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Abstract: As the dominant area in regional competitions, the urban agglomeration has experienced
a dramatic urban land evolution, which has had a significant impact on regional socio-economic
development and ecological environment. Conventional simulation models mainly explore the
dynamic change of urban land based on the situation of a single city. The urban interactions,
which linked separate cities into an organic urban agglomeration area, have not been sufficiently
concerned, especially the urban interaction in the context of intermediate intervention. In this paper,
we employ the radiation model to measure the urban interaction under intermediate intervention,
and further spatially explicitly express the spatial network and influence of such an interaction.
A simulation model coupling improved urban interaction is proposed to model the collaborative
evolution of urban land in urban agglomeration by considering the influence of improved urban
interactions into the basic framework of the cellular automata model. Taking the urban agglomeration
in the middle reaches of the Yangtze River in China as a case study, the validity and suitability
of the model are evaluated. The results show that, the proposed simulation model exhibits better
performance in capturing the networked evolution of urban land. Considering urban interactions
under intermediate intervention is necessary for modeling the collaborative evolution of urban land
in urban agglomeration areas. The distribution of the urban interaction’s influence can be a beneficial
reference for guiding the optimal allocation of urban land in a networked way.

Keywords: urban interaction; intermediate intervention; urban land evolution; urban agglomeration

1. Introduction

Urban land is a significant spatial carrier for human production and living activities. In the
process of rapid urbanization, the dramatic quantity growth and spatial expansion of urban land can be
observed and has had a profound impact on regional socio-economic development and the ecological
environment [1–3]. On the one hand, disordered expansion of urban land triggers the non-intensive
use of land resources and promotes the decline of land-use efficiency [4–6]. On the other hand, the loss
of cropland, grassland, forest, etc., that results from urban expansion, poses a threat to sustaining food
production and maintaining the sustainability of the ecological environment [7–9]. Notably, for urban
agglomeration, the new spatial unit participating in global competitions, the dynamic change of urban
land in these areas not only impacts their developing pattern, but also influences the improvement of
regional competitive power. Furthermore, more rapid urbanization and a more striking evolution of
urban land have been widely observed in urban agglomeration areas [10]. Exploring evolution rules
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of urban land, as well as identifying and simulating the urban evolution process in these areas are
the effective way to analyze the developing trend of urban land, which are vital contents for guiding
the optimal allocation of urban land in the future and supporting the sustainable development of
the regions.

Urban land evolution is a complex process driven by diverse forces from a natural environment,
anthropogenic movement, etc. Adopting simulation models to explore urban evolution is a wide-used
and valid approach. The simulation of urban land evolution mainly relies on four types of models.
The first type is the empirical-statistical model. This type of model employs regression models,
difference equations, differential equations, etc. to describe the related patterns among diverse driving
factors and urban land evolution, such as the logistic regression model [11,12], structural equation
modeling [13], ordinary least squares regression model [14,15], etc. However, adopting a simple
equation is not sufficient to depict the complex urban system, which limits the application of these
models. Furthermore, these models explore urban evolution in a quantitative way, and the spatial
characteristic of urban evolution cannot be captured. The second type is the model based on system
behaviors. Through analysis of the feedback mechanism among urban land evolution and driving
factors, these models build a sequence of differential equations to integrally delineate the urban
evolution process, herein, the system dynamics (SD) model is the most representative one [16–18].
These models focus on the long-term, dynamic, and comprehensive change of the urban system to
analyze urban evolution to better explain the complex and nonlinear issues of urban systems. However,
they still focus on the quantity change of urban evolution and have a poor ability to express urban
spatial features. The third type is the model based on the discrete stochastic process. Time and space
are viewed as discrete in this type of model. These models simulate the evolution of urban space
following a bottom-up dynamic mechanism through the exploration of micro-individual interactions.
In this type of model, urban space can be expressed from a spatiotemporal dynamic perspective,
which covers the shortage of conventional models in a spatially explicit expression of urban evolution,
with the cellular automata model (CA) [19], multi-agent system (MAS) [20], etc. as being representative.
The two-dimensional lattice of CA, which is similar to a geographical raster grid, makes CA well-suited
to represent the geographical process of urban spatial evolution and can be viewed as one of the most
powerful tools in relevant researches [21–24]. The models that focus on the transition rules of micro
individual cells, however, cannot well address the influence derived from macro-level socio-economic
forces. In order to better identify the evolution process of urban space and improve upon current
models, the fourth type of model-hybrid models, were developed. For example, the combination
of econometric model or SD model with the CA model realizes the integration of quantity change
and spatial evolution of urban space [25–27]; the combination of the field model and CA model
takes both macro and micro influence into consideration [28]; the combination of distinct artificial
intelligence algorithm with CA improves the simulation accuracy when modeling urban dynamic
change, e.g., the neural network-CA, ant colony algorithm-CA, decision tree-CA, etc. [29–32]. Hybrid
models offer a better inability to simulate urban spatial evolution and have been widely used in guiding
the optimal allocation of urban land for implementing the efficient and sustainable development of
urban areas.

Urban agglomeration is the region with the closest intra interactions, where frequent
flowing of urban elements can be observed, including the flow of people, materials, information,
capital, etc. Under such a rapid element flow, the predominant pattern of urban spatial evolution has
transformed from a static “Space of Place” pattern into a dynamic “Space of Flow” pattern [33,34].
The dynamic, flowing, and multi-center reconstruction of urban space is increasingly more prominent
in these urban agglomeration areas [35,36]. However, the influence of urban interactions stimulated
by such flow has not been well considered in the simulation of urban land evolution in urban
agglomerations. Some studies have partially concerned such influence. However, they often
measured urban interactions based on regional complementarity and accessibility, such as developing
a simulation of urban land considering the interaction measured by the field model [28] or gravity
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model [37]. According to the theory of spatial interaction, there are three preconditions for the
emergence of urban interactions: Complementarity, intervening opportunity, and transferability [38,39].
Neglecting to consider the intermediate interference may halt the accurate identification of urban
interactions and create some obstacles in modeling the urban spatial collaborative evolution impacted
by urban interaction.

In this paper, we adopt the radiation model [39] to identify urban interactions under intermediate
interference. The traffic network and land cover type are considered to improve the ability of the
radiation model to measure improved urban interactions. Then, a simulation model coupling improved
urban interaction is proposed to model the collaborative evolution of urban land in urban agglomeration
areas by embedding the interference-considered urban interaction into the transition rule system of
the conventional CA model. Two major hypotheses are embedded in the proposed model: (1) Urban
land evolution in the urban agglomeration area not only depends on a self-organizing mechanism,
but also on the influence of urban interactions which are derived from the external areas; (2) the
consideration of urban interaction regrading intermediate intervention is necessary in identifying the
collaborative evolution trend of urban land. Taking urban agglomeration in the middle reaches of
the Yangtze River (MYR-UA) in China as a case study, we conduct the implementation, calibration,
evaluation, and discussion of the proposed model, the validity of the proposed model, and the necessity
of integrating urban interaction under intermediate intervention into urban land simulation have
been explored. The rest of this paper is organized in the following manner. Section 2 introduces the
study area and the employed data. In Section 3, the construction of the proposed model is illustrated.
Section 4 reports the results of the urban interaction exploration and dynamic modeling of urban land
in MYR-UA. In Section 5, a further discussion based on the results in the study area is conducted.
Lastly, we conclude this paper in Section 6.

2. Materials

2.1. Study Area

Urban agglomeration in the middle reaches of the Yangtze River (MYR-UA) is the large-scale
city group coupled by the Wuhan urban agglomeration, the Chang-Zhu-Tan urban agglomeration,
the Poyang Lake eco-economic zone, and their surrounding cities [40], with latitudes of 25◦59′ to
32◦38′ N and longitudes of 110◦15′ to 118◦32′ E, as shown in Figure 1. There are 31 cities located in the
MYR-UA, that are separate from Hubei, Hunan, and Jiangxi province. The agglomeration covers a total
area of 0.31 million km2, accounting for 3.3% of the total area in China. It is also the most populous and
developed area in the middle reaches of the Yangtze River. In 2015, the permanent resident population
in the MYR-UA was 128 million, accounting for 9.36% of China’s total population. The gross domestic
product, fixed investments, and total retail sales of consumer goods in the MYR-UA reached 6.65, 5.87,
and 2.67 trillion Yuan, respectively, accounting for 9.77%, 10.37%, and 8.87% of the totals in China [41].
Research on the MYR-UA can be a support for guiding the development of this critical urban area
in China.

Moreover, the MYR-UA has experienced a dramatic evolution of its urban land. From 2005
to 2015, the area’s urban land increased by 61.28%, with an annual increase of 4.90%. The urban
land in the Wuhan urban agglomeration has increased by 70.46%, and that of Chang-Zhu-Tan
urban agglomerations and the Poyang Lake eco-economic zone, respectively, increased by 70.46%
and 92.29% [42]. Furthermore, the MYR-UA has higher accessibility under the support of its
widely distributed traffic infrastructure, which creates frequent element flows and urban interactions.
The mileage of the railway open to traffic spans 5440 km, and that of the highway spans 346,000 km [40].
The exploration of the MYR-UA provides a good reference for other areas with similar features of
dramatic urban land evolution and frequent urban interactions.
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2.2. Data and Processing

The data used in this paper mainly include land use data, basic geographical information, traffic
network data, point of interest data, population data, and a digital elevation model. There into, land use
data were derived from the National Land-Use/Cover Database of China (NLUD-C), which has a
spatial resolution of 30 m and was produced based on high-quality Landsat 7 ETM+ images and
China-Brazil Earth Resource satellite image data [43]. Visual interpretations, geometric corrections,
field surveys, and large amounts of auxiliary information were applied during the data-production
and updating process. A random sampling of the whole nation confirmed the classification accuracy
of NLUD-C to be greater than 90% [44], which demonstrates the accuracy and credibility of this
database. Basic farmland, which is protected by national policy and cannot be transformed into urban
land, was taken from the dataset of the second land survey of Hubei, Hunan, and Jiangxi province.
Basic geographical information was obtained from the National Geomatic Center of China, including
the administrative boundaries, the distribution of urban center, the county center, the development
zone, etc. The traffic network information was acquired from the transportation network database of
Hubei, Hunan, and Jiangxi province, including the distribution of railways, expressways, national
roads, provincial roads, town roads, etc. The point of interest was derived from the Gaode open
street map [45], which was obtained by the Python-based cyber crawler technology. The population
migration data and population density data were collected from the regional statistical bureaus of each
city in MYR-UA. The digital elevation model was obtained from the data platform of the Geospatial
Data Cloud [46]. The spatial analysis function in ArcGIS 10.2 (Environmental Systems Research
Institute, Redlands, USA) was used to obtain the elevation and slope of the region.

3. Method

To construct the simulation model and explore the influence of urban interaction considering
intermediate intervening for dynamic change of urban land, three issues should be concerned:
First, how to quantify the improved urban interaction considering intermediate intervening; second,
how to implement the spatial expression of improved urban interaction influence; third, how to
combine such influence into the dynamic simulation of urban land evolution. For the first issue,
taking the distribution of traffic infrastructure and land-use type into consideration, the radiation
model, which measures urban interaction following the principle of complementarity, intervening
opportunity, and transferability, has been improved to quantify the urban interaction; for the second
issue, the measuring approach of urban interaction, which is based on the field theory, has been
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employed to depict the influence of urban interaction in a spatially explicit way; for the third issue,
based on the basic framework of the CA model, we introduce the improved urban interaction as a part
of CA’s transition rules system, adopt the decision-tree learning to excavate the transition rule of urban
land, and finally construct the simulation model coupling improved urban interaction.

3.1. Improvement of the Radiation Model for Identifying Urban Interaction

The radiation model is a parameter-free model that considers the influence of intervening
opportunity in the process of urban interaction in a two-dimensional geographical space [39].
The deficiencies of considering a simple unidimensional distance in the interaction model can
be rectified by the radiation model. The intervening interaction opportunities are quantified in the
radiation model by measuring the impact produced from the intervening space—a circular area
that uses the original city as its center and the influence distance as its radius. Conventionally,
the population in the intervening space has been viewed as the key indicator to express potential
intervening opportunities [47]. The framework of this model is shown in Figure 2, and the basic
formula of the radiation model is included as Equation (1).

Ti j = Ti
min j

(mi + si j)(mi + n j + si j)
(1)

where Tij is the average flux derived from location i to location j; mi and ni are the total population of
location i and location j; setting rij is the interaction distance between i and j, sij is the total population
located in the circular area with original location i as the center and rij as the radius (excluding the
population in location i and j); and Ti is the number of commuters from location i.
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Figure 2. Expression of urban interactions without and with intervention.

In this paper, we consider the influence of the traffic network and basic land cover to improve the
delimiting of intervening space. First, based on the land use condition and distribution of the traffic
network, we measured the time-cost raster of regional accessibility. The required time to travel 1 km is
set as the time cost. According to the mileage of different levels of traffic infrastructure (as shown in
Table 1), the elapsed time of different traffic modes and land cover was calculated and the time-cost
raster was finally acquired.

Second, by calculating the cost-weight distance in ArcGIS 10.2, the least path distance between
cities was obtained to quantify the interaction distance rij. Taking the objective city as the center,
the least path distance between the original city and the terminated city as the limitation, the time-cost
raster was used to support the measurement of intervening space, which is an irregular polygon
regarding spatial heterogeneity in geographical space. Adopting the basic framework of the radiation
model, urban interaction can be better identified under a more appropriate division of the interaction
intervening space.
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Table 1. The speed of different means of transports and land-cover (km/h).

Type Speed Type Speed Type Speed

High-speed train 250 National road 80 County road 15
Railway 90 Provincial road 60 Land 5

Expressway 120 Town road 30 Water 1

Note: The definition of speed based on the Technical Standard of Highway Engineering (JTGB01-2019) and Code for
Design of High Speed Railway (TB10621-2014) of China.

3.2. Measurement of Urban Interaction Influence

3.2.1. Construction of the Interaction Network

Along with the rise of a city network, the networked analytical paradigm has been widely used in
urban interaction researches. This paradigm offers a new and alternative technical perspective for
quantitatively evaluating the structure and behavior of an intricate urban system [48,49]. In this paper,
we constructed a spatial network of urban interaction (UIn) to help explore the influence of urban
interactions. Taking cities as the nodes, urban interactions as the links, interaction quantity as the
weight of links, the UIn was built under the support of the improved radiation model. In order to
eliminate the negative influence from spurious and statistically insignificant links for the analysis and
visualization of the urban interaction network, we adopted the global threshold method to extract the
major structure of UIn under the no harm principle for urban network connectivity. The social network
analysis (SNA) was employed to analyze the UIn. The degree centrality, which is one of the most
significant SNA indicators that depicts the impact of network nodes [50], was adopted to demonstrate
the urban interaction influence from a directed-network perspective. The formulae of degree centrality
are expressed as:

CRD_in(k) =
∑

Nk (2)

CRD_out(k) =
∑

Mk (3)

C′RD(k) = (CRD−in + CRD−out)/(2n− 2) (4)

where CRD_in(k) is the in-degree centrality of city k, Nk is the number of interaction links inflowing to
city k, CRD_out(k) is the out-degree centrality of city k, Mk is the number of interaction links outflowing
from city k, C′RD(k) is the degree-centrality of city k, and n is the number of total cities.

3.2.2. The Spatially Explicit Expression of Interaction Influence

In order to better address the influence of urban interaction on urban spatial evolution, we adopted
the spatially explicit approach of interaction [35] to implement the spatial expression of urban interaction
influence. Based on field theory, geographical space was abstracted as a geographical field in this
approach. The influence of urban interaction can be expressed as:

U(k,i) =
Pk · λk
La
(k,i)

(5)

where U(k,i) is the interaction influence derived from city k resulting at point i; Pk is the field potential
of city k, defined by its degree centrality, which quantifies the impact of cities from a networked
perspective; λk is the impact weight of city k; and La

(k,i) is the distance between city k and point i,
which is the cost-weight distance calculated based on the time-cost raster of the region.
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3.3. Construction of the Simulation Model Coupling Improved Urban Interaction for Urban Land
Evolution Dynamic

3.3.1. Composite Function of Transition Probability

Urban land change is an intricate process driven by diverse factors simultaneously. In this paper,
based on the framework of cellular automata, we constructed the simulation model coupling improved
urban interaction for urban land evolution dynamics regarding the influence of urban interaction,
which is measured under the impact of intermediate intervention. The driving forces of urban land
evolution in this model are divided into three parts: Neighborhood interactions, the suitability and
accessibility of regional cells, and the interaction influences. These three parts jointly impact the
evolution of urban land in the macro and micro dimension. By assessing the comprehensive transition
probability of each regional cell, the evolution rules of urban land can be explored. The composite
function of the transition probability for a regional cell in this model can be expressed as:

P(i) =
∏3

1
P

n
(i) = f (Ω, s, a, ui) (6)

where P(i) is the composite probability of converting unit i into urban land, which is composed of three
parts: P1, is the transition probability derived from the impact of neighborhood interactions (Ω); P2 is
the transition probability derived from suitability (S) and accessibility (A); and P3 is the transition
probability derived from urban interaction influence (ui). f is the learning function of transition rules.
The formulae of P1, P2, and P3 can be expressed as:

P1(i) =
∑

3×3 con(Si = urban)
3× 3− 1

(7)

where con(Si = urban) is the condition function. When the specific cell is urban, the value is equal to
1, otherwise, the value is equal to 0; the Moore’s neighborhood (3*3) was employed in this model to
depict the transition influence from the cell’s neighborhood.

P2(i) = f (si, ai) (8)

where si is the suitability of transferring cell i into urban land, which is defined by the natural and
socio-economic conditions of cell i; and ai is the accessibility of cell i, which is measured based on the
distribution pattern of the traffic infrastructure, urban center, sub-center, etc.

P3(i) = f (U(i)) = f (
n∑

k=1

U(k,i)) (9)

where U(i) is the total interaction influence received by cell i. According to the cumulative effect of
urban interactions, the total impact of urban interaction on cell i is obtained through the superposition
of all spatial interaction influences derived from diverse cities on cell i. The other notations take the
same definitions used in Equation (5).

3.3.2. Learning of Transition Rule of Urban Land Evolution

In this model, we employed a decision-tree learning to excavate the transition rule of urban land
evolution and construct the function f in the composite function of urban land transition (Equation (6)).
Decision-tree learning can automatically determine the threshold values and create a knowledge
base from observational data to explicitly identify the retrieved rules of urban evolution [51]. This is
the most efficient form of inductive learning and has been considered competent for exploring the
transition rule of urban land evolution [52,53]. According to the maximum information gain ratio
principle, the training data set is recursively and continuously split to ensure the gain ratio reaches its
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maximum. A series of threshold values with the greatest gain ratio values is selected at each node to
help form the decision tree and excavate the explicit transition rules of urban land. A more detailed
introduction to this method can be found in [53].

3.3.3. Indexes for Model Evaluation

The fuzzy kappa index was used to evaluate the preformation of the proposed simulation model
at a cell scale. Fuzzy kappa is considered an effective index for the assessment of model accuracy [54].
Compared to the initial kappa index, the slight displacement of a simulated land-use type compared to
the observed map was accepted and classified as correct in the fuzzy kappa index, which makes the
fuzzy kappa more credible for the evaluation of model precision.

In order to better explore the need to consider urban interactions under intermediate intervention
in the simulation of urban land evolution, the area-weighted mean expansion index (AWMEI) was
used to conduct a comparison from the perspective of landscape expansion pattern. The AWMEI is a
variant of landscape expansion index (LEI), which is the index that characterizes the changing patterns
of urban growth. Through the consideration of the weight of area for each new patch, the AWMEI can
be measured by coupling the location and area of the expanded urban patch [55].

4. Results

4.1. Interaction Network in the MYR-UA

Based on the results of the improved radiation model, urban interaction between cities can been
measured. Through the introduction of a social network analysis, the urban interaction networks of
MYR-UA in 2005, 2010, and 2015 were built to explicitly express urban interactions and help evaluate
the urban interaction influence, as shown in Figure 3. A networked pattern of urban interaction clearly
appears in the MYR-UA. Accompanied by the growth of urban land, the spatial interaction between
cities have been reinforced and the networked pattern has become more complex. The degree centrality
of each city was calculated with the UCINET software (Analytic Technologies, Lexington, KY, USA),
as shown in Table 2. During 2005 to 2015, the cities with increased degree centrality accounted for
93.33% of the total, while the rest presented unaltered degree centrality. An obvious increase in urban
connectivity and interaction influence is shown here.

Table 2. Degree centrality of each city in the MYR-UA.

City 2005 2010 2015 City 2005 2010 2015

Wuhan 0.72 0.72 0.75 Loudi 0.2 0.25 0.28
Changsha 0.48 0.6 0.7 Shangrao 0.18 0.25 0.28
Nanchang 0.37 0.45 0.5 Ji’an 0.27 0.28 0.28
Yueyang 0.35 0.45 0.48 Xianning 0.18 0.18 0.25
Yichun 0.38 0.42 0.47 Fuzhou 0.22 0.25 0.25

Xiaogan 0.27 0.35 0.45 Huangshi 0.2 0.2 0.23
Jingzhou 0.38 0.38 0.43 Pingxiang 0.22 0.22 0.23

Hengyang 0.32 0.37 0.4 Xiantao 0.22 0.2 0.22
Zhuzhou 0.35 0.37 0.38 Qianjiang 0.18 0.18 0.22

Huanggang 0.33 0.35 0.37 Tianmen 0.2 0.22 0.22
Changde 0.28 0.35 0.37 Jingmen 0.18 0.22 0.22
Xiangfan 0.25 0.3 0.33 Ezhou 0.12 0.12 0.15
Xiangtan 0.28 0.33 0.33 Xinyu 0.13 0.13 0.13
Yiyang 0.23 0.28 0.33 Jingdezhen 0.08 0.12 0.12
Jiujiang 0.27 0.28 0.33 Yingtan 0.08 0.08 0.08
Yichang 0.27 0.27 0.3
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4.2. Interaction Influence in the MYR-UA

With the help of a spatially explicit approach of interaction, the interaction influence from
each urban node to the peripheral areas was measured. By overlaying the interaction influence,
the total interaction field was finally obtained as shown in Figure 4. There are three interaction
peaks in the MYR-UA located in the surrounding area of Wuhan, Changsha, and Nanchang.
The Wuhan-surrounding area has the highest interaction influence and the widest high-interaction
influence areas, while a moderate interaction influence and high-interaction cover area can be observed
in the Changsha-surrounding area. Among the three key areas of the MYR-UA, Nanchang-surrounding
area has the lowest interaction influence and the narrowest cover area with a high-interaction.
The interaction influence mainly derives from the core city-Nanchang. The influence of Nanchang
has not increased the interactions in peripheral areas. From 2005 to 2015, the interaction influence in
the study area presented a reinforced trend. The interaction influence in the three key areas of the
MYR-UA all increased, but the radiation area showed non-significant expansion.
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4.3. Simulation of Urban Land Evolution from 2005 to 2015

4.3.1. Model Implementation

The urban landscape in 2005 was set as the initial condition for the model simulation, and that in
2015 was set as the terminal condition. Considering the high cost of transforming urban land into
other land, we set that such change only happens in the process of converting other land into urban
land. The ecological reservation area and basic farmland were set as the constraints in the modeling.
Based on the review of relevant researches and the survey of regional actuality, a sequence of driving
factors was selected, including the distance to development zone, the density of commercial residence,
the interaction influence, the distance to downtown, the distance to county center, the density of
population, the distance to railway station, the distance to expressway, the distance to national road,
the distance to provincial road, the distance to town road, the elevation, and the slope. The change of
each cell is judged by the transition rules set in Equation (6). Using the ArcGIS 10.2 and See 5.0 systems,
a decision tree of urban land evolution was built, and the CA iteration algorithm was implemented.

4.3.2. Model Calibration

Before applying the proposed model to simulate urban land evolution in urban agglomeration
areas, the model parameters need to be calibrated. To ensure the efficiency and precision of rules
learning, we randomly sampled the initial data and chose 20% of the samples to excavate the conversion
rule. Simultaneously, the default value of 25% provided by the See 5.0 system, which aims to avoid the
over-fit effect stimulated due to an overly complex decision tree model, was employed to simplify the
decision tree and determine the final one. Through the training of massive samples, model precision of
the training dataset reached 82.62%, and that of the validation dataset has arrived 90.40%. Adopting
the decision tree to identify the conversion rules of urban land evolution can realize the self-correction
of model parameters, which is better than the conventional statistic model-based exploration. Parts of
the obtained conversion rule are displayed as follows:

Rule 1:
IF population density < 1785.5, elevation > 40.5, slope≤ 0.159, distance to national road > 36,109.21,

interaction influence > 37.73
THEN Urban land development is allowed [p:0.91]
Rule 2:
IF population density > 1785.5, interaction influence >23.68, distance to railway station ≤ 67,043.828125,

slope ≤ 0.159, distance to provincial road≤ 250
THEN Urban land development is allowed [p:0.87]
Rule 3:
IFpopulationdensity>1785.5, densityofcommercialresidence>4.618, distance to expressway≤ 17,251.81,

distance to provincial road > 4286.58, distance to county center≤2524.75, interaction influence > 81.70
THEN Urban land development is allowed [p:0.90]
. . . . . .

4.3.3. Model Evaluation and Simulation Results

Employing the map comparison kit 3.2.3 software (Netherlands Environmental Assessment
Agency, Hague, The Netherlands), we conducted a comparison between the simulated urban land
in 2015 and actual urban landscape in 2015. The results show that the precision of the simulation
reached 90% and the fuzzy kappa index was 0.89, which is much higher than 0.75—the minimum
value indicating the simulation results is effective. The validity of the simulation model coupling
improved urban interaction is thus confirmed. The simulation result of the model in 2015 is shown in
Figure 5. However, from the perspective of the landscape expansion pattern, AMWEI of the simulation
results is 21.81 during 2005–2015, and that of actual urban expansion is 17.81. A slight difference can
be observed.
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5. Discussion

5.1. The Comparison between Conventional Model and the Proposed Model

To further identify the advantage of simulation model coupling improved urban interaction,
and explore the aforementioned hypotheses embodied in the model, we conduct the comparison
between the proposed model and other simulation model. A review on the two hypotheses, for the
first one, former studies that focus on the dynamic change of urban land in the “space of flow” has
proven that urban land evolution is not an independent process and present a high correlation with the
external area through the intercity interaction [28]. For the second hypothesis, the simulation model of
urban land evolution, which considers urban interaction but neglects the intermediate intervention in
the interaction process, has been constructed (non-intervention model). The comparison between the
non-intervention model and the proposed model were conducted. The fuzzy kappa index are adopted
to evaluate the simulation results of different models, and the fuzzy kappa of the non-intervention
model is 0.86, which can be observed as a decrease than the proposed model, while the superiority of
the simulation model coupling improved urban interaction can be identified at a cell scale. From the
perspective of landscape expansion pattern, we separately computed the AMWEI of actual urban
expansion and the simulation results of the two models. Results show that, during 2005 to 2015,
the AWMEI of actual urban expansion is 17.81, and that of simulation results of the proposed model
and the non-intervention model are 21.81 and 23.45. A better capability of the simulation model
coupling improved urban interaction in capturing the changing pattern of actual urban growth can be
depicted. The improvement of capturing the dynamic change of urban land in the axis areas can be
clearly observed to confirm the necessity of considering intermediate intervention in the measurement
of urban interaction (as shown in Figure 6).

Wuhan, Changsha, and Nanchang are the provincial capitals of the provinces comprising the
MYR-UA and the key areas with the most dynamic changes of urban land during the study period in
the area. In order to further discuss the suitability of the proposed model, we compared its simulation
results with the non-intervention model in these three key areas, as shown in Figure 6. The fuzzy kappa
index in these areas have been measured as shown in Table 3. It can be seen that, the fuzzy kappa of
the simulation model considering urban interaction under an intermediate intervening opportunity



Land 2020, 9, 184 12 of 18

exhibits a higher value than the non-intervention model. Considering urban interaction, which was
impacted by the intermediate intervening opportunity is necessary to capture the evolution trend of
urban land in the cities inside the urban agglomeration area.Land 2020, 9, x FOR PEER REVIEW 8 of 19 
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Note: W-1 is the simulation result of the proposed model in Wuhan, W-2 is the simulation result of the
non-intervention model in Wuhan (2015); C-1 and C-2 are the same in Changsha; N-1 and N-2 are the
same in Nanchang.

Table 3. The fuzzy kappa of the simulation results in diverse urban areas.

Wuhan Changsha Nanchang

The proposed model 0.873 0.890 0.925
The non-intervention model 0.841 0.862 0.897

5.2. The Relationship between Urban Land Evolution and Urban Interaction

Employing the simulation model coupling improved urban interaction, we predicted the spatial
patterns of urban land in 2025, as shown in Figure 7. Moreover, the influence of urban interactions in
2015 was measured. The natural break (Jenks) method was adopted to divide the influence area of urban
interaction into areas with high, moderate, and low intensity. We extracted the interaction area with a
high intensity as shown Figure 7. The spatial patterns of future urban land and high-intensity urban
interaction can be analyzed in an overlapping way. It can be observed that, the expansion of urban land
closely matches the spatial location of high-intensity interactions, and is distributed in a networked
and linked pattern. In the MYR-UA, the networked distribution pattern of urban land in the spatial
range of the Hubei and Hunan province is much more significant than that in the Jiangxi Province.
In the Hubei-affiliated area, urban interaction and urban land are mainly distributed in the Wuhan
urban agglomeration area; in the Hunan-affiliated area, the Chang-Zhu-Tan urban agglomeration is
the central region allocated urban land and high-intensity urban interaction. The distribution of urban
land is coordinated with the distribution of high-intensity urban interaction influence.

Urban interaction links interior cities of the urban agglomeration and facilitates regional
collaborative development. Its considerable significance for urban land evolution is showcased
by the spatial match of high-intensity urban interactions and future urban land. The relatively weaker
networked pattern of urban land are accompanied by a smaller distribution of high-intensity urban
interactions inside Jiangxi province, which may be an impediment to the collaborative construction
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of Poyang Lake eco-economic zone. Furthermore, we observed that the linked and collaborative
development of urban land occurs in the MYR-UA, but the segmentation produced by provincial
boundaries is also prominent. The associated pattern of urban space is mainly located inside the
sub-urban agglomeration areas of MYR-UA, typically as a closer interaction inside the Wuhan urban
agglomeration area and the Chang-Zhu-Tan urban agglomeration area, where more intensive urban
interactions among sub-urban agglomeration areas are essential. In the future, measures aimed at
reinforcing the urban interaction among cities in the Jiangxi province and the interactions between
sub-urban agglomeration areas should be further concerned to support the optimal allocation of urban
land for implementing collaborative development of the large-scale urban cluster areas.
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5.3. The Networked Development of Urban form Call for Collaborative Simulation of Urban Land

The efficient and optimal allocation of urban land—the significant carrier of regional
socio-economic activity—plays a key role in ensuring the agglomeration economics of urban areas.
More and more convenient information transfer, population migration, and cargo transportation
produce intensive interactions among urban areas. The polycentric and networked patterns of urban
space are gradually being developed and are viewed as a more effective form to stimulate better urban
performance, such as improvement of the job-housing balance, mitigation of heat island effects, increase
of air quality, etc. As shown in Figures 3 and 4, the networked and polycentric forms developed
inside the MYR-UA can be obviously observed and present a gradually increasing trend. There are
two predominant centers separately located in Wuhan and Changsha’s surrounding areas, and a
remarkable sub-center can be identified in the Nanchang-surrounding area. Additionally important
are the widely distributed regional sub-centers, such as the sub-centers located in the north part
of MYR-UA and in the axis between the Wuhan urban agglomeration and Chang-Zhu-Tan urban
agglomeration. Under such background, urban interaction becomes an important part linking distinct
urban centers and sub-centers. The area around the interaction lines between diverse cities becomes
the key area to construct a functionally integrated urban group. The calculation results of AWMEI
in the period of 2005–2010 (value = 23.68) and 2010–2015 (value = 17.81) present that the urban land
expansion type has transformed from an edge-expansion growth to an outlying growth. As shown in
Figure 8, increasing growth of urban land in the axis area is clearly observable to link diverse urban
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centers. Through consideration of improved urban interactions, the dynamic change of urban space in
the axis area can be better identified (as shown in Figure 6), such approach can be a helpful tool to
predict and allocate urban land under a polycentric and networked form of urban spatial organization,
and finally implement the agglomeration economics of cities.

Land 2020, 9, x FOR PEER REVIEW 10 of 19 

sub-centers, such as the sub-centers located in the north part of MYR-UA and in the axis between 
the Wuhan urban agglomeration and Chang-Zhu-Tan urban agglomeration. Under such 
background, urban interaction becomes an important part linking distinct urban centers and 
sub-centers. The area around the interaction lines between diverse cities becomes the key area to 
construct a functionally integrated urban group. The calculation results of AWMEI in the period of 
2005–2010 (value = 23.68) and 2010–2015 (value = 17.81) present that the urban land expansion type 
has transformed from an edge-expansion growth to an outlying growth. As shown in Figure 8, 
increasing growth of urban land in the axis area is clearly observable to link diverse urban centers. 
Through consideration of improved urban interactions, the dynamic change of urban space in the 
axis area can be better identified (as shown in Figure 6), such approach can be a helpful tool to 
predict and allocate urban land under a polycentric and networked form of urban spatial 
organization, and finally implement the agglomeration economics of cities. 

 
Figure 8. Evolution form of urban land from 2005 to 2015. 

Under the background of polycentric and networked development patterns, urban interaction, 
which is the key element that links internal and external urban centers and sub-centers, requires 
more attention in the optimal organization of urban space. Considering the improved urban 
interaction influence to dynamically analyze urban land evolution is suitable for areas beyond the 
MYR-UA. In China, the wide and constituent construction of traffic infrastructure and the proposal 
of national integrated development strategies have promoted the networked organization forms of 
urban areas. For instance, the proposed “Guangdong-Hong Kong-Macao Greater Bay Area” in 
south China aims to develop the already polycentric region into one that “is driven by poles, 
support by axes and radiating to nearby areas”. Based on the improved and spatially explicit urban 
interactions to conduct the allocation of urban land can be a beneficial reference for exploring the 
superior urban performance in these areas. From a global perspective, under the background of 
globalization, marketization, and decentralization, a city cannot achieve development completely 
on its own. The positive effect of polycentric and networked develop patterns on enhancing 
regional economic productivity has been widely accepted [56]. For instance, in the metropolitan 
areas of US, a higher level of intracity polycentricity with higher labour productivity has been 
associated [57]. Veneri and Burgalassi similarly found a positive association between urban 
polycentricity and economic productivity in Italian Cities. Capello and Camagni [59] studied 58 
Italian cities and claimed that additional benefits can be brought for the cities located in a functional 
network through synergies and complementarities between cities. In this context, the 
comprehensive simulation and prediction of urban land while considering the improved urban 

Figure 8. Evolution form of urban land from 2005 to 2015.

Under the background of polycentric and networked development patterns, urban interaction,
which is the key element that links internal and external urban centers and sub-centers, requires more
attention in the optimal organization of urban space. Considering the improved urban interaction
influence to dynamically analyze urban land evolution is suitable for areas beyond the MYR-UA.
In China, the wide and constituent construction of traffic infrastructure and the proposal of national
integrated development strategies have promoted the networked organization forms of urban areas.
For instance, the proposed “Guangdong-Hong Kong-Macao Greater Bay Area” in south China aims to
develop the already polycentric region into one that “is driven by poles, support by axes and radiating
to nearby areas”. Based on the improved and spatially explicit urban interactions to conduct the
allocation of urban land can be a beneficial reference for exploring the superior urban performance
in these areas. From a global perspective, under the background of globalization, marketization,
and decentralization, a city cannot achieve development completely on its own. The positive effect
of polycentric and networked develop patterns on enhancing regional economic productivity has
been widely accepted [56]. For instance, in the metropolitan areas of US, a higher level of intracity
polycentricity with higher labour productivity has been associated [57]. Veneri and Burgalassi [58]
similarly found a positive association between urban polycentricity and economic productivity in
Italian Cities. Capello and Camagni [59] studied 58 Italian cities and claimed that additional benefits
can be brought for the cities located in a functional network through synergies and complementarities
between cities. In this context, the comprehensive simulation and prediction of urban land while
considering the improved urban interaction, which focus on the impact of external hetero-organization,
can be a feasible approach to help determine the synergistic allocation of urban land and support the
development of agglomeration economics for global urban agglomeration areas.

6. Conclusions

Urban land is the basic spatial carrier supporting regional socio-economic development.
Identifying the evolution rule of urban land plays a significant role in promoting the sustainable and
synergetic development of such regions. Due to the impact of close interactions, the distribution of
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urban land inside an urban agglomeration developed into a more linked pattern. The conventional
urban land simulation model, which focuses on the conditions of a single city, is ill equipped to capture
the collaborative evolution of urban land in urban agglomeration areas. Based on the spatial interaction
theory, intermediate intervention may exist in the interaction process, and these interventions were
considered in measuring urban interactions in this paper. A simulation model coupling improved
urban interaction was constructed to model the collaborative evolution of urban land in the urban
agglomeration area. Taking urban agglomeration in the middle reaches of the Yangtze River as the
case study, the validity and suitability of this model in capturing the evolutionary trend of urban
land was delineated. Through a comparative analysis with former simulation models that consider
urban interaction but neglect the influence of intermediate intervening in the interaction process,
we further ascertained the superiority of the proposed model and the necessity of embedding the
urban interaction considering an intermediate intervening opportunity into the simulation process.
Under the continuous growth of urban interactions inside urban agglomeration, the evolution of urban
land presents a networked and polycentric pattern. More attention should be paid to the reinforcement
of urban interactions among sub-urban agglomeration areas, urban centers, and urban sub-centers to
guide the optimal allocation of urban land for developing the agglomeration economics of cities.

The evolution of urban land and the interactions of urban area are complex and interlaced
processes. In this paper, we measured the influence of urban interactions on the dynamic change
process of urban land inside urban agglomeration. The simulation model that considers improved
urban interactions can offer support for exploring the networked evolution of urban land in urban
agglomeration areas. However, it should be noted that implementing an efficient and sustainable
urban socio-economic development is a significant objective for urban land allocation. Under the
networked and polycentric trends of urban spatial evolution, merging the socio-economic conditions
and requirements into the optimal allocation process of urban land is a key issue. Future works can
be conducted from two angles: (1) From the perspective of interactions, urban interaction can be
expressed by diverse elements, we adopted the population index to quantify urban interactions in
this paper. In the future, more socio-economic elements can be considered to explore the interaction
pattern of cities, such as the distribution and communication of cross-regional industries. The value
chain of industries, which explores the characteristic of urban interactions from the perspective of the
market, could be a feasible approach to help explore urban interaction based on the socio-economic
condition of cities. (2) From the perspective of urban land distribution, we employed the transition
rules identified from current trends to conduct our simulation and prediction of urban land distribution.
Further research could take the land-use distribution scenarios that fit the socio-economic requirements
as an objective (such as a land-use scenario pursues maximum labor productivity), and design an
evolutionary path in a back-stepping way to stimulate the greater potential of urban space in the
process of networked spatial reconstruction.

Author Contributions: C.L. participated in all phases; J.H. helped in conceiving and designing of the research;
X.D. helped in paper organization and language correction. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was financially supported by the China Postdoctoral Science Foundation (No. 2019M663592).

Acknowledgments: The authors sincerely thank the editors and the anonymous reviewers for their constructive
suggestions for this manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan,
the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jenvman.2006.04.003
http://www.ncbi.nlm.nih.gov/pubmed/16824673


Land 2020, 9, 184 16 of 18

2. Ahern, J. Urban landscape sustainability and resilience: The promise and challenges of integrating ecology
with urban planning and design. Landsc. Ecol. 2013, 28, 1203–1212. [CrossRef]

3. Wang, J.; Huang, B.; Fu, D.; Atkinson, P.M.; Zhang, X. Response of urban heat island to future urban
expansion over the Beijing-Tianjin-Hebei metropolitan area. Appl. Geogr. 2016, 70, 26–36. [CrossRef]

4. Shepard, W. Ghost Cities of China: The Story of Cities without People in the World’s Most Populated Country;
Zed Books Ltd.: London, UK, 2015.

5. Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy
2014, 40, 6–12. [CrossRef]

6. Guo, G.C.; Xiong, Q. Study on the urban industrial land use efficiency and its influencing factors in China.
China Land Sci. 2014, 28, 45–52.

7. Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of urban expansion on ecosystem services in the
Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic
Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [CrossRef]

8. He, J.; Huang, J.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint
contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model.
2017, 366, 58–67. [CrossRef]

9. Xie, H.; He, Y.; Xie, X. Exploring the factors influencing ecological land change for China’s
Beijing-Tianjin-Hebei region using big data. J. Clean. Prod. 2017, 142, 677–687. [CrossRef]

10. Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan.
2017, 162, 126–136. [CrossRef]

11. Shu, B.; Zhang, H.; Li, Y.; Qu, Y.; Chen, L. Spatiotemporal variation analysis of driving forces of urban land
spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat Int.
2014, 43, 181–190. [CrossRef]

12. Hu, Z.; Lo, C. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban Syst.
2007, 31, 667–688. [CrossRef]

13. Eboli, L.; Forciniti, C.; Mazzulla, G. Exploring land use and transport interaction through structural equation
modelling. Procedia Soc. Behav. Sci. 2012, 54, 107–116. [CrossRef]

14. Wu, K.-Y.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of
the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145.
[CrossRef]

15. Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion
and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case
study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [CrossRef]

16. Richardson, G.P.; Pugh, A.L. Introduction to System Dynamics Modeling with Dynamo; MIT Press: Cambridge,
MA, USA, 1981.

17. Yu, W.; Zang, S.; Wu, C.; Liu, W.; Na, X. Analyzing and modeling land use land cover change (LUCC) in the
Daqing City, China. Appl. Geogr. 2011, 31, 600–608. [CrossRef]

18. Shen, Q.; Chen, Q.; Tang, B.-S.; Yeung, S.; Hu, Y.; Cheung, G. A system dynamics model for the sustainable
land use planning and development. Habitat Int. 2009, 33, 15–25. [CrossRef]

19. Toffoli, T. Cellular automata machines. Complex. Syst. 1977, 1, 967.
20. Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the

simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337.
[CrossRef]

21. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model
(FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan.
2017, 168, 94–116. [CrossRef]

22. Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world
urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [CrossRef]

23. White, R.; Engelen, G. Cellular automata as the basis of integrated dynamic regional modelling. Environ. Plan.
B Urban Anal. City Sci. 1997, 24, 235–246. [CrossRef]

24. Batty, M.; Couclelis, H.; Eichen, M. Urban Systems as Cellular Automata; SAGE Publications Sage UK: London,
UK, 1997.

http://dx.doi.org/10.1007/s10980-012-9799-z
http://dx.doi.org/10.1016/j.apgeog.2016.02.010
http://dx.doi.org/10.1016/j.landusepol.2013.03.013
http://dx.doi.org/10.1016/j.resconrec.2017.06.003
http://dx.doi.org/10.1016/j.ecolmodel.2017.10.001
http://dx.doi.org/10.1016/j.jclepro.2016.03.064
http://dx.doi.org/10.1016/j.landurbplan.2017.02.014
http://dx.doi.org/10.1016/j.habitatint.2014.02.004
http://dx.doi.org/10.1016/j.compenvurbsys.2006.11.001
http://dx.doi.org/10.1016/j.sbspro.2012.09.730
http://dx.doi.org/10.1016/j.apgeog.2011.11.006
http://dx.doi.org/10.1016/j.landurbplan.2012.02.016
http://dx.doi.org/10.1016/j.apgeog.2010.11.019
http://dx.doi.org/10.1016/j.habitatint.2008.02.004
http://dx.doi.org/10.1111/1467-8306.9302004
http://dx.doi.org/10.1016/j.landurbplan.2017.09.019
http://dx.doi.org/10.1016/j.landurbplan.2010.03.001
http://dx.doi.org/10.1068/b240235


Land 2020, 9, 184 17 of 18

25. He, C.; Okada, N.; Zhang, Q.; Shi, P.; Zhang, J. Modeling urban expansion scenarios by coupling cellular
automata model and system dynamic model in Beijing, China. Appl. Geogr. 2006, 26, 323–345. [CrossRef]

26. Han, J.; Hayashi, Y.; Cao, X.; Imura, H. Application of an integrated system dynamics and cellular automata
model for urban growth assessment: A case study of Shanghai, China. Landsc. Urban Plan. 2009, 91, 133–141.
[CrossRef]

27. Yu, Y.; He, J.; Tang, W.; Li, C. Modeling urban collaborative growth dynamics using a multiscale simulation
model for the Wuhan urban agglomeration area, China. ISPRS Int. J. Geo Inf. 2018, 7, 176. [CrossRef]

28. He, J.; Li, C.; Huang, J.; Liu, D.; Yu, Y. Modeling Urban Spatial Expansion Considering Population Migration
Interaction in Ezhou, Central China. J. Urban Plan. Dev. 2019, 145, 05019003. [CrossRef]

29. Liang, X.; Liu, X.P.; Li, X.; Chen, Y.M.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries
with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [CrossRef]

30. Mustafa, A.; Cools, M.; Saadi, I.; Teller, J. Coupling agent-based, cellular automata and logistic regression
into a hybrid urban expansion model (HUEM). Land Use Policy 2017, 69, 529–540. [CrossRef]

31. Qiang, Y.; Lam, N.S. Modeling land use and land cover changes in a vulnerable coastal region using artificial
neural networks and cellular automata. Environ. Monit. Assess. 2015, 187, 1–16. [CrossRef]

32. Shafizadeh-Moghadam, H.; Asghari, A.; Tayyebi, A.; Taleai, M.J.C. Environment; Systems, U. Coupling
machine learning, tree-based and statistical models with cellular automata to simulate urban growth.
Comput. Environ. Urban Syst. 2017, 64, 297–308. [CrossRef]

33. Castells, M. The Space of Flows; Wiley Online Library: Hoboken, NJ, USA, 2006.
34. Castells, M. The Rise of the Network Society: The Information Age: Economy, Society, and Culture; John Wiley &

Sons: Hoboken, NJ, USA, 2011; Volume 1.
35. He, J.; Li, C.; Yu, Y.; Liu, Y.; Huang, J. Measuring urban spatial interaction in Wuhan Urban Agglomeration,

Central China: A spatially explicit approach. Sustain. Cities Soc. 2017, 32, 569–583. [CrossRef]
36. Liu, X.; Derudder, B.; Wang, M. Polycentric urban development in China: A multi-scale analysis. Environ. Plan.

B Urban Anal. City Sci. 2017, 45, 953–975. [CrossRef]
37. He, C.; Zhao, Y.; Tian, J.; Shi, P. Modeling the urban landscape dynamics in a megalopolitan cluster area

by incorporating a gravitational field model with cellular automata. Landsc. Urban Plan. 2013, 113, 78–89.
[CrossRef]

38. Ullman, E.L.; Boyce, R.R. Geography as Spatial Interaction; University of Washington Press: Seattle, WA,
USA, 1980.

39. Simini, F.; González, M.C.; Maritan, A.; Barabási, A.-L. A universal model for mobility and migration patterns.
Nature 2012, 484, 96. [CrossRef] [PubMed]

40. National Development and Reform Commission of China. Development Planning for City Groups in the Middle
Reaches of the Yangtze River; The State Council of China: Beijing, China, 2015.

41. National Bureau of Statistics of the People’s Republic of China. China City Statistical Yearbook; China Statistics
Press: Beijing, China, 2016.

42. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. China Urban-Rural
Construction Statistical Yearbook; China Statistics Press: Beijing, China, 2016.

43. National Land-Use/Cover Database of China. Available online: http://www.resdc.cn/Datalist1.aspx?
FieldTyepID=1,3 (accessed on 16 February 2019).

44. Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R.
Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016,
2, e1601063. [CrossRef]

45. Gaode Open Street Map. Available online: https://lbs.amap.com/ (accessed on 11 February 2019).
46. ASTER GDEM. Available online: http://www.gscloud.cn/sources/?cdataid=302&pdataid=10 (accessed on 21

March 2019).
47. Hou, H.P.; Liu, Y.F.; Li, J.W.; Kong, X.S. Study on population mobility network among towns based on

improved radiation model. China Popul. Resour. Environ. 2013, 23, 107–115.
48. Sevtsuk, A.; Mekonnen, M. Urban network analysis. Rev. Int. Géomat. N 2012, 287, 305.
49. Pflieger, G.; Rozenblat, C. Introduction. Urban Networks and Network Theory: The City as the Connector of

Multiple Networks; SAGE Publications Sage UK: London, UK, 2010.
50. Scott, J.; Carrington, P.J. The SAGE Handbook of Social Network Analysis; Sage Publication: London, UK, 2011.

http://dx.doi.org/10.1016/j.apgeog.2006.09.006
http://dx.doi.org/10.1016/j.landurbplan.2008.12.002
http://dx.doi.org/10.3390/ijgi7050176
http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000503
http://dx.doi.org/10.1016/j.landurbplan.2018.04.016
http://dx.doi.org/10.1016/j.landusepol.2017.10.009
http://dx.doi.org/10.1007/s10661-015-4298-8
http://dx.doi.org/10.1016/j.compenvurbsys.2017.04.002
http://dx.doi.org/10.1016/j.scs.2017.04.014
http://dx.doi.org/10.1177/2399808317690155
http://dx.doi.org/10.1016/j.landurbplan.2013.01.004
http://dx.doi.org/10.1038/nature10856
http://www.ncbi.nlm.nih.gov/pubmed/22367540
http://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3
http://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3
http://dx.doi.org/10.1126/sciadv.1601063
https://lbs.amap.com/
http://www.gscloud.cn/sources/?cdataid=302&pdataid=10


Land 2020, 9, 184 18 of 18

51. Huang, X.; Jensen, J.R. A machine-learning approach to automated knowledge-base building for remote
sensing image analysis with GIS data. Photogramm Eng Remote Sens. Photogramm. Eng. Remote Sens. 1997,
63, 1185–1194.

52. Ballestores, F., Jr.; Qiu, Z. An integrated parcel-based land use change model using cellular automata and
decision tree. Proc. Int. Acad. Ecol. Environ. Sci. 2012, 2, 53.

53. Li, X.; Gar-On Yeh, A. Data mining of cellular automata’s transition rules. Int. J. Geogr. Inf. Sci. 2004, 18,
723–744. [CrossRef]

54. Vliet, J.V.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment
of land-use change models. Ecol. Model. 2011, 222, 1367–1375. [CrossRef]

55. Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using
multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [CrossRef]

56. Meijers, E.; Hoogerbrugge, M.; Cardoso, R. Beyond polycentricity: Does stronger integration between cities in
polycentric urban regions improve performance? Tijdschr. Voor Econ. Soc. Geogr. 2018, 109, 1–21. [CrossRef]

57. Meijers, E.J.; Burger, M.J. Spatial structure and productivity in US metropolitan areas. Environ. Plan. A
Econ. Space 2010, 42, 1383–1402. [CrossRef]

58. Veneri, P.; Burgalassi, D. Questioning polycentric development and its effects. Issues of definition and
measurement for the Italian NUTS-2 regions. Eur. Plan. Stud. 2012, 20, 1017–1037. [CrossRef]

59. Capello, R.; Camagni, R. Beyond optimal city size: An evaluation of alternative urban growth patterns.
Urban Stud. 2000, 37, 1479–1496. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/13658810410001705325
http://dx.doi.org/10.1016/j.ecolmodel.2011.01.017
http://dx.doi.org/10.1007/s10980-010-9454-5
http://dx.doi.org/10.1111/tesg.12292
http://dx.doi.org/10.1068/a42151
http://dx.doi.org/10.1080/09654313.2012.673566
http://dx.doi.org/10.1080/00420980020080221
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials 
	Study Area 
	Data and Processing 

	Method 
	Improvement of the Radiation Model for Identifying Urban Interaction 
	Measurement of Urban Interaction Influence 
	Construction of the Interaction Network 
	The Spatially Explicit Expression of Interaction Influence 

	Construction of the Simulation Model Coupling Improved Urban Interaction for Urban Land Evolution Dynamic 
	Composite Function of Transition Probability 
	Learning of Transition Rule of Urban Land Evolution 
	Indexes for Model Evaluation 


	Results 
	Interaction Network in the MYR-UA 
	Interaction Influence in the MYR-UA 
	Simulation of Urban Land Evolution from 2005 to 2015 
	Model Implementation 
	Model Calibration 
	Model Evaluation and Simulation Results 


	Discussion 
	The Comparison between Conventional Model and the Proposed Model 
	The Relationship between Urban Land Evolution and Urban Interaction 
	The Networked Development of Urban form Call for Collaborative Simulation of Urban Land 

	Conclusions 
	References

