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Abstract: Monitoring of irrigated land cover is important for both resource managers and farmers.
An operational approach is presented to use the satellite-derived surface temperature and vegetation
cover in order to distinguish between irrigated and non-irrigated land. Using an iterative thresholding
procedure to minimize within-class variance, the bilevel segmentation of surface temperature and
vegetation cover was achieved for each irrigation period (Spring, Summer and Autumn). The three
periodic profiles were used to define irrigation land covers from 2008–2009 to 2018–2019 in a key
agricultural region of Australia. The overall accuracy of identifying farms with irrigated land cover
amounted to 95.7%. Total irrigated land cover was the lowest (approximately 200,000 ha) in the
2008–2009 crop year which increased more than three-fold in 2012–2013, followed by a gradual
decline in the following years. Satellite images from Landsat series (L-5, L-7 and L-8), Sentinel-2
and ASTER were found suitable for land cover classification, which is scalable from farm to regional
levels. For this reason, the results are desirable for a range of stakeholders.
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1. Introduction

Irrigated agriculture is a vital source of food and fiber [1–3]. Recently there has been an increasing
reliance on irrigated agriculture worldwide as the dryland agriculture has been adversely impacted
by climatic changes [4]. Irrigated agriculture uses a large proportion of available freshwater globally,
amounting for about 70% [2,5]. In the face of competing demands for limited water resources, there is
a sharp focus on the management of irrigated agriculture [6]. The mapping and monitoring of
accurate irrigated land cover is vitally important for effective irrigation management and judicious
decision making.

The past few decades have witnessed a wide application of Remote Sensing for mapping
cropland [3,7,8]. Several studies have adopted standard procedures of different classification techniques
for mapping at various spatial scales, including regional [9–12] and continental [9,11,13,14] levels.
There is an increasing interest in cropland mapping at global scale utilizing high frequency coarse
resolution data sets from various sensors/satellites including MODIS, AVHRR, MERIS and SPOT
VGT [15,16]. Mapping irrigated agriculture and assessing irrigation activities is not common at a
global or regional level [17]. There are very few studies on operational approaches to map and monitor
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irrigated agriculture on a routine basis [18,19]. Some recent reviews have adequately summarized the
current status of Remote Sensing applications to agricultural mapping [3,7,18]. Studies on irrigated
agriculture are notably far more scarce as compared to agriculture in general. What most studies
on irrigated cropland have done so far is to delineate the usual ‘irrigation’ areas, which is not the
same as the actually ‘irrigated’ land within an irrigation period. In order to investigate periodic or
in-season variation in irrigation, it is important to identify the land cover which is actually ‘irrigated’
with sufficient spatial detail, which has been attempted in this study.

Since the earliest attempts to develop vegetation indices in 1960s–1970s [20,21], many new and
modified indices have been researched that relate to plant parameters [8]. Most of these vegetation
indices use the combination of spectral responses between visible and the near- or mid-infrared range.
However, the most widely used measure is the normalized difference vegetation index (NDVI), which is
based on two spectral bands (near infrared and red). Vegetation indices including NDVI have been
used in mapping agricultural land cover. However, for irrigated land cover, surface wetness is required
as additional information. Surface temperature has been recognized as an indicator of surface moisture
and crop water [22]. The differences in surface temperature are potential indicators of irrigation
variations [7,13,19]. However, there is a lack of detailed studies using temperature information for
irrigation mapping [7]. The objective of this study was: (a) to map irrigated areas for each season by
using satellite-based surface temperature and NDVI; (b) to identify land cover classes by using the
seasonal profile of irrigated areas; and (c) to evaluate the changes in irrigated land cover over ten years
(2008–2009 to 2018–2019) in a key irrigation region located in the northern part of Victoria, Australia.
For the accuracy assessment of our mapped irrigated areas, we used information on irrigation water
deliveries of a recent season to determine whether the farms were actually irrigated or not within
that season.

2. Study Area

The study area is located approximately between 35.14◦ S and 36.71◦ S latitudes, and between
143.31◦ E and 146.03◦ E longitudes in the north-central part of Victoria, Australia (Figure 1). With the
Murray River in the north, it is spread over the river catchments of Goulburn-Broken, Campaspe and
Loddon. It covers an area of about 9950 sq km. About 75% of the land is irrigated. Of the total irrigated
land, 87% is used for pastures, 4% for treed horticulture crops and the remaining 9% is used for other
purposes including vegetables and grain crops. The climate is temperate, and the region is relatively
dry with average annual rainfall of between 300 mm and 500 mm. Generally, winters (June to August)
are wet, receiving most of the annual rainfall. Summers (December to February) are usually dry and
are when the demand for supplemental water for crops is the highest. Irrigation demand during Spring
(September to November) and Autumn (March to May) is variable. The major agricultural industries
are dairy, and stone and pome fruit production. The flat terrain and shallow natural drainage of the
region are overlaid by a network of irrigation channels. Multiple irrigation system configurations are
used in the region including micro-irrigation, conventional sprinkler, flood and furrow.

For management purposes, the irrigation region is divided into six sub-regions or ‘irrigation
areas’ [23] as shown in Figure 1B: Central Goulburn, Shepparton, Murray Valley, Campaspe,
Pyramid–Boort and Torrumbarry.

3. Materials and Methods

In this study, we present an operational approach to use satellite-based surface temperature
and vegetation status to map irrigated areas with enough spatial detail and to monitor land cover
changes. We introduce an approach to incorporate the relative differences of surface temperature
with NDVI to map the areas of irrigated agriculture [24]. The operational approach adopted in this
study was firstly to process the satellite images and generate surface temperature (Ts) and NDVI.
Secondly, to identify relative differences of Ts and NDVI, appropriate thresholds were determined.
At this stage, seasonal matrices of individual pixel profiles based on Ts and NDVI were compiled.
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As a third step, irrigated land cover classes were generated using seasonal profiles of pixels, and maps
were created for each crop year (September–May). Finally, temporal changes in the irrigated land
covers were evaluated.
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Figure 1. Map of the study area. (A) Location of the study area in Australia; (B) Map showing irrigation
areas (sub-regions) in North-Central Victoria.

3.1. Step 1: Data Preparation

Satellite images were collected to represent the three irrigation periods (Spring, Summer and
Autumn) of every crop year during 2008–2009 to 2018–2019 seasons, except the three crop years
(2010–2011, 2011–2012 and 2016–2017) when there was no suitable imagery available over the study
area, which have been excluded from the study (Table 1). Most of the data sets were acquired from
three Landsat satellites (L5, L7 and L8) sourced from USGS (https://earthexplorer.usgs.gov/). Data
gaps were filled using ASTER (https://search.earthdata.nasa.gov/) and, to a lesser extent, Sentinel-2
(https://scihub.copernicus.eu/) imagery. To have a complete coverage over the study area, multiple
adjacent images were acquired for each season (Figure 2).

https://earthexplorer.usgs.gov/
https://search.earthdata.nasa.gov/
https://scihub.copernicus.eu/
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Figure 2. Landsat-8 satellite of summer 2018–2019 is a mosaic of four scenes acquired during
January–February 2019 with the band combination of 543 (Red, Green, Blue). White boundary indicates
the extent of the study area.

For vegetation status, NDVI was calculated using reflectance of near infrared (NIR) and red
spectral bands [25]:

NDVI =
NIR−RED
NIR + RED

. (1)

Standard procedures were used to calculate reflectance from Landsat series [26,27] and
ASTER images [28]. The following formula was used to calculate at-sensor top of the atmosphere
(TOA) reflectance:

ρλ =
π · Lλ · d2

ESUNλ · cosθs
(2)

ρλ = Planetary TOA reflectance [-]
π = Mathematical constant equal to ~3.14159 [-]
Lλ = Spectral radiance [W/ (m2 sr µm)]
d = Earth-Sun distance [Astronomical units]
ESUNλ= Mean exoatmospheric solar irradiance [W/(m2 µm)]
θs = Solar zenith angle [Degrees].

The downloaded Sentinel-2 images were already converted to reflectance [29]. Ts from the Landsat
series was calculated using the standard procedures [26,27]. Ts as at-sensor brightness temperature
was calculated using the following formula:

Ts =
K2

ln
(

K1
Lλ

+ 1
) (3)

Ts = Effective at-sensor brightness temperature [K]
K2 = Calibration constant 2 [K]
K1 = Calibration constant 1 [W/ (m2 sr µm)]
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Lλ = Spectral radiance at the sensor’s aperture [W/ (m2 sr µm)]
ln = Natural logarithm.

Surface temperature from ASTER was calculated using band TIR4 (10.25–10.95 µm) [28].
NDVI from ASTER and Sentinel-2 as well as Ts from ASTER were re-sampled to a 30 m resolution
using bilinear interpolation method and were adjusted to be comparable to Landsat equivalents.
The adjustment factors used in this study were taken from our previous investigations [24,30].

Table 1. List of satellite images used.

Season/Year Western Part (WRS-2:
94/84-85) Central Part (WRS-2: 93/85) Eastern Part (WRS-2: 92/85)

Spring 2008 L5: 10 October 2008 L5: 4 November 2008 L5: 28 October 2008

Summer 2008–2009 L5: 14 January 2009 L5: 23 January 2009 L5: 16 January and
1 February 2009

Autumn 2009 L5: 20 April 2009 L5: 13 April 2009 L5: 8 May 2009

Spring 2009 L5: 11 September 2009 L5: 22 October 2009 L5: 31 October 2009

Summer 2009–2010 L5: 16 December 2009 L5: 9 December 2009 and 11
February 2010 L5: 18 December 2009

Autumn 2010 L5: 22 March 2010 L5: 2 May 2010 L5: 25 April 2010

Spring 2012 L7: 11 September and 14
November 2012

L7: 4 September and
22 October 2012 ASTER: 15 October 2012

Summer 2012–2013 L7: 17 January, 2 February
and 18 February 2013

L7: 10 and 26 January, and 11
February 2013

ASTER: 9 and 18 December 2012;
1, 3 and 10 January 2013

L7:2 January and
3 February 2013

Autumn 2013 L8: 15 April 2013 L7:16 April and 2 May 2013 L7: 11 May 13
L8: 19 May 2013

Spring 2013 L8: 22 September 2013 L8: 18 November 2013 L8: 27 November 2013
Summer 2013–2014 L8: 28 January 2014 L8: 21 January 2014 L8: 30 January 2014

Autumn 2014 L8: 18 April and 4 May 2014 L8: 27 April and 13 May 2014 L8: 6 May 2014

Spring 2014 L8: 11 October 2014 L8: 5 November 2014 L8: 29 October 2014
Summer 2014–2015 L8: 16 February 2015 L8: 9 February 2015 L8: 2 February 2015

Autumn 2015 L8: 21 April 2015 L8: 16 May 2015 L8: 10 June 2015
L7: 1 and 17 May 2015

Spring 2015 L8: 14 October 2015 L8: 23 October 2015 L7:24 October and 9
November 2015

Summer 2015–2016 L8: 18 January 2016 L8: 12 February 2016 L8: 5 February 2016
Autumn 2016 L8: 23 April 2016 S2: 6 May 2016 25 April 2016

Spring 2017 L8: 4 November 2017 L8: 13 November 2017 S2: 4 November 2017
Summer 2017–2018 L8: 23 January 2018 L8: 17 February 2018 L8: 26 February 2018

Autumn 2018 L8: 29 April 2018 L8: 8 May 2018 L8: 1 May 2018

Spring 2018 L8: 22 October 2018 L8: 31 October and 16
November 2018 L8: 8 and 24 October 2018

Summer 2018–2019 L8: 11 and 27 February 2019 L8: 19 January 2019 L8: 12 January 2019
Autumn 2019 L8: 16 April 2019 L8: 25 April 2019 L8: 4 May 2019

Notes: L5 = Landsat-5; L7 = Lansat-7; L8 = Landsat-8; S2 = Sentinel-2.

Ts provides information on vegetation water status [31]. In well-watered irrigation situations,
the Ts is often lower than the surrounding air temperature (Ta). In other situations, when vegetation is
water-stressed, there is less transpiration and often vegetation surface temperature rises above the
surrounding Ta [32]. Therefore, it is considered useful to use the difference between surface and air
temperatures (Ts - Ta) to assess vegetation water status in this study. Half-hourly Ta data, close to
the time of satellite overpass, was sourced from the Bureau of Meteorology (www.bom.gov.au) for
13 weather stations across and close to the study area. Ta point data sets were rasterized, using the
inverse distance weighted (IDW) method to match the Ts extent and spatial resolution. Then surface-air
temperature difference (Ts - Ta) at a pixel level was calculated.

www.bom.gov.au
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3.2. Step 2: Thresholding Process

It is well known that an ‘irrigated’ crop has high vegetation and low temperature as compared to
other land covers within a region. To take this concept further, temperature (Ts - Ta) and vegetation
(NDVI) were segmented into two classes each. Temperature classes were referred to as ‘irrigated’
(low Ts - Ta) and ‘non-irrigated’ (high Ts - Ta) and vegetation classes were ‘crop’ (high NDVI) and
‘non-crop’ (low NDVI). An iterative thresholding method was used to achieve the binary classification
by minimizing within-class variance (σ2

Within) [33]:

σ2
Within(Ti) = ω0σ

2
0(Ti) +ω1σ

2
1(Ti). (4)

Ti is the threshold which varies by iteration i, ω0 and ω1 are the weights (proportion of pixels) of
the two classes, and σ2

0 and σ2
1 are the variance of the two classes of NDVI and Ts - Ta each.

For operational purposes, the thresholding procedure utilized the relationship of σ2
Within with

between-class variance (σ2
Between) and total variance (σ2

Total) [33]:

σ2
Within(Ti) = σ2

Total − σ
2
Between(Ti) (5)

The initial NDVI threshold (α) was taken as 0.4. All pixels >α were considered as ‘crop’.
Initial temperature threshold (β) was the median value of Ts - Ta. All pixels <β were taken as
‘irrigated’. The iteration interval was set at 0.005 within the limit of ±0.025 of the initial NDVI threshold.
For temperature, the iteration interval was set 0.1 within the limit of ±0.5 ◦C of the initial Ts - Ta
threshold (i.e., the median). Altogether, 11 iterations each for NDVI and Ts - Ta were performed for
each image. Thresholds with minimum σ2

Within were used for binary classification.
Figure 3 presents an example of thresholding process for the Landsat-8 image (Scene 93/85)

captured on 19 January 2019 at 00:09 UTC (11:09 AM local time).
Binary classes were assigned to each pixel with four combinations, which we termed as pixel

identification (PID) as shown in Figure 4. S1 denotes dry conditions with no or low vegetation;
S2 denotes wet conditions with low or no vegetation; S3 indicates some vegetation, possibly crops,
without irrigation; and S4 denotes vegetation with wet conditions indicating ‘irrigated crop/pasture’.
All pixels in an image of a season were assigned a PID. Thus, each pixel profile had three PID
assignments representing three irrigation periods (Spring, Summer, Autumn) in each crop year.

For accuracy assessment, we used the water supply data of a recent season (2018–2019 summer)
as a ‘reference’. The mapped ‘irrigated crop/pasture’ PID (S4) of the same season was taken as an
‘estimate’. Information on irrigation water supplies was sourced from the Victorian Water Register
(VWR), a state-wide irrigation water database (https://waterregister.vic.gov.au/).

https://waterregister.vic.gov.au/
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Figure 3. An example of thresholding process based on the Landsat-8 image acquired on 19 January
2019 around 11:09 a.m. (local time), which covers a major central part of the study area. (a) normalized
difference vegetation index (NDVI) map; (b) Map showing Ts - Ta at pixel level; (c) Histogram of NDVI;
(d) Histogram of Ts - Ta; (e) Iteration of within-class variance for the NDVI threshold; and (f) Iteration
of within-class variance for Ts - Ta threshold.



Land 2020, 9, 308 8 of 19

Land 2020, 9, x FOR PEER REVIEW  8  of  19 

without irrigation; and S4 denotes vegetation with wet conditions indicating ‘irrigated crop/pasture’. 

All pixels  in  an  image  of  a  season were  assigned  a PID. Thus,  each pixel profile had  three PID 

assignments representing three irrigation periods (Spring, Summer, Autumn) in each crop year. 

For accuracy assessment, we used the water supply data of a recent season (2018–2019 summer) 

as a  ‘reference’. The mapped  ‘irrigated crop/pasture’ PID (S4) of the same season was taken as an 

‘estimate’. Information on irrigation water supplies was sourced from the Victorian Water Register 

(VWR), a state‐wide irrigation water database (https://waterregister.vic.gov.au/). 

 

Figure 4. Characterisation of pixels based on NDVI threshold (α) and Ts ‐Ta threshold (β). S4 denotes 

irrigated crop/pasture; S3 denotes possible crop or pasture which is not currently irrigated; S2 denotes 

wet conditions with no or negligible vegetation; and S1 denotes dry conditions with no or negligible 

vegetation. 

3.3. Step 3: Identifying Irrigated Land Cover Classes 

Seasonal profiles of pixels were based on NDVI and Ts ‐Ta binary classes. These pixel profiles 

provided an indication for each season as to whether or not irrigation was actually applied, and the 

crop was actively growing. A set of rules were developed  to  identify  irrigated  land cover classes 

(Table 2). Pixels with ‘S4’ PID were classed as irrigated. However, when some isolated pixels with 

‘S3’ PID were located within or on the border of S4 cluster, those were also recognized as irrigated. 

Otherwise all pixels with S1, S2 and S3 were recognized as non‐irrigated. A contiguity analysis was 

carried out on the land cover raster layer of each crop year to identify and filter out the small isolated 

groups  of pixels, which were  considered  ‘noise’. The  groups  of  six pixels  or  less  (<0.5 ha) were 

considered unlikely to belong to any managed irrigated crop or pasture. 

Table 2. Land cover classification criteria. 

Land Cover Description 
Binary Class PID Based on Ts‐Ta and NDVI 

Spring  Summer  Autumn 

Single‐season active:       

Spring active  S4, S3*  S1, S2  S1, S2 

Summer active  S1, S2  S4, S3*  S1, S2 

Autumn active  S1, S2  S1, S2  S4, S3* 

Two‐season active:       

Spring‐summer  S4, S3*  S4, S3*  S1, S2 

Spring & autumn  S4, S3*  S1, S2  S4, S3* 

Summer‐autumn  S1, S2  S4, S3*  S4, S3* 

All‐season active:       

Perennially Active#  S4  S4  S4 

PID = Pixel identification (See Figure 3); * Spatial context to consider S3 with S4. # Pixel with two S4 

seasons and one S3 season considered as perennially active. 
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S4 denotes irrigated crop/pasture; S3 denotes possible crop or pasture which is not currently irrigated;
S2 denotes wet conditions with no or negligible vegetation; and S1 denotes dry conditions with no or
negligible vegetation.

3.3. Step 3: Identifying Irrigated Land Cover Classes

Seasonal profiles of pixels were based on NDVI and Ts - Ta binary classes. These pixel profiles
provided an indication for each season as to whether or not irrigation was actually applied, and the crop
was actively growing. A set of rules were developed to identify irrigated land cover classes (Table 2).
Pixels with ‘S4′ PID were classed as irrigated. However, when some isolated pixels with ‘S3′ PID were
located within or on the border of S4 cluster, those were also recognized as irrigated. Otherwise all
pixels with S1, S2 and S3 were recognized as non-irrigated. A contiguity analysis was carried out on
the land cover raster layer of each crop year to identify and filter out the small isolated groups of pixels,
which were considered ‘noise’. The groups of six pixels or less (<0.5 ha) were considered unlikely to
belong to any managed irrigated crop or pasture.

Table 2. Land cover classification criteria.

Land Cover Description Binary Class PID Based on Ts - Ta and NDVI

Spring Summer Autumn

Single-season active:
Spring active S4, S3 * S1, S2 S1, S2

Summer active S1, S2 S4, S3 * S1, S2
Autumn active S1, S2 S1, S2 S4, S3 *

Two-season active:
Spring–Summer S4, S3 * S4, S3 * S1, S2

Spring & Autumn S4, S3 * S1, S2 S4, S3 *
Summer–Autumn S1, S2 S4, S3 * S4, S3 *

All-season active:
Perennially Active# S4 S4 S4

PID = Pixel identification (See Figure 3); * Spatial context to consider S3 with S4. # Pixel with two S4 seasons and
one S3 season considered as perennially active.

3.4. Step 4: Evaluating the Irrigated Land Cover Changes

To evaluate the temporal changes, maps and diagrams were generated using the pixel level land
cover classes of each crop year. Maps of irrigated land cover classes were prepared for visual evaluation.
Illustrations were created to show the changes of land cover classes for the total region as well as for
the six individual irrigation sub-regions.
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4. Results

Irrigation is the application of supplemental water to crops in order to maintain and enhance
crop growth. Therefore, in the management of irrigation due consideration is given to the amount of
irrigation water that is to be applied to meet the crop water demand. As the crop water demand varies
due to multiple factors including crop type, phenology and evapotranspiration [34], the irrigation
application also varies. In the North-Central Victoria, we have identified seven types of irrigated land
cover (Table 2). The land which is actively irrigated throughout all seasons is designated as ‘perennially
active’, which refers to either perennial pasture (e.g., perennial ryegrass) or perennial horticulture crop.
Other land areas are seasonally irrigated in one or two seasons (Table 2), which refer to either annual
pasture, annual horticulture or seasonal crop.

To check the accuracy of whether a land parcel was ‘irrigated’ or not, we used the 2018-19 summer
season data sets. An accuracy assessment was carried out at the farm level (irrigation water delivery
unit). Figure 5 shows the spread of farms selected for accuracy assessment. Farms receiving ≤10 mL
of water within this season were considered as not actively managed for plant production and were
excluded from accuracy assessment. All farms that received irrigation water deliveries during this
period were treated as ‘irrigated’ and others as ‘non-irrigated’. These were taken as a ‘reference’
indicating ‘actual’ irrigation occurrence. The farms with an area (≥1 ha) identified as actively irrigated
(‘S4′) were considered as ‘estimates’. Altogether, 5650 farms were selected for accuracy assessment.
Producer’s and user’s accuracies were calculated as per standard procedure [35,36]. Table 3 shows
the results of the accuracy assessment. The values in Table 3a are the number of farms. The values in
Table 3b are the proportion (%) of farms. The overall accuracy was 95.7 percent.Land 2020, 9, x FOR PEER REVIEW  10  of  19 
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Table 3. Accuracy Assessment of the Irrigation Classification.

a. Occurrence

Classification (Image Analysis) Reference (Water Delivery Records)

Irrigated Non-Irrigated

Irrigated 4472 47
Non-Irrigated 196 935

b. Accuracy

Producer’s Accuracy (%) User’s Accuracy (%)

Irrigated 95.8 99.0
Non-Irrigated 95.2 82.7

Overall Accuracy = 95.7%.

In the sub-sections below, we present the temporal changes in irrigated land cover at regional
as well as sub-regional levels. Also, we present the changes in an important land cover class
(i.e., ‘perennially active’) that has significant implications for dairy pastures and perennial horticulture.

4.1. Regional Changes

Figure 6 show the maps of irrigated land cover of a representative subregion (Central-Goulburn)
in the study area during 2008–2009 to 2018–2019. These maps show considerable changes in land cover
from year to year. The 2008–2009 crop year marks the end of an extreme dry period in the southeast
Australia, known as the Millennium Drought [37]. The total area of irrigated land cover in 2008–2009
was very low due to the drought-induced water scarcity. As Figure 7A shows, in subsequent years,
irrigated area increased from about 200,000 ha in 2008–2009 to about 557,000 ha in 2009–2010 and to
about 660,000 ha in 2012–2013. Post-2012–2013, there has been a slow but consistent decline in the
irrigated area. The irrigated land cover in 2018–2019 was almost half (354,000 ha) of what it was in
2012–2013 (Figure 7A).

The stack diagram (Figure 7B) shows the changes in the seven irrigated land cover classes over the
years. The biggest increase from 2008–2009 to 2012–2013 was in the ‘spring active’ class. The ‘perennially
active’ and ‘spring & autumn active’ classes had moderate increases but after 2012–2013, these two
classes had very little change. The ‘autumn active’ and ‘spring active’ classes showed noticeable
variations over the years.
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4.2. Changes in Sub-Regions

The six sub-regions experienced changes in the area of irrigated land cover with moderate
differences (Figure 8). Pyramid–Boort and Torrumbarry, located in the western part, appeared to
have recovered from drought sooner than the rest of the region. Irrigated land in Pyramid–Boort
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sub-region increased from a minimum (47,000 ha) in 2008–2009 to a maximum (160,000 ha) in 2009–2010.
Similarly, the Torrumbarry sub-region had a substantial increase in irrigated land from about 30,000 ha
in 2008–2009 to about 100,000 ha in 2009–2010 and to a maximum of 104,000 ha in 2012–2013. Though
the other four sub-regions (Central Goulburn, Shepparton, Campaspe and Murray Valley) were similar
in having the maximum irrigated land in 2012–2013, they differed in the proportion of decrease in
subsequent years (Figure 8).
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2008–2009 and 2018–2019. (A) Central Goulburn; (B) Shepparton; (C) Murray Valley; (D) Campaspe;
(E) Pyramid-Boort; and (F) Torrumbarry.
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4.3. Changes in Perennially Active Class across Sub-Regions

A large proportion of ‘perennially active’ land cover class is occupied by perennial pasture
(Lolium perenne L.) followed by perennial horticulture. Changes in irrigation over the last 10 years have
been driven by several factors including seasonal extremes, commodity prices and policy reforms in
agriculture. However, these changes in irrigated land cover are not uniform across the region.

Figure 9 shows the level of changes that occurred in the surface area occupied by the perennially
active class of land cover in the six sub-regions during the study period.

Land 2020, 9, x FOR PEER REVIEW  14  of  19 

have  been  driven  by  several  factors  including  seasonal  extremes,  commodity  prices  and  policy 

reforms  in agriculture. However, these changes  in  irrigated  land cover are not uniform across the 

region. 

Figure 9 shows the level of changes that occurred in the surface area occupied by the perennially 

active class of land cover in the six sub‐regions during the study period.   

In Central Goulburn, the total area of perennially active class in 2008–2009 was approximately 

10,000 ha, which  increased  to over 40,000 ha  in 2013–2014. Thereafter,  there has been a consistent 

decline, reaching down  to approximately 22,000 ha  in 2018–2019  (Figure 9A). The decline may be 

attributed to the trend of transition from dairy to annual horticulture in this sub‐region. Still a large 

proportion of irrigation water here is used by dairy farmers [38]. 

 

Figure 9. Temporal changes in the Perennially Active class of irrigated land cover. (A) Central Goulburn;
(B) Shepparton; (C) Murray Valley; (D) Campaspe; (E) Pyramid-Boort; and (F) Torrumbarry.



Land 2020, 9, 308 15 of 19

In Central Goulburn, the total area of perennially active class in 2008–2009 was approximately
10,000 ha, which increased to over 40,000 ha in 2013–2014. Thereafter, there has been a consistent
decline, reaching down to approximately 22,000 ha in 2018–2019 (Figure 9A). The decline may be
attributed to the trend of transition from dairy to annual horticulture in this sub-region. Still a large
proportion of irrigation water here is used by dairy farmers [38].

In Shepparton Sub-region, total area of perennially active class in 2008–2009 was a little over
5000 ha, which increased to approximately 8000 ha in 2009–2010 and to 14,000 ha in 2012–2013.
The changes in the subsequent years have not been uniform though area was reduced to approximately
10,000 ha in 2018–2019 (Figure 9B). There has been a reduction in dairy in the last five years, transitioning
to non-dairy activities including mixed farming and cropping [38].

In Murray Valley, the area of perennially active class in 2008–2009 was approximately 7,000 ha,
which increased in the subsequent years, reaching up to approximately 22,500 ha in 2014–2015.
Thereafter there was a decline in area, reaching down to approximately 14,500 ha in 2018–2019
(Figure 9C). There has been a reduction in dairy and perennial horticulture industries during the last
five years. A transition from dairy to cropping has occurred in this sub-region as well [38].

In the Campaspe Sub-region, the area of perennially active class was very low in 2008–2009
and 2009–2010 (between 2000 and 3000 ha). It increased to approximately 14,500 ha in 2012–2013.
In subsequent years, though the changes have been uneven, the area declined to approximately 7700 ha
in 2018–2019 (Figure 9D). The decline is related to the reduction in dairy industry in recent years.
This sub-region is more known for cropping and mixed farming than for dairying [38].

The Pyramid–Boort Sub-region has the highest extent of cropping land use in the region.
Other dominant land use is mixed farming. Dairying is limited with notable reduction especially
found in the south-east in the recent past [38]. This is reflected in the relatively low area of perennially
active class, which was approximately 7000 ha in 2017–2018 and 5000 ha in 2018–2019 (Figure 9E).

In the past few years, there has been some decrease in dairy industry in the central and south-eastern
half of Torrumbarry. This did not create dramatic changes in the total area of perennially active class
from 2012–2013 until 2017–2018, ranging between 17,000 ha and 19,000 ha. However, in 2018–2019,
the area was reduced to approximately 12,500 ha (Figure 7F). Recently, mixed farming and grazing
have increased in this sub-region [38].

5. Discussion

The study area is part of the Murray-Darling Basin (MDB). In MDB, there are highly regulated
water management provisions, which are used to provide a reliable and equitable supply of water for
irrigation and other uses. Recent regulations have strengthened the legal, market and price aspects
of water supply. This has incentivized irrigators to achieve irrigation efficiencies. Irrigators have
water entitlements of nominal volume of water to use. However, to accommodate the year-to-year
variability in the amount of water available, annual allocations are changed. As a result, in years of
drought, the nominal volume of water entitlement may be very low. During the millennium drought
annual allocations fell to as low as 10% of the pre-drought entitlements [39]. The effect of low water
availability was reflected in the low area of the 2008–2009 irrigated land cover estimated in this study.

This study presented the application of relative differences in temperature and vegetation to
identify and monitor actual irrigated areas. Relating low surface temperature and high vegetation
cover to irrigated crops is not a new concept [31,40–42]. However, it was only after the space-borne
thermal sensors became available that regional scale studies became possible. Temperatures derived
from the Landsat series (L5, L7 and L8) and ASTER are suitable for farm level agricultural studies,
both in terms of large regional coverage and appropriate spatial resolution, as presented in this study.
The coarse resolution thermal bands (e.g., MODIS and AVHRR), though not ideal for farm scale studies,
are useful to provide information at regional and landscape levels. More recently, surface temperatures
from the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) at
60 m spatial resolution have offered increased opportunities for studies in irrigated agriculture [43].
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Vegetation cover (NDVI) at medium to fine resolution is readily available from several satellites
(e.g., Sentinel-2, SPOT, RapidEye, QuickBird and WorldView). However, synchronous delivery
of vegetation cover and surface temperature is available only from Landsat and ASTER. In some
circumstances, vegetation cover (NDVI) alone may provide some indication of irrigated land but to
investigate in-season changes in irrigation, temperature differences are needed. If the study area is large
with heterogenous climatic conditions, surface temperature may not provide the desired distinction
between irrigated and non-irrigated lands across the whole region. In such a situation, using the
surface-air temperature difference is a better option.

The operational approach to map irrigated land cover used in this study is most suited to arid or
semi-arid areas where rainfall is not a confounding factor. In this study area, the rainfall totals varied
from year to year and from season to season (Figure 10). Occasional spikes in rainfall were unlikely to
influence the results of this study because the seasonal totals were not high enough to meet the crop
water demand.
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Figure 10. Monthly totals of rainfall during 2008–2009 and 2018–2019. (A) Kerang weather station
(35.72◦ S; 143.92◦ E) located in the north-west of the study area. (B) Shepparton weather station (36.43◦ S;
145.39◦ E) located in the south-east of the study area.

The initial threshold of 0.4 was adopted for the bilevel segmentation of NDVI in this study on
the assumption that any vegetation under 0.4 NDVI is not a managed crop or pasture. However,
the initial threshold for Ts - Ta was the median value of Ts - Ta, which varied as per the surface and air
temperatures at the time of image acquisition. The aim was to identify pixels on the basis of ‘relative
differences’ in Ts - Ta. The assumption was that the relatively cool pixels indicated ‘irrigation’ and
the relatively warm pixels indicated the absence of irrigation. This assumption holds good if a large
proportion of area under study is agricultural land with no major features of climatic extremes as is
the case in this study. The relative differences in Ts - Ta were meant to seek distinction between two
situations i.e., (1) Actively irrigated land, and (2) Land with no active irrigation and/or rainfed area.
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It is desired that the Ts - Ta threshold and its range is revisited if significant changes occur in the land
cover composition in the study area.

The study area is dominated by irrigated pastures (87% of irrigated land). The key assumption
made about irrigated pasture, unlike dryland pasture, is that the greenness is maintained throughout
the season to almost a uniform level, by applying irrigation as required. It is therefore sufficient to
use one satellite image to represent an irrigation period, as done in this study. Similarly, for irrigated
horticulture crops, the key assumption is that irrigation is used to maintain an optimal level of root
zone moisture throughout period of canopy growth. Therefore, the use of one image per season is
considered adequate to capture irrigation activity. Our decision to use a single image per irrigation
period was in accordance with previous studies. In a study conducted previously on the perennial
horticulture crops in the same region, it was found that the use of single ‘midseason’ image is adequate
to assess maximum crop cover because of strong temporal stability in NDVI response (O’Connell 2011,
p. 61) [44]. Quoting multiple studies, Velpuri et al. (2009, p. 1384) [45] reported that “single date
fine-resolution imagery, acquired at critical growth stages, is sufficient to identify irrigation”. However,
minor temporal fluctuations in vegetation cover within a season are possible due to certain factors
including over-grazing of pastures, onset of crop disease or extreme weather events. Severe cases of
temporal fluctuations may warrant more than one image per season for land cover analysis.

6. Conclusions

The synchronous measures of surface temperature and vegetation cover based on the satellite
images from the Landsat series (L-5, L-7 and L-8) and ASTER were found to be suitable to distinguish
between irrigated and non-irrigated pasture/crop to an overall accuracy of 95.7% in the North-Central
Victoria, Australia. The irrigation profiles of spring, summer and autumn seasons defined by the
combined binary classes of the two measures (Ts - Ta and NDVI) were useful for land cover classification,
indicating actual irrigation practices prevalent during 2008–2009 and 2018–2019. Active irrigation
varied considerably over the years. Following an extreme dry period in the region, the 2008–2009 crop
year had the lowest total irrigated area (about 200,000 ha) which increased more than three-fold in
2012–2013 (about 660,000 ha). Thereafter, the region witnessed a steady decline in irrigation, reducing
to about 354,000 ha in 2018–2019.
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