [PubMed]

46. Liu, J.Y.; Zhang, Q.; Hu, Y.F. Regional differences of China‘s urban expansion from late 20th to early 21st
century based on remote sensing information. Chin. Geogr. Sci. 2012, 22, 1–14. [CrossRef]

47. Wang, Y.; Wang, S.J.; Qin, J. Spatial evaluation of land urbanization level and process in Chinese cities.
Geogr. Res. 2014, 33, 2228–2238.

48. York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of
environmental impacts. Ecol. Econ. 2003, 46, 351–365. [CrossRef]

49. Lin, S.F.; Wang, S.Y.; Marinova, D.; Zhao, D.T.; Hong, J. Impacts of urbanization and real economic
development on CO2 emissions in non-high income countries: Empirical research based on the extended
STIRPAT model. J. Clean. Prod. 2017, 166, 952–966. [CrossRef]

50. Chen, S.M.; Zhang, Y.; Zhang, Y.B.; Liu, Z.X. The relationship between industrial restructuring and China’s
regional haze pollution: A spatial spillover perspective. J. Clean. Prod. 2019, 239, 115808. [CrossRef]

51. Wang, Y.T.; Sun, M.X.; Yang, X.C.; Yuan, X.L. Public awareness and willingness to pay for tackling smog
pollution in China: A case study. J. Clean. Prod. 2016, 112, 1627–1634. [CrossRef]

52. Cai, H.Y.; Xu, Y.Z. Co-agglomeration, trade openness and haze pollution. China Popul. Resour. Environ. 2018,
28, 93–102. [CrossRef]

53. Pan, Y.; Jackson, R.T. Insights into the ethnic differences in serum ferritin between black and white US adult
men. Am. J. Hum. Biol. 2008, 20, 406–416. [CrossRef]

54. Liu, Y.S.; Leng, Q.S. Urbanization, population agglomeration and haze changes: Based on threshold regression
and spatial partition. Ecol. Econ. 2020, 36, 92–98.

55. Li, J.P.; Zhou, J.B. A study on the impact paths of industrialization and urbanization on urban air quality in
China. Stat. Res. 2017, 34, 50–58.

56. Wang, D.; Tang, M. How does land urbanization affect ecological environment quality? Analysis based on
dynamic optimization and spatially adaptive semi-parametric model. Econom. Res. J. 2019, 54, 72–85.

57. Lichtenberg, E.; Ding, C. Local officials as land developers: Urban spatial expansion in China. J. Urban Econ.
2009, 66, 57–64. [CrossRef]

58. Romero, H.; Ihl, M.; Rivera, A.; Zalazar, P.; Azocar, P. Rapid urban growth, land-use changes and air pollution
in Santiago, Chile. Atmos. Environ. 1999, 33, 4039–4047. [CrossRef]

59. Tang, M.G.; Wang, K.Q. Economic development, land urbanization and environmental quality. J. East China
Norm. Univ. (Humanit. Soc. Sci.) 2018, 50, 137–147.

60. Mol, A.P.; Spaargaren, G. Ecological modernisation theory in debate: A review. Environ. Politics 2000, 9,
17–49. [CrossRef]

61. Guo, S.H.; Gao, M.; Wu, X.P. Economic development, urban expansion and air pollution. Res. Financ.
Econ. Issues 2017, 406, 114–122. [CrossRef]

62. Jiang, Y.; Xue, X.L.; Xue, W.R. Proactive Corporate Environmental Responsibility and Financial Performance:
Evidence from Chinese Energy Enterprises. Informatics 2018, 10, 964. [CrossRef]

63. Li, W.X.; Liu, J.Y.; Li, D.D. Getting their voices heard: Three cases of public participation in environmental
protection in China. J. Environ. Manag. 2012, 98, 65–72. [CrossRef]

64. Tu, Z.G.; Hu, T.Y.; Shen, R.J. Evaluating public participation impact on environmental protection and
ecological efficiency in China: Evidence from PITI disclosure. China Econ. Rev. 2019, 55, 111–123. [CrossRef]

http://dx.doi.org/10.1080/13658816.2014.917313
http://dx.doi.org/10.1007/s10109-004-0132-5
http://dx.doi.org/10.1016/j.csda.2008.07.021
http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://dx.doi.org/10.1177/1536867X1701700109
http://dx.doi.org/10.1016/j.jeconom.2009.08.001
http://dx.doi.org/10.1021/acs.est.0c01764
http://www.ncbi.nlm.nih.gov/pubmed/32491847
http://dx.doi.org/10.1007/s11769-012-0510-8
http://dx.doi.org/10.1016/S0921-8009(03)00188-5
http://dx.doi.org/10.1016/j.jclepro.2017.08.107
http://dx.doi.org/10.1016/j.jclepro.2019.02.078
http://dx.doi.org/10.1016/j.jclepro.2015.04.135
http://dx.doi.org/10.12062/cpre.20180118
http://dx.doi.org/10.1002/ajhb.20745
http://dx.doi.org/10.1016/j.jue.2009.03.002
http://dx.doi.org/10.1016/S1352-2310(99)00145-4
http://dx.doi.org/10.1080/09644010008414511
http://dx.doi.org/10.19654/j.cnki.cjwtyj.2017.09.016
http://dx.doi.org/10.3390/su10040964
http://dx.doi.org/10.1016/j.jenvman.2011.12.019
http://dx.doi.org/10.1016/j.chieco.2019.03.010


Land 2020, 9, 337 16 of 16

65. Abas, N.; Saleem, M.S.; Kalair, E.; Khan, N. Cooperative control of regional transboundary air pollutants.
Environ. Syst. Res. 2019, 8, 10. [CrossRef]

66. Ma, Y.R.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5
pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [CrossRef]

67. Liu, G.Y.; Yang, Z.F.; Chen, B.; Zhang, Y.; Su, M.R.; Ulgiati, S. Prevention and control policy analysis for
energy-related regional pollution management in China. Appl. Energ. 2016, 166, 292–300. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s40068-019-0138-0
http://dx.doi.org/10.1016/j.jclepro.2016.08.152
http://dx.doi.org/10.1016/j.apenergy.2015.06.032
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Spatial Weights Matrix 
	Moran’s I Statistic 
	SAR Panel Data Model 
	Variable Definitions and Data Description 

	Results 
	Spatiotemporal Distribution of Land Urbanization and Smog Pollution 
	Spatial Autocorrelation of Smog Pollution 
	Regression Results 
	Robustness Test 
	Change the Regression Method 
	Change the Spatial Weight Matrix 


	Discussion 
	The Inverted U-Shaped Relationship between Land Urbanization and Smog Pollution 
	The Current Stage of China 
	The Positive Spatial Correlation of Smog Pollution in China 

	Conclusions 
	
	References

