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Abstract: Pan evapotranspiration (E) is an important physical parameter in agricultural water
resources research. Many climatic factors affect E, and one of the essential challenges is to model
or predict E utilizing limited climatic parameters. In this study, the performance of four different
artificial neural network (ANN) algorithms i.e., multiple hidden layer back propagation (MBP),
generalized regression neural network (GRNN), probabilistic neural networks (PNN), and wavelet
neural network (WNN) and one empirical model namely Stephens–Stewart (SS) were employed
to predict monthly E. Long-term climatic data (i.e., 1961–2013) was used for the validation of the
proposed model in the Henan province of China. It was found that different models had diverse
prediction accuracies in various geographical locations, MBP model outperformed other models
over almost all stations (maximum R2 = 0.96), and the WNN model was the best over two sites,
the accuracies of the five models ranked as MBP, WNN, GRNN, PNN, and SS. The performances of
WNN and GRNN were almost the same, five-input ANN models provided better accuracy than the
two-input (solar radiation (Ro) and air temperature (T)) SS empirical model (R2 = 0.80). Similarly.
the two-input ANN models (maximum R2 = 0.83) also generally performed better than the two-input
(Ro and T) SS empirical model. The study could reveal that the above ANN models can be used to
predict E successfully in hydrological modeling over Henan Province.
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1. Introduction

The transfer mechanism between liquid water and water vapor is known as evapotranspiration.
The change in water vapor pressure decides the characteristics of evapotranspiration [1,2]. In the fields
of water resource information acquisition and irrigation system designing, pan evapotranspiration
had become a fundamental physical variable [3]. Many climatic factors can influence the change of
pan evapotranspiration including temperature, solar radiation, wind speed, and relative humidity.
Few studies aimed at the quantitative influence of different climatic parameters on the changes of
pan evapotranspiration in different regions [4–9]. Therefore, it is necessary to accurately estimate and
predict pan evapotranspiration utilizing climatic parameters in the study of hydrological modeling
and water resources management.
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Many studies have directed efforts towards utilizing climatological parameters to estimate pan
evapotranspiration indirectly [10–12]. For instance, empirical and semi-empirical models had been
developed generally to explore the relationship between pan evapotranspiration and meteorological
factors [13]. The literature suggests that these methods have been limited by the lack of data
availability [14–16]. Artificial neural network (ANN) with superior performance has successfully been
applied to the pan evapotranspiration modeling to solve nonlinear problems [17–19]. For example,
Kisi et al. (2010) [20] had assessed three different ANN models and discovered that multilayer
perceptron neural network (MLP) and radial basis neural networks (RBNN) can model the mechanism
of pan evaporation successfully based on the meteorological dataset. Piri et al. (2010) [13] had
improved the ANN algorithm by adding auto-regressive external input components to estimate the
effect on modeling pan evapotranspiration. The results showed that the property of integrated ANN
and autoregressive with exogenous inputs was superior to the traditional and Marciano algorithms.
Chang et al. (2010) [21] had utilized self-organizing map neural networks (SOMN) to estimate daily pan
evapotranspiration values in consideration of meteorological variables. It turned out that SOMN can
give good estimation of the pan evapotranspiration daily means. Kim et al. (2012) [22] applied support
vector machine neural network (SVM), MLP, and generalized regression neural network (GRNN)
to compute pan evapotranspiration, and it was found that the performance of these ANN models
was more robust to the MLR and Linacre models. Goyal et al. (2014) [18] explored the minimum
mean square support vector machine (LSSVM), self-adaption neuro-fuzzy inference system (ANFIS),
fuzzy logic (FG), and Stephens–Stewart model (SS) to improve the pan evapotranspiration modeling
accuracy in subtropical India. Results showed that LSSVM and FG models were more accurate than SS.
Kisi et al. (2015) [23] explored the precision of the LSSVM model, multiple adaptive regression spline
(MARS), and M5 model tree (M5-Tree) in pan evapotranspiration estimation in Turkey. It revealed that
the LSSVM model was capable of successfully estimating the pan evapotranspiration based on local
meteorological data. It can be summarized that studies have been engaged to find the greatest pan
evapotranspiration model, but most of them compared two or three models only [16,24,25]. Meanwhile,
in the absence of significant long-term climatological data (e.g., radiation and heat flux data), there was
no clear consensus on which model can better estimate pan evapotranspiration. At the same time, pan
evapotranspiration estimation models were tested over a few sites and more different sites should
be tested.

The purpose of the study was to explore the capacity of four different ANN models and one
empirical Stephens—Stewart model for pan evapotranspiration estimation in Henan Province, China.
In the estimation of the pan transpiration models, different climate inputs combinations were tried for
modeling. The datasets were selected from 1961 to 2013 including 14 sites at different elevations and
geographical locations in Henan province of China.

2. Datasets and Methods

2.1. Datasets

This study utilized the monthly climate datasets of 14 stations in Henan Province (Figure 1 and
Table 1). The monitoring stations are located in different topographies and elevations. For instance,
the San menxia, Lu shi, and Xi Xia stations are in the western Henan Province with mountain topography
and high elevation (elevation > 200 m); the Zheng zhou, BaoFeng, Nan yang, and Xin yang stations
are in the central Henan Province with medium elevation (200 m > elevation > 100 m); the An yang,
Xin Xiang, Shang Qiu, Xu chang, Xi Hua, Zhu madian, and Gushi stations are in the eastern Henan
Province with plain terrain and low elevation (elevation < 100 m).
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Figure 1. (a) The location of Henan province in China; (b) locations of weather stations in Henan 
Province (the color represents the height of each station). These stations were divided into three parts: 
western part (elevation > 200 m), central part (200 m > elevation> 100 m), and eastern part (elevation 
< 100 m) (Table 1). 

Table 1. The meteorological parameters (daily average value) of each station in Henan Province. 

ID Name Latitude 
(DD) 

Longitude 
(DD) 

Elevation 
(m) Region Wind 

Speed 
Relative 

Humidity 
Air 

Temperature 
Sunshine 

Hours 
      (m/s) (%) (°C) (h) 

1 San menxia 34.8  111.2  409.9  
Western 

part 
2.4  62.6  14.1  7.7  

2 Lu shi 34.1  111.0  568.8  
Western 

part 
1.4  69.9  12.7  7.4  

3 Xi xia 33.3  111.5  250.3  
Western 

part 
2.1  70.7  15.3  7.3  

4 Zheng zhou 34.7  113.7  110.4  
Central 

part 
2.5  65.9  14.7  7.3  

5 Baofeng 33.9  113.1  136.4  
Central 

part 2.6  77.2  14.7  7.2  

6 Nan yang 33.0  112.6  129.2  
Central 

part 
2.2  71.7  15.2  7.1  

7 Xin yang 32.1  114.1  114.5  
Central 

part 
2.3  74.1  15.5  7.3  

8 An yang 36.1  114.4  62.9  
Eastern 

part 
2.3  65.2  14.1  7.6  

9 Xin xiang 35.3  113.9  73.2  
Eastern 

part 
2.2  69.9  14.5  7.5  

10 Shang qiu 34.5  115.7  50.1  
Eastern 

part 
2.5  71.5  14.3  7.5  

11 Xu chang 34.0  113.9  66.8  
Eastern 

part 
2.4  69.5  14.7  7.2  

12 Xi hua 33.8  114.5  52.6  
Eastern 

part 
2.2  72.0  14.7  7.4  

13 Zhu madian 33.0  114.0  82.7  
Eastern 

part 
2.3  73.2  15.1  7.2  

14 Gushi 32.2  115.6  42.9  
Eastern 

part 
2.7  76.2  15.6  7.4  

The monthly mean values of the solar radiation (Ro), relative humidity (RH), wind speed (W), 
air temperature (T), pan evapotranspiration (E), and sunshine duration (H) were used in this study 
for 53 years (from 1961 to 2013). The device of pan evapotranspiration is U20 type evaporator with a 
diameter of 0.20 m, depth of 0.10 m. The datasets were obtained from the China meteorological 
information center [26–28].  

Figure 1. (a) The location of Henan province in China; (b) locations of weather stations in Henan
Province (the color represents the height of each station). These stations were divided into three
parts: western part (elevation > 200 m), central part (200 m > elevation> 100 m), and eastern part
(elevation < 100 m) (Table 1).

Table 1. The meteorological parameters (daily average value) of each station in Henan Province.

ID Name Latitude
(DD)

Longitude
(DD)

Elevation
(m) Region Wind

Speed
Relative

Humidity
Air

Temperature
Sunshine

Hours

(m/s) (%) (◦C) (h)

1 San menxia 34.8 111.2 409.9 Western part 2.4 62.6 14.1 7.7
2 Lu shi 34.1 111.0 568.8 Western part 1.4 69.9 12.7 7.4
3 Xi xia 33.3 111.5 250.3 Western part 2.1 70.7 15.3 7.3
4 Zheng zhou 34.7 113.7 110.4 Central part 2.5 65.9 14.7 7.3
5 Baofeng 33.9 113.1 136.4 Central part 2.6 77.2 14.7 7.2
6 Nan yang 33.0 112.6 129.2 Central part 2.2 71.7 15.2 7.1
7 Xin yang 32.1 114.1 114.5 Central part 2.3 74.1 15.5 7.3
8 An yang 36.1 114.4 62.9 Eastern part 2.3 65.2 14.1 7.6
9 Xin xiang 35.3 113.9 73.2 Eastern part 2.2 69.9 14.5 7.5

10 Shang qiu 34.5 115.7 50.1 Eastern part 2.5 71.5 14.3 7.5
11 Xu chang 34.0 113.9 66.8 Eastern part 2.4 69.5 14.7 7.2
12 Xi hua 33.8 114.5 52.6 Eastern part 2.2 72.0 14.7 7.4
13 Zhu madian 33.0 114.0 82.7 Eastern part 2.3 73.2 15.1 7.2
14 Gushi 32.2 115.6 42.9 Eastern part 2.7 76.2 15.6 7.4

The monthly mean values of the solar radiation (Ro), relative humidity (RH), wind speed (W),
air temperature (T), pan evapotranspiration (E), and sunshine duration (H) were used in this study
for 53 years (from 1961 to 2013). The device of pan evapotranspiration is U20 type evaporator with
a diameter of 0.20 m, depth of 0.10 m. The datasets were obtained from the China meteorological
information center [26–28].

2.2. Models and Evaluation Criteria

2.2.1. Multiple Hidden Layer Back-Propagation (BP) Neural Network (MBP)

The back-propagation (BP) neural network was a feedforward neural network [29]. The main
characteristic of the BP neural network was that the signal was forward feedback and the error was
backpropagation. Prior to transmission, the input signal was processed step by step from the input
layer to the hidden layer. Neurons state of each layer affected only the next layer. If the result layer
did not get the desired output, the weight and threshold were adjusted based on the prediction error.
BP neural network prediction results were constantly close to the expected forecast results.

The BP neural network was composed of an input layer, a hidden layer, and output layer. Hidden
layers can be divided into a haploid hidden layer and multiple hidden layers according to the number
of layers. Multiple hidden layers consisted of multiple single hidden layers. The multi-hidden layer
had stronger generalization ability and higher prediction accuracy. The selection of hidden layer
amounts should consider the network precision and training time comprehensively. For a simpler
mapping relationship, the single hidden layer can be selected to improve the accuracy of the network.
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For complex mapping relationships, multiple hidden layers can be selected. In that regard, the multiple
hidden layer BP neural network (MBP) was utilized in the current study.

2.2.2. Generalized Regression Neural Network (GRNN)

The generalized regression neural network (GRNN) was one of the radial base neural networks [30,31].
The GRNN had strong nonlinear mapping capability and a flexible network structure. The GRNN
had higher fault tolerance and robustness. It was suitable for solving nonlinear problems. The GRNN
had obvious advantages in approximation ability and learning speed. The GRNN can be converged
to the optimal return along with the increase of samples. In addition, the GRNN can also deal with
unstable data. Therefore, the GRNN had been widely used in signal processing, configurable analysis,
and control decision system.

2.2.3. Probabilistic Neural Networks (PNN)

The probability neural network (PNN) was a feedforward neural network developed based on
radial-based function [32,33]. Its theoretical foundation was the Bayesian minimum risk criterion
and the probability of Parzen windows. The layers of the PNN were made up of input patterns,
sum layers, and output layers. In practice, it had advantages of adopting a linear learning algorithm
to complete the nonlinear problems with high precision. The corresponding weight of PNN was the
distribution of design samples. The PNN network did not require drilling and can meet the real-time
processing requirements.

2.2.4. Wavelet Neural Network (WNN)

The wavelet neural network (WNN) was based on the BP neural network topology. It was a
feedforward recursive network with little pokey functions as the hidden nodes [34,35]. The wavelet
base function used in this study was the Morlet wavelet function. It was similar to the BP neural
network weight correction algorithm. It used a gradient correction method to calculate network
weight and wavelet base function parameters and obtain the desired results of the wavelet neural
network closer.

2.2.5. Stephens and Stewart Model (SS)

The Stephens and Stewart (SS) model was a simple linear regression function [10]. The equation
can be indicated as E = Ro·(a1 + b1·T), where a1 and b1 are decided by training data utilizing the least
square method.

2.2.6. Evaluation Criteria

The performance of neural networks and the empirical model were evaluated based on the root
mean square error (RMSE) (Equation (1)), mean absolute error (MAE) (Equation (2)), coefficient of
determination (R2) (Equation (3)), and Nash–Sutcliffe efficiency (EN) (Equation (4)).

RMSE =

√√√
1
N

N∑
i=1

(Em,i − Eo,i)
2 (1)

MAE =
1
N

N∑
i=1

∣∣∣Em,i − Eo,i
∣∣∣ (2)

R2 =
(
∑N

i=1

(
Em,i − Em

)(
Eo,i − Eo

)
)

2

∑N
i=1 (Em,i − Em)

2 ∑N
i=1 (Eo,i − Eo)

2 (3)
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EN = 1−

∑N
i=1 (Eo,i − Em,i)

2∑N
i=1 (Eo,i − Eo)

2 (4)

where, N represents the number of variables, and the Em and the EO are the modeled and observed
values of pan evapotranspiration, respectively.

3. Results

3.1. Interannual Variabilities of E

Figure 2 clearly shows the annual change of E and related climatic factors. From Figure 2, E values
of San menxia, Zheng zhou, BaoFeng, and An yang stations were generally higher than those of other
stations from 1961 to 2013. The tendencies of E values decreased slightly at every station from 1961 to
2013. The H values of Nan Yang, Xin Yang, and Xi Xia stations were relatively low and H monthly
mean values of An yang, Xin xiang, and San menxia stations were high. The H values of all stations
also showed downward trends. The Ro monthly mean values were high at San menxia, Lu shi stations,
and low at Gushi, An yang, and Nan yang stations. The Ro values slightly decreased from 1961 to 1990,
but slightly increased from 1990 to 2013. RH values of Gushi and Xin yang stations were generally
greater than 72%, while RH values of San menxia stations were lower than 62%. Lu shi station had
relatively lower T values than other stations; T values of Lu shi were generally lower than 13 ◦C, while
T values of Gushi were generally above 15 ◦C. Meanwhile, W values were highest in Gushi station and
lowest in Lu shi station. W values also showed downward trends at most stations from 1961 to 2013.
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Figure 2. Annual variation trend of E and corresponding meteorological parameters of each station in
Henan province.

Figure 3 further illustrates the monthly variation of E and climatic parameters at each station.
For example, the monthly changes of E, H, Ro, RH, and T are generally higher in summer, while the
monthly changes of E, H, Ro, RH, and T are lower in winter. Differences in parameters at diverse
observation stations revealed that the stations are typical in the study of E in different geographical
regions of Henan province. Table 2 showed the monthly mean values of the climate parameters of
every station. M, S, V, Skew, min, max represent the mean values, standard deviation values, variance
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values, skewness values, minimum, and maximum values, respectively. R represents the correlation
coefficient between E and corresponding meteorological parameters. The monthly averages of E were
from 0.61 (Xin yang) to 16.75 mm (San menxia) with corresponding V values varying from 3.60 to 9.65.
The minimum monthly values of E were about 0.58 mm while the maximum monthly values of E
reached 17.06 mm. At the same time, the monthly climatological parameters changed a lot in every
observation station. For instance, the monthly mean values of Ro at San menxia were from 5.43 to
25.32 MJm−2; the monthly mean values of T also varied from −4.11 to 27.52 ◦C. The statistical data of S
and V of each parameter of the above stations also show different climatic characteristics.

Table 2. Monthly mean values of meteorological variables for each observation station.

Station Parameter M S V Skew Min Max R

San menxia

Ro 14.69 5.12 26.2 0.14 5.43 25.32 0.93
T 14.02 9.55 91.2 −0.14 −3.55 29.17 0.82
H 6 1.59 2.52 0.13 1.94 10.11 0.8
W 2.35 0.6 0.36 0.58 1.05 5.53 0.38

RH 61.06 10.87 118.19 −0.24 30.14 88.37 −0.05
E 5.18 3.11 9.65 0.84 0.88 16.75 1

Lu shi

Ro 14.26 4.68 21.88 0.23 6.02 25.29 0.94
T 12.62 9.15 83.77 −0.12 −4.11 27.52 0.85
H 5.64 1.51 2.27 0.09 1.91 9.76 0.64
W 1.24 0.47 0.22 0.48 0.23 2.74 0.35

RH 70.09 9.65 93.19 −0.51 41.39 90.39 −0.03
E 3.46 2.04 4.17 0.69 0.58 10.24 1

Xi xia

Ro 13.75 4.63 21.46 0.12 5.3 24.54 0.94
T 15.16 8.68 75.39 −0.11 −1.55 29.14 0.85
H 5.28 1.48 2.18 0.02 1.3 9.55 0.8
W 2.12 0.4 0.16 0.36 0.65 3.86 0.34

RH 69.32 9.86 97.13 −0.62 27.45 90.33 −0.07
E 4.16 2.13 4.54 0.78 0.84 12.66 1

Zheng zhou

Ro 13.29 4.36 19.04 0.14 4.51 23.7 0.89
T 14.59 9.62 92.48 −0.14 −3.35 30.13 0.78
H 5.84 1.65 2.71 0.05 1.63 10.38 0.82
W 2.52 0.7 0.49 0.97 1.07 6.49 0.21

RH 64.53 11.33 128.32 −0.27 29.74 87.77 −0.12
E 4.98 2.73 7.47 1.01 0.9 16.07 1

Baofeng

Ro 13.62 4.76 22.63 0.14 4.97 24.16 0.88
T 14.62 9.37 87.78 −0.11 −3.06 30.17 0.75
H 5.39 1.61 2.59 0.1 1.54 9.67 0.81
W 2.6 0.62 0.38 0.52 1.16 6.15 0.33

RH 67.77 11.03 121.57 −0.45 23.58 90.83 −0.17
E 4.99 2.71 7.33 1.19 0.93 17.06 1

Nan yang

Ro 12.31 4.21 17.75 0.04 4.83 23.18 0.95
T 15.08 9.15 83.78 −0.12 −1.77 29.82 0.87
H 5.2 1.61 2.59 0.14 1.29 9.75 0.8
W 2.13 0.55 0.3 0.54 0.74 4.03 0.14

RH 71.85 8.64 74.68 −0.55 40.48 90.48 −0.07
E 3.7 2.05 4.19 0.73 0.66 11.13 1

Xin yang

Ro 13.51 4.57 20.89 0.18 4.73 24.2 0.95
T 15.41 8.88 78.81 −0.13 −2.15 29.96 0.86
H 5.29 1.62 2.63 0.23 1.18 10.49 0.8
W 2.31 0.57 0.32 0.1 0.74 3.96 0.19

RH 74.2 7.78 60.5 −0.6 49.97 90.32 −0.04
E 3.64 1.9 3.6 0.61 0.61 10.25 1



Land 2020, 9, 229 7 of 14

Table 2. Cont.

Station Parameter M S V Skew Min Max R

An yang

Ro 13.19 4.5 20.24 0.13 4.28 23.21 0.94
T 13.95 10.05 100.98 −0.17 −4.21 29.37 0.84
H 6.07 1.82 3.3 0 1.02 10.87 0.79
W 2.23 0.66 0.44 0.33 0.83 4.24 0.42

RH 65.59 10.93 119.48 −0.14 37.52 88.81 −0.13
E 4.98 2.93 8.58 0.52 0.66 13.52 1

Xin xiang

Ro 14.12 5.07 25.74 0.02 3.93 24.26 0.94
T 14.36 9.74 94.86 −0.15 −3.27 29.34 0.79
H 6.06 1.66 2.76 −0.16 1.28 9.93 0.8
W 2.21 0.65 0.42 0.68 0.78 4.63 0.23

RH 67.07 10.35 107.19 −0.28 35.23 87.94 −0.06
E 4.48 2.39 5.72 0.68 0.66 13.09 1

Shang qiu

Ro 13.87 4.87 23.67 0.1 4.06 25.39 0.94
T 14.23 9.62 92.58 −0.13 −4 29.42 0.81
H 5.89 1.71 2.91 0.17 1.35 10.79 0.76
W 2.46 0.7 0.49 0.59 1.01 5.66 0.34

RH 71.47 9.62 92.56 −0.35 39.48 90.55 −0.12
E 4.11 2.47 6.11 0.94 0.58 14.62 1

Xu chang

Ro 13.5 4.79 22.92 0.08 4.22 23.69 0.93
T 14.69 9.41 88.54 −0.12 −2.6 30.01 0.83
H 5.46 1.62 2.63 0.01 1.04 9.49 0.81
W 2.33 0.67 0.45 −0.04 0.68 4.25 0.14

RH 69.32 10.29 105.79 −0.5 32.13 89.81 −0.07
E 4.32 2.39 5.71 0.8 0.78 12.77 1

Xi hua

Ro 13.79 4.83 23.33 0.08 4.67 24.72 0.92
T 14.55 9.37 87.85 −0.12 −2.92 29.55 0.82
H 5.71 1.64 2.69 0.08 1.72 10.44 0.78
W 2.16 0.77 0.6 0.4 0.56 4.65 0.24

RH 72.17 9.55 91.22 −0.61 36.9 90.23 −0.05
E 3.85 2.27 5.15 1.02 0.67 16.66 1

Zhu madian

Ro 13.44 4.49 20.18 0.15 4.82 23.76 0.93
T 15.09 9.18 84.36 −0.13 −3.21 30.01 0.84
H 5.35 1.52 2.3 0.15 1.37 9.6 0.79
W 2.26 0.62 0.38 0.05 0.86 4.24 0.18

RH 71.45 9.63 92.73 −0.55 37.35 90.97 −0.08
E 4.03 2.22 4.94 0.73 0.58 12.74 1

Gushi

Ro 13.12 4.67 21.78 0.25 3.72 25.14 0.92
T 15.56 8.98 80.73 −0.14 −1.98 30.15 0.86
H 5.52 1.62 2.63 0.19 1.54 10.92 0.82
W 2.73 0.65 0.42 0.17 1.16 4.76 0.08

RH 76.1 7.31 53.4 −0.64 52.61 90.29 −0.07
E 3.65 1.92 3.69 0.7 0.65 11.05 1

The units of Ro, T, H, W, and E are MJm−2, ◦C, hour, ms−1, and mm/day, respectively; M, S, V, Skew, min,
max represent the mean, standard deviation, variance, skewness, minimum, and maximum values, respectively.
R represents the correlation between E and the relevant meteorological factor.
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Figure 3. Seasonal variation trend of meteorological variables in each station.

3.2. Prediction Results of Different ANN Models

This study tried different combinations of inputs. Table 3 provides an input combination for each
model. Table S1 shows that the training and test results of MBP, GRNN, PNN, WNN, and SS models for
predicting E of San menxia and Lu shi stations. From the table, the models with whole meteorological
variables (Ro, T, H, W, and RH) had the optimum accuracy. In predicting E of San menxia, the WNN
model is superior to other models. MBP model is superior to other models in the prediction of E at
Lu shi. During the testing phase, the precision of the model was as follows WNN, GRNN, MBP, PNN,
and SS in San menxia station. The accuracy level of the soft computing model in the test period was
MBP, WNN, GRNN, PNN, and SS in Lu shi station. These accuracy levels are calculated based on the
R2, RMSE, MAE, EN standards. Here, the WNN has the optimal precision, and the SS has the lowest
precision at San menxia station. Additionally, MBP has the optimal precision while the SS also has
the lowest precision in Lu shi. By comparing the simple two-input SS (Ro and T) model, the artificial
neural network (ANN) models had better precision than the SS. Additionally, the two-input ANN
computing models seem to have the same precision as the SS model in predicting E at San menxia and
Lu shi stations. Table S2 shows the precision of applying models to predict E at Xi xia and Zheng zhou
stations. Similar to Lu shi station, the all-weather input mode usually provides the best accuracy.
The accuracy and optimal MBP model of Xi xia and Zheng zhou station in predicting E are better than
the other models. The precisions ranks are MBP, GRNN, WNN, PNN, and SS. The precision of the
two-input ANN models in predicting E at Xi xia and Zheng zhou station was the same as that of the
SS model.
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Table 3. The input combination of different artificial neural network (ANN) models.

Models Input Combination
MBP GRNN PNN WNN

MBP 1 GRNN 1 PNN 1 WNN 1 Ro
MBP 2 GRNN 2 PNN 2 WNN 2 T
MBP 3 GRNN 3 PNN 3 WNN 3 H
MBP 4 GRNN 4 PNN 4 WNN 4 W
MBP 5 GRNN 5 PNN 5 WNN 5 RH
MBP 6 GRNN 6 PNN 6 WNN 6 Ro, T
MBP 7 GRNN 7 PNN 7 WNN 7 Ro, T, H
MBP 8 GRNN 8 PNN 8 WNN 8 Ro, T, H, W
MBP 9 GRNN 9 PNN 9 WNN 9 Ro, T, H, W, RH

Table S3 provides the statistical data of the ANN model for predicting E at Baofeng and Nan yang
stations. At Baofeng station, the performance of the five-input modes was the best, and the performance
of the MBP model was better than that of other models. The accuracy ranks of models were as follows:
MBP, WNN, GRNN, PNN, and SS. In Nan yang station, three-input MBP and two-input WNN models
have better performance than their corresponding five-input models. The behavior of the GRNN is
better than other models. The precision of the models is ranked as follows: GRNN, WNN, SS, MBP,
and PNN. Obviously, compared with the two-input ANN model of Nan yang station, the effect of the
SS model is poor. Table S4 reveals the results of Xin yang and An yang stations. It can be seen from
those models with intact weather data that they usually have optimal accuracies. The WNN model has
better behavior than the other models in Xin yang according to RMSE, MAE, R2, and EN. The rankings
are WNN, MBP, GRNN, SS, and PNN in Xin yang. The MBP model has better behavior than others in
An yang according to RMSE, MAE, R2, and EN. The rankings are MBP, GRNN, WNN, PNN, and SS
in An yang. The SS model has the same precision as the two-input ANN models in predicting E at
Xin yang and An yang station.

Table S5 shows the veracity of predicting E of Xin xiang and Shang qiu stations by using the
ANN and experiential models. Similar to the previous stations, usually five-input models had optimal
precisions, and the performance of the MBP model is superior to other models in RMSE, MAE, R2,
and EN statistics. Accuracies of models in the test stage are ranked as follows: MBP, GRNN, WNN,
PNN, and SS in both Xin xiang and Shang qiu stations. The accuracies of the MBP, GRNN, PNN, WNN,
and SS models are shown in Table S6 for prediction E of Xu chang and Xi hua stations. Like previous
sites, the five-input model typically provides the best performance. The five-input MBP model is both
greater than the other models in Xu chang and Xi hua stations. The rankings of precisions are MBP,
WNN, GRNN, SS, and PNN in Xu chang station. Additionally, in the Xi hua station, the accuracies are
ranked as follows: MBP, WNN, GRNN, PNN, and SS. The comparison between the two-input models
and SS model showed that the SS model had the same precision as other two-input ANN models in
the test stage.

Table S7 provides the test accuracy of models for predicting E at Zhu madian and Gushi stations.
In the two stations, the five-input ANN models also had the best precisions according to MAE,
RMSE, R2, and EN index. The MBP model had optimal performance compared to the other models
in predicting E at Zhu madian and Gushi stations. The performance ranks of the models both are
MBP, GRNN, WNN, SS, and PNN at Zhu madian and Gushi stations. The comparison of two-input
ANN models and SS models indicated that the two-input ANN models and SS models had similar
performances. General precisions of models are shown in Table 4. The MBP model had much better
scores than the other methods in predicting E and the final precisions are ranked as follows: MBP,
WNN, GRNN, PNN, and SS. Additionally, the performance of GRNN and WNN were almost the same.
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Table 4. Accuracy rank a of the soft computing models in estimating pan evapotranspiration (E).

ID Stations MBP GRNN PNN WNN SS Region

1 San menxia 3 2 4 1 5 Western part
2 Lu shi 1 3 4 2 5 Western part
3 Xi xia 1 3 4 2 5 Western part
4 Zheng zhou 1 2 4 3 5 Central part
5 Baofeng 1 3 4 2 5 Central part
6 Nan yang 4 1 5 2 3 Central part
7 Xin yang 2 3 5 1 4 Central part
8 An yang 1 2 4 3 5 Eastern part
9 Xin xiang 1 2 4 3 5 Eastern part

10 Shang qiu 1 2 4 3 5 Eastern part
11 Xu chang 1 3 5 2 4 Eastern part
12 Xi hua 1 3 4 2 5 Eastern part
13 Zhu madian 1 2 5 3 4 Eastern part
14 Gushi 1 2 5 3 4 Eastern part

Total 20 33 61 32 64
a Accuracy ranks were decided based on the RMSE, MAE, R2, and EN index. For the An yang station, for instance,
BP has the highest precision (1st model) while the PNN has the lowest precision (4th model).

Figure 4 shows the comparison of models utilizing all stations database. Better accuracy appeared
in five-input models. The MBP model was better than the other models. The precisions were ranked
MBP, WNN, GRNN, PNN, and SS. Two-input MBP, WNN, GRNN models perform inferior to the
SS model; the SS model has lower precision than the five-input ANN models (Figure 4 and Table 5).
In Figure 4, all the ANN computing models generally have good generalization ability. The generalized
MBP model was also tested at every site (Table 5). The results showed that the five-input MBP model
had a high generalization ability based on RMSE, MAE, R2, and EN index.
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Table 5. The multiple hidden layer back propagation (MBP) model performances tested at different
stations with full meteorological inputs (five-input).

ID Stations RMSE MAE R2 EN

1 San menxia 0.85 0.59 0.93 0.93
2 Lu shi 0.38 0.29 0.97 0.96
3 Xi xia 0.47 0.31 0.95 0.95
4 Zheng zhou 0.56 0.40 0.96 0.96
5 Baofeng 0.54 0.47 0.96 0.95
6 Nan yang 0.55 0.32 0.91 0.86
7 Xin yang 0.43 0.33 0.95 0.94
8 An yang 0.59 0.44 0.96 0.96
9 Xin xiang 0.46 0.34 0.96 0.96
10 Shang qiu 0.40 0.29 0.97 0.97
11 Xu chang 0.48 0.37 0.96 0.96
12 Xi hua 0.39 0.28 0.97 0.97
13 Zhu madian 0.38 0.30 0.97 0.97
14 Gushi 0.51 0.36 0.93 0.93

The unit of RMSE and MAE are mm/day.

4. Discussion

The Ro, T, and H were much better at modeling E than other variables in San menxia station.
Table 2 shows the value of R also confirms this. Ro, T, and H parameters of Xi xia station also had
a good performance in modeling E and is also shown in Table 2. In the Lu shi station, the Ro and T
parameters were proved to be more valid in modeling E than H. This was because Ro (R = 0.94) had a
higher correlation with E than H (R = 0.64) at Lu shi station. Ro proved to be the most valid variable in
modeling E at Nan yang, Xin yang, Xu chang, and Gushi stations, which is also confirmed by the high
R values. Models with W (or RH) generally provided worse results than those with Ro input. Adding
W input generally decreased the model accuracies at Zheng zhou and BaoFeng stations (R = 0.21 in
Zheng zhou and R = 0.33 in BaoFeng). Similar to the San menxia and Xi xia stations, the Ro input
was found to be better at modeling E than the other input variables at An yang, Xin xiang, Shang qiu,
Xi hua, and Zhu madian stations. Similar to the An yang and Xin xiang stations, the Ro variable had
higher correlations with E (see Table 2) than H, W, and RH at Xi hua and Zhu madian stations. The T
variable also provided better accuracy than the H, W, and RH in predicting E here.

Figure 4 also indicates that the Ro was the most useful variable in predicting E based on the
all stations dataset. It is noteworthy that T and H input parameters were better. W and RH input
parameters were worst. It was also indicated that only T or H input was deficient for high precision
modeling E. The model behaviors were becoming better generally with the increase of input parameter
amounts, which indicated that all meteorological variables had positive influences on modeling E in
most of the stations of Henan Province. Some underestimations of ANN models also existed. Different
geographical locations and climates may be the reason.

In short, ANN models with whole meteorological variables (Ro, T, H, W, and RH) generally had
the best precision. This indicated that all these parameters are required for the best E model. The Ro was
the most useful variable in modeling E from the all stations dataset. Then, T and H inputs parameters
were better. W and RH input parameters were worst. Adding W or RH inputs into models usually
weakens their precisions in modeling E in the all stations dataset. This reveals that the complicated
nonlinear relationship between W (RH) and E cannot be shown from the ANN models we tested in
this study. Two-input (Ro and T) ANN models usually provide better precision than the SS model in
the all stations dataset. This told us that Ro and T can be preferred in some areas where obtaining the
data of the other variables (H, W, and RH) are difficult.

Many ANN models, such as multi-layer perceptron (MLP), generalized regression neural network
(GRNN), fuzzy genetic (FG), least-square support vector machine (LSSVM), multivariate adaptive
regression spline (MARS), and adaptive neuro-fuzzy inference systems with grid partition (ANFIS-GP)
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have different accuracies in different climates. For example, the GRNN model performed better in
Tibetan Plateau [2], however, SS models are preferred for some climatic zones such as BJ (Beijing),
CQ (Chongqing), and HK (Haikou) stations [2] compared to the complex nonlinear models. Previous
studies showed that ANN models are accurate, but their time efficiency is a little slower than the SS
model. The adaptive neuro-fuzzy inference system (ANFIS) and ANN evaporation models also showed
good performance when limited climatic parameters were used in the USA [3]. Shirsath et al. [9] also
showed that ANN had slightly better performance than multiple linear regression (MLR) models,
Penman, Priestley–Taylor, and SS [10]. Shiri et al. [10] showed that the gene expression programming
(GEP) model was more accurate than empirical-physical models with improvements of adding gene
thinking in the model [11]. It has been found that ANN worked very well at the study site in estimating
evaporation in the hot and dry region [13]. The optimal COMBINE-GRNNM-GA method also had a
good performance in predicting pan evaporation in the Republic of Korea by combining the advantages
of both [17]. Comparing with ANN, the least squares-support vector, regression (LS-SVR), fuzzy logic,
and adaptive neuro-fuzzy inference system (ANFIS) models revealed that machine learning models
outperform the traditional Hargreaves and Samani method (HGS) and SS empirical methods [18].
We should choose appropriate ANN models in different regions of different climatic types. Such as, Ro,
T, and H are the most useful variable of MBP in predicting E that we can choose in Henan Province
(subtropical temperate continental climate). In the future, novel genetic algorithms of ANNs can be
tried in predicting E, such as a stacking model that makes synergetic use of multiple ANN models
can create more accurate and robust models [36,37]. Therefore, the ANN models of predicting pan
evaporation have the advantage of efficiency and accuracy.

5. Conclusions

This study explored the abilities of four different ANN models, MBP, GRNN, PNN, and WNN,
and one empirical SS model in modeling E utilizing different meteorological dataset combinations of
Ro, T, H, W, and RH in Henan Province from 1961–2013. The climatic dataset obtained from 14 stations
in different geographical locations were used as inputs for training and testing in Henan Province.
The results of this study could be applied practically in the field of regional evaporation calculation.
This study concluded that:

(a) ANN models with five-inputs generally have better accuracies (maximum R2 = 0.96).
The five-input ANN models provided better accuracy than the two-input (Ro and T) SS empirical
model (R2 = 0.80). Additionally, the two-input ANN models (maximum R2 = 0.83) also generally
performed better than the two-input (Ro and T) SS empirical model (R2 = 0.80).

(b) The accuracies of the applied models rank as MBP (rank index: 20), WNN (rank index: 32),
GRNN (rank index: 33), PNN (rank index: 61), and SS (rank index: 64). The MBP models are the
most appropriate for predicting E using limited climatic inputs in different geographical locations and
climatic zones in Henan Province. The performances of WNN and GRNN were almost the same.

(c) Ro seems to be the most important parameter in predicting E at most stations, while T and H
inputs parameters were better. W and RH input parameters were worst. Adding W or RH inputs into
models generally can increase model accuracies in predicting E.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-445X/9/7/229/s1,
Table S1: Statistics of different models at San menxia and Lu shi station, Table S2: Statistics of different models at
Xi xia and Zheng zhou station, Table S3: Statistics of different models at Bao feng and Nan yang station, Table S4:
Statistics of different models at Xin yang and An yang station, Table S5: Statistics of different models at Xin xiang
and Shang qiu station, Table S6: Statistics of different models at Xu chang and Xi hua station, Table S7: Statistics of
different models at Zhu madian and Gu shi station.
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