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Abstract: This paper presents a new approach for rapidly assessing the extent of land use and land
cover (LULC) areas in Mato Grosso state, Brazil. The novel idea is the use of an annual time series of
fraction images derived from the linear spectral mixing model (LSMM) instead of original bands.
The LSMM was applied to the Project for On-Board Autonomy-Vegetation (PROBA-V) 100-m data
composites from 2015 (~73 scenes/year, cloud-free images, in theory), generating vegetation, soil,
and shade fraction images. These fraction images highlight the LULC components inside the pixels.
The other new idea is to reduce these time series to only six single bands representing the maximum
and standard deviation values of these fraction images in an annual composite, reducing the volume
of data to classify the main LULC classes. The whole image classification process was conducted in the
Google Earth Engine platform using the pixel-based random forest algorithm. A set of 622 samples of
each LULC class was collected by visual inspection of PROBA-V and Landsat-8 Operational Land
Imager (OLI) images and divided into training and validation datasets. The performance of the
method was evaluated by the overall accuracy and confusion matrix. The overall accuracy was
92.4%, with the lowest misclassification found for cropland and forestland (<9% error). The same
validation data set showed 88% agreement with the LULC map made available by the Landsat-based
MapBiomas project. This proposed method has the potential to be used operationally to accurately
map the main LULC areas and to rapidly use the PROBA-V dataset at regional or national levels.

Keywords: spectral unmixing; machine learning; fraction images; cloud computing

1. Introduction

The Mato Grosso state presents the second largest area of deforestation and forest degradation in
the Brazilian Legal Amazonia (BLA), a Brazilian political division that encompasses the states of Acre,
Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Roraima, Tocantins, and part of Maranhão [1,2].
Mato Grosso is the main grain and cattle beef producer in the BLA [3,4]. Its northern part is covered by
the Amazonia biome, while the southern part is covered by the Cerrado and Pantanal biomes. This
state has a key role in understanding the Brazilian land use and land cover (LULC) dynamics, since
several processes of change in LULC that are occurring in Mato Grosso are being repeated in other
Brazilian states covered by the Amazonia and Cerrado biomes. These are the cases of the states of Pará,
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Rondônia, and Amazonas, as well as the newest agricultural frontier in Brazil, the MATOPIBA region
(states of Maranhão, Tocantins, Piauí, and Bahia) [5]. The negative outcomes of this large expansion in
food production are habitat fragmentation, biodiversity reduction, and high pressure on protected areas
(conservation units and indigenous lands) [6,7]. Therefore, a quick assessment of LULC changes in all
the above-mentioned regions is important for forecasting yield, planning logistics (transportation and
storage), preventing fire, and combating and controlling illegal deforestation [6,8,9]. LULC monitoring
is also crucial to estimate CO2 emissions from deforestation and degradation losses [10,11], as well as
to prevent soil erosion, the introduction of invasive species, and resource losses such as timber and
water supply for local inhabitants [12,13].

Various moderate spatial resolution (~30 m) remote sensing data have been widely applied to map
and monitor LULC changes at the global scale. These are the cases of China´s GlobeLand30 [14] and
the University of Maryland´s Global Land Analysis and Discovery (GLAD) [15]. Recently, a pool of
Brazilian universities and nongovernment and private institutions launched the MapBiomas project [16]
to produce year-based LULC maps of Brazil using cloud-computing resources and historical series of
Landsat data available in the Google Earth Engine platform. These initiatives use remote sensing data
with moderate spatial and temporal resolutions, that is, Landsat-like satellites, typically with 16-day
repeat passes and 30-m spatial resolution. Especially in tropical regions, there is well-known persistent
cloud coverage. For example, in Brazil, only 20% of its territory presents more than 12 cloud-free
Landsat observations in a year (within a total of 23 scenes) [17]. The limited number of Landsat scenes
is crucial not only in the Amazonia biome but also in the Cerrado biome because of its high climatic
seasonality and the presence of a six-month wet season (from October to March) [18], in which most of
the grain production is concentrated.

Thus, at a 16-day temporal resolution, Landsat images may not be sufficient to fully explore the
variations in vegetation phenology and the temporal patterns of agricultural lands due to cloud cover
constraints [19]. In this sense, satellite sensors with relatively coarse spatial resolution (~100–300 m)
and high temporal resolution may be a singular alternative to monitor LULC changes in regions such as
Mato Grosso state in Brazil. These sensors include the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor onboard the Terra and Aqua platforms, with spatial resolutions of 250, 500, and 1000 m
and 1–2 days of repeat pass [20]; the Medium Resolution Imaging Spectrometer (MERIS) sensor
onboard the Envisat platform with a spatial resolution of 300 m and three-day repeat pass [21]; and the
Project for On-Board Autonomy-Vegetation (PROBA-V), with 100-m or 1-km spatial resolutions and
daily observations [22]. Recently, the combination of sensors, such as Landsat and Sentinel-2 [23,24],
has been a good alternative to increase the availability of temporal images, allowing an improved
characterization of land surfaces. However, so far, application of this sensor combination has been
limited in the detection of burned areas [24] or in the monitoring of agricultural crop cycles [23].

Most of the LULC mapping from large areas has relied on supervised or unsupervised classification
algorithms applied to the entire pixel (resolution cell). The use of the entire pixel to discriminate
LULC classes in coarse spatial-resolution images (and even in moderate-resolution images) is, to some
extent, limited because of the frequent mixture of different spectral classes in a single pixel [25,26].
Spectral mixture analysis [27], often modeled using a linear spectral mixture model (LSMM), is one
of the most common techniques for considering the nature of the obtained mixed spectral data [26].
LSMM converts the digital numbers or reflectance of an image to a few endmembers or fraction
images containing proportions of different terrain components, usually vegetation, soil, and shade,
at a subpixel level [27]. LSMM has been demonstrated to be a useful technique for interpreting
coarse and moderate spatial-resolution remote sensing data by converting spectral information into
physical parameters related to the abundance of materials on the ground surface [28,29]. The LSMM
technique has been used for detecting seasonal changes in three LULC classes (open tropical forest,
Cerrado grasslands, and soybean plantation) [30] to differentiate the major Cerrado physiognomies [31]
and vegetation seasonality [32] and to monitor deforestation and degradation by fire and selective
logging [33].
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Annual or monthly composite images based on the maximum vegetation fraction values ensure
that cloudy and off-nadir pixels have low chances to be selected in the final composites, as stated by [30]
and allow better characterization of LULC classes with strong seasonality (e.g., tropical savannas,
croplands, and pasturelands), as shown by [34]. Since different LULC classes in Mato Grosso state
present distinct annual behavior in terms of the proportion of vegetation, soil, and shade, in theory,
the maximum fraction images (and their corresponding standard deviations) have the potential to
better discriminate the most representative LULC classes from this region (forestlands, shrublands,
grasslands, rain-fed croplands, and pasturelands). In this context, this study aimed to present a new
method to map the major LULC classes in Mato Grosso state based on the maximum value proportional
fractions of vegetation, soil, and shade derived from the 2015 PROBA-V 100-m images.

2. Materials and Methods

2.1. Study Area

The study area corresponded to Mato Grosso state, located in midwestern Brazil in the BLA
region. This area covers approximately 900,000 km2, is characterized by a heterogeneous landscape
(highlands, lowlands, wetlands, depressions, and plateaus), and encompasses three Brazilian biomes:
Amazonia (tropical rainforest, 56.7% of the state), Cerrado (tropical savanna, 37.4%), and Pantanal
(wetland, 5.9%) (Figure 1) [35]. Dense and open ombrophilous forests are found in the northern part of
the state (Amazonia); savannas with diverse proportions of grasses, shrubs, and trees are found in the
plateaus and lowlands in the central and southern parts of the state (Cerrado); and wetlands are found
in the southwestern part of the state (Pantanal) [35]. These heterogeneous natural and anthropogenic
landscapes make the LULC classification quite challenging. In addition, Mato Grosso is the largest
producer and exporter of soybeans, corn, and cotton in Brazil [36]. There are also extensive areas of
pasture, reforestation by Eucalyptus, and sparsely distributed forest logging [3,5,37,38].
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2.2. Datasets

This study was based on the PROBA-V Collection 1 (C1) top of canopy daily synthesis product
obtained in the entire year of 2015. PROBA-V C1 images are produced every five days with a spatial
resolution of 100 m at nadir and with radiometric and geometric corrections [39]. PROBA-V is the
payload of a satellite mission to map land cover and vegetation and was designed to ensure continuity
of the Satellite Pour l’Observation de la Terre Vegetation (SPOT-VEGETATION) mission [22,40].
The sensor operates with four bands in the visible and infrared spectra (blue, 0.435–0.490 µm; red,
0.610–0.700 µm; near infrared (NIR), 0.760–0.930 µm; and shortwave infrared (SWIR), 1.520–1.670 µm).
The PROBA-V mission also provides the status map (SM) information (pixel radiometric quality data)
and the normalized difference data between the NIR and red bands, called the normalized difference
vegetation index (NDVI) (not used in this study).

As ancillary data, we selected two sets of Landsat-8 Operational Land Imager (OLI) satellite data
obtained in 2015 (bands 4, 5, and 6 in the green, red, and NIR spectral regions, respectively; spatial
resolution of 30 m; repeat pass of 16 days). One set was from the crop-growing season (July–December),
and the other set was from the harvesting season (January–July). The MODIS-based time series of
NDVI signatures available in the Satellite Vegetation (SATVeg) web tool, developed by the Brazilian
Agricultural Research Corporation (Embrapa)1, were also used in this study. The LULC map of 2015,
produced by the MapBiomas project, was the main vector-based data considered in this study.

2.3. Data Processing

The main steps of the methodological approach applied in this study and conducted in the Google
Earth Engine platform [41] are shown in Figure 2. First, we imported the PROBA-V 100-m scenes
from 2015 in the Google Earth Engine platform and clipped to the Mato Grosso state boundary [42].
The following bands were considered: Blue, red, NIR, SWIR, and SM. The annual mosaic of cloud-free
images from 2015 was generated by a script for masking pixels whose values stated as cloud or cirrus
in the SM band were excluded [40]; thus, only pixels with good radiometric quality, that is, classified
in the SM band as 0 (clear), were selected.

Next, we selected homogeneous areas of bare soils, large croplands, and clear water bodies in the
PROBA-V annual mosaic to obtain the pure endmembers of soil, vegetation, and shade, respectively.
Then, the soil, vegetation, and shade fraction images were obtained by selecting endmembers by visual
inspection of the median values of the blue, red, NIR, and SWIR bands. The representative reflectance
values of each endmember in the blue, red, NIR, and SWIR spectral regions for Mato Grosso state are
shown in Figure 3.

The LSMM assumes that pixel values are a linear combination of reflectance values from a certain
number of elements (endmembers). The fraction image is obtained for each endmember representing the
proportion of the corresponding endmember within a pixel by minimizing the sum of squares of errors
in the original data [27]. The proportion of each element is constrained to the range from 0% (absence) to
100% (maximum presence) at each cell resolution. The LSMM can be represented by Equation (1):

Ri =
m∑

j=1

firi, j + εi (i = 1, . . . , p) (1)

where:

Ri = the spectral reflectance in the ith spectral band;
ri,j = the spectral reflectance of the jth component in the ith spectral band (endmember);
fi = the proportion of the jth component within the pixel;

1 Available in www.satveg.cnptia.embrapa.br. Accessed on 30 June 2019.

www.satveg.cnptia.embrapa.br
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i = 1, p (number of spectral bands used);
j = 1, m (number of considered components); and
εi = the residual for the ith spectral band.Land 2020, 9, x FOR PEER REVIEW 5 of 20 
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Figure 3. Endmembers collected from median reflectance values of Project for On-Board
Autonomy–Vegetation (PROBA-V) annual composites (A) and their corresponding samples of “Crop”,
“Bare soil”, and “Clear water” in the municipalities of Sapezal, Sorriso, and Chapada dos Guimarães
(Mato Grosso state), respectively (B).
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The set of PROBA-V images obtained in 2015 was reduced to three maximum and three standard
deviation fraction images of vegetation, soil, and shade. This approach ensured that the highest
fraction value was selected on the composites within the year [30]. Therefore, the information of one
year of PROBA-V images (in theory, 73 cloud-free images) was condensed in six bands. The novel idea
is that the highest vegetation fraction value refers to the most likely class, and the standard deviation
of its fractions represents the seasonality of that class throughout the year. The standard deviation of
the fraction images is calculated as the deviation from the average value of each fraction image in the
annual mosaic composites.

2.4. LULC Description

The LULC classes considered in this study were annual croplands, forestlands, water bodies, humid
savanna, pasturelands, and dry savanna. These classes were discriminated based on the variations in
the proportions of the soil, vegetation, and shade endmembers, according to the seasonality, instead of
analyzing their spectral behaviors, which invariably change with the sensor and spatial resolution [43].
This means that each class has a typical annual behavior according to its increase or decrease in
vegetation, soil, and shade proportions throughout the year [30,31]. For instance, in Mato Grosso,
croplands are mostly represented by annual, rain-fed plantations of soybean, maize, and cotton, while
pasturelands are mostly represented by planted pastures with Brachiaria species. Therefore, the terrain
conditions in croplands over the year are significantly more variable than those from planted pastures,
ranging from green vegetation cover to bare soils or straws, which explains the higher seasonality of
soil and vegetation fraction images throughout the year [30,31,44]. In other words, croplands have
high vegetation cover, low soil cover, and low shade fraction during the peak of the growing season;
however, during the harvesting and preseeding phases, croplands have low vegetation, high soil,
and low shade fractions (Figure 4).
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dots and asterisks represent the mean and the standard deviation, respectively.
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Forestlands include the Amazon tropical rainforest located in the northern part of Mato Grosso
state, Cerrado woodlands, riparian forests, and forest regenerations with varying ages. They are
characterized by deciduous and semideciduous forest with trees between 15 and 20 m height and no
leaf losses greater than 50% at the Cerrado biome and by the open forest with trees between 25 and
30 m height in the Amazon forest, with canopy cover greater than 80% at the Amazon biome [45,46].
In addition, forestlands have a medium vegetation fraction, low soil proportion, medium shade fraction,
and low standard deviation for all fractions throughout the year because of the weak seasonality,
as shown in the boxplots of Figure 4. Water bodies include major rivers and perennial lakes from the
wetlands of the Pantanal biome and present the highest shade proportion throughout the year (boxplot
of Figure 4C) and almost null proportions of vegetation and soil (Figure 4A,B, respectively).

Humid savanna corresponds to the natural grass-dominated strata mostly found in the wetlands
of the Pantanal biome, highly susceptible to flooding during the wet season (October to March),
and occurs mainly in poorly drained soils [31]. Because of the sparse, up to 3-m-high trees covering
less than 20% of the surface, these areas can be identified by a slightly higher fraction of shade
compared with that of other vegetated classes, as shown in the boxplots of Figure 4C [45]. Dry savanna
corresponds to the mixture of grass-, shrub-, and tree-dominated layers in varying proportions that
occur mainly in the Cerrado biome [6,45]. Savannas and pasturelands usually present medium soil,
vegetation, and shade fractions and moderate seasonality, which results in higher standard deviations
than that of forestlands. Their location in Figure 4 is between the cropland and forestland classes.
Additionally, a lower soil fraction on managed pastures is expected in relation to natural grasslands,
as well as a lower shade fraction in relation to the humid savannas. Dry savannas are characterized by
a higher proportion of shrubs and trees in relation to pasturelands and humid savannas, which may be
characterized by an intermediate proportion of the soil and vegetation fraction [45].

2.5. Sampling Design and Classification

To ensure the representativeness of sampling, a set of 622 samples (348 in the Amazonia biome,
234 in the Cerrado, and 40 in the Pantanal) was randomly distributed over the study area by visual
inspection (Figure 5).
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sample, with respective conceptual behavior of the ancillary data from MODIS NDVI and the two
seasons of the Landsat-8 OLI (RGB:654) in the bottom right.
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In total, we selected 151 (84 for validation sampling) samples of croplands; 128 (56) forestland
samples; 100 (36, 37, and 36) pastureland, humid, and dry savanna samples; and 43 (14) water body
samples. The number of samples for water bodies was low because they occupy a relatively small area
in Mato Grosso state. We collected samples only from perennial large rivers, streams, and lakes. For the
dry savanna, the small samples were due to confusion with pastures, especially because that class
comprises several other classes with a gradient of shrubs and grasslands. Training samples were chosen
empirically by observing the sample distribution, accuracy assessment, and classification performance.

On the other hand, the number of validation samples was calculated based on the statistical
approach proposed by [47], which consists of generating an adequate probability dataset among
stratified random sampling. The sample size for validation was based on the extension area of each
stratum and their expected accuracy to ensure sufficient size to produce sufficiently precise estimates.
As there was no reference map with the same LULC classes for the study area, a previous classification
map was developed using two-thirds of total training samples and one-third for testing (Figure 5)
to obtain the expected overall accuracies by each LULC. Thus, the set parameters were 2% of the
standard error of expected overall accuracy; 90% of the expected user’s accuracy of the high-confidence
accuracies for forestlands, croplands, and water bodies; and 70% of the expected user’s accuracy to the
low-confidence accuracies for humid savanna, pastureland, and dry savanna. Since some classes are
identified more easily than others, this measure will influence the overall size of the samples.

Finally, the mosaics were processed by the random forest classifier in the Google Earth Engine
platform. Random forest is a supervised classifier where each tree handles a random selection from
the training data by creating a set of a multiple decision trees using bootstrap [48]. The random
replacement of trees and samples makes the classifier robust for dealing with a low number of training
samples [49]. At each bootstrap replacement, a new tree node is built by gaining information from the
comparison of the multiple attributes (spectral bands). This procedure is repeated for the other nodes
of the tree, which grow without pruning. Then, k number of trees is generated, forming the (random)
forest [48]. The parameter k was set to 30, which is the maximum number of trees to be created.

The accuracy was evaluated by the confusion matrix and by the comparison of results obtained
by the MapBiomas project (Table 1). The same validation dataset was used to assess the agreement
with MapBiomas project classes according to [50,51]. As MapBiomas raster-based LULC products
are available at 30-m spatial resolution, the data were degraded to 100-m spatial resolution by
using the most likely class in the pixel (mode), enabling intercomparison between datasets (https:
//code.earthengine.google.com/?accept_repo=users/mapbiomas/user-toolkit). The legend consistency
between this study and the MapBiomas project is shown in Table 1.

Table 1. Legend consistency between this study and the MapBiomas† land use and land cover
mapping project.

This Study MapBiomas Project

Croplands Annual and perennial crop and semiperennial crop
Forestland Forest formation and forest plantation
Water bodies River, lake and ocean
Humid savanna Mangrove, wetland, and other nonforest natural formation
Pastureland Grassland formation, pasture, and mosaic of agriculture and pasture
Dry savanna Savanna formation

† Collection version 3.1 (https://mapbiomas.org/en).

3. Results

3.1. Maximum and Standard Deviation Fractions of Vegetation, Soil, and Shade

The annual time-series composites of fraction images were reduced by three maximum fractions
and by three standard deviation bands. Figure 6 shows the frequency histogram of each of the LULC
classes in these six bands. In terms of vegetation fraction, forestland, cropland, and pastureland

https://code.earthengine.google.com/?accept_repo=users/mapbiomas/user-toolkit
https://code.earthengine.google.com/?accept_repo=users/mapbiomas/user-toolkit
https://mapbiomas.org/en
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classes presented relatively high responses due to the high absorption of photosynthetically active
radiation by leaves and canopies throughout the year. However, these LULC classes differ by their
seasonality, which is more evident in croplands and pasturelands than in forests, as noted by the high
standard deviation of the vegetation fraction (Figure 6D). The forestland defined here is characterized
by semideciduous forest and open or dense tropical forest with no pronounced winter, so the proportion
of vegetation is quite constant throughout the year, with a medium proportion of shade in the dry
season, as 20–50% of the leaves fall from May to September.
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corresponding standard deviations of the vegetation (D), soil (E), and shade (F) fractions.

The use of the maximum values of vegetation and soil fractions within a year allows a separation
between cropland and forestland or between forestland and pastureland. The soil fraction presented
the opposite behavior of maximum vegetation fraction in vegetated classes; the proportion of soil
increases during the harvesting and seeding period when the soil becomes exposed, and the vegetation
proportion decreases. At the end of the crop cycle (January–April), the maximum vegetation proportion
occurs in the cropland class and vice versa in the soil fraction (Figure 6A,B).

Pastureland and savannas presented behavior similar to that of the maximum and standard
deviation of the vegetation and soil fractions, however, with lower levels than those observed
from the cropland (Figure 6A,B,D,E). Pastureland and savanna canopies are more heterogeneous
than those from cropland, presenting higher levels of mixed vegetation, soil, and shade fractions
during the year. Therefore, pastureland can be discriminated from forestland and cropland by the
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intermediate values of the standard deviation of the vegetation and soil fractions (Figure 6C,D).
Similarly, the maximum fraction of the shade image was helpful to differentiate pastureland from
humid savanna and dry savanna because of the stronger seasonality of the pastureland. Pastureland
presented higher seasonality of the soil fraction, as depicted in the standard deviation of the soil
fraction in Figure 6E, than that from the humid savanna and dry savanna and lower maximum shade
fractions. The humid savanna is differentiated by the relatively high amount of shade in the maximum
annual composite. As the water bodies absorb most of the incident radiation in the visible and infrared
spectra, they are clearly separated by their maximum shade fraction due to the low reflectance of this
target; consequently, the water bodies also presented low proportions of vegetation and soil fractions.

Figure 7 shows the RGB (Red-Green-Blue) color composite of the maximum fractions of soil,
vegetation, and shade fractions in Mato Grosso state. Water bodies (rivers and lakes) and forestland
appear blueish and greenish in this false-color composite, respectively. Cropland has a similar
proportion of maximum fractions of soil and vegetation throughout the year, so it appears yellowish.

Land 2020, 9, x FOR PEER REVIEW 10 of 20 

Pastureland and savannas presented behavior similar to that of the maximum and standard 
deviation of the vegetation and soil fractions, however, with lower levels than those observed from 
the cropland (Figures 6A, 6B, 6D, and 6E). Pastureland and savanna canopies are more heterogeneous 
than those from cropland, presenting higher levels of mixed vegetation, soil, and shade fractions 
during the year. Therefore, pastureland can be discriminated from forestland and cropland by the 
intermediate values of the standard deviation of the vegetation and soil fractions (Figures 6C and 
6D). Similarly, the maximum fraction of the shade image was helpful to differentiate pastureland 
from humid savanna and dry savanna because of the stronger seasonality of the pastureland. 
Pastureland presented higher seasonality of the soil fraction, as depicted in the standard deviation of 
the soil fraction in Figure 6E, than that from the humid savanna and dry savanna and lower 
maximum shade fractions. The humid savanna is differentiated by the relatively high amount of 
shade in the maximum annual composite. As the water bodies absorb most of the incident radiation 
in the visible and infrared spectra, they are clearly separated by their maximum shade fraction due 
to the low reflectance of this target; consequently, the water bodies also presented low proportions 
of vegetation and soil fractions. 

Figure 7 shows the RGB (Red-Green-Blue) color composite of the maximum fractions of soil, 
vegetation, and shade fractions in Mato Grosso state. Water bodies (rivers and lakes) and forestland 
appear blueish and greenish in this false-color composite, respectively. Cropland has a similar 
proportion of maximum fractions of soil and vegetation throughout the year, so it appears yellowish. 

 

Figure 7. RGB color composite of the maximum soil, vegetation, and shade proportions derived from 
fraction images of Mato Grosso state. Cropland is highlighted in yellow, and forestland is highlighted 
in green. 

3.2. LULC Map 

Figure 8 shows the LULC map of Mato Grosso state derived from the random forest 
classification of the maximum and standard deviation fractions of soil, vegetation, and shade, in 

Figure 7. RGB color composite of the maximum soil, vegetation, and shade proportions derived from
fraction images of Mato Grosso state. Cropland is highlighted in yellow, and forestland is highlighted
in green.

3.2. LULC Map

Figure 8 shows the LULC map of Mato Grosso state derived from the random forest classification
of the maximum and standard deviation fractions of soil, vegetation, and shade, in roughly 90 MP
(megapixels). The areas occupied by each LULC class in the Amazonia, Cerrado, and Pantanal biomes
are shown in Table 2.
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Table 2. Area (km2) occupied by the representative LULC classes of Mato Grosso state, estimated
according to the PROBA-V 100-m classification by the random forest algorithm.

LULC class Amazonia Cerrado Pantanal Subtotal

Croplands 14,178 25,111 175 39,464
Forestland 310,353 89,329 22,272 421,954

Water bodies 955 773 1701 3429
Humid savanna 17,406 93,790 20,679 131,875

Pastureland 124,133 92,772 11,304 228,208
Dry savanna 18,584 50,735 8016 77,336

Subtotal 485,609 352,510 64,147 902,266

The dominant LULC class in Mato Grosso is forestland, covering an area of approximately
422,000 km2 (45% of the state), mostly in the northern and southern parts of the state, followed
by pastureland (~228,000 km2, 24% of the state), basically found throughout the state. The spatial
distribution of forestland and pastureland agrees quite well with the MODIS-based LULC map of Mato
Grosso from 2017 [52]. Forestland and pastureland are also the dominant LULC classes in the part of
the state covered by the Amazonia biome: 64% and 26%, respectively. Forestland, humid savanna,
and pastureland are the three dominant LULC classes in areas occupied by the Cerrado biome: 25%,
27%, and 26%, respectively. In the Pantanal biome, we found 35% forestland and 32% humid savanna,
the two most dominant LULC types in this biome.
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A large portion of forestland in Mato Grosso is protected by indigenous lands, especially by the
Parque do Xingu and the Parque do Aripuanã indigenous lands in the northeastern and northwestern
regions of Mato Grosso, as well as the Paresi indigenous land in the western part of the state (Cerrado
biome). Surprisingly, there is a lack of permanently protected conservation units in Mato Grosso,
which is commonly found in other states in the Amazonia biome. The cropland occurs mostly in
the central part of the state, adjacent to the cities of Nova Mutum, Lucas do Rio Verde, Sorriso,
and Sinop, in the Cerrado/Amazonia ecotone region, and along the BR-163 highway (Cuiabá-Santarém
highway, not shown in Figure 8), where most of the cropland and forest losses due to clear cutting and
selective logging are found [53,54]. Primavera do Leste is the major grain-producing region in the state,
located in the Cerrado biome. Juína, Colniza, and Alta Floresta, mostly occupied by pasturelands,
are important in terms of Amazon biodiversity conservation. These are priority regions of the Brazilian
Institute of Environment and Renewable Natural Resources (IBAMA) to combat and control illegal
deforestation in the BLA since they are located near the Amazonas state, where we find large fragments
of pristine rainfall forest. In the region of São Felix do Araguaia, we find the largest areas of humid
savannas in Mato Grosso, located over the alluvial sediments of the Araguaia River basin [55,56].
In Brazil, the Araguaia River Basin and the Pantanal are the two largest wetlands influenced by tropical,
seasonal floods.

3.3. Accuracy

The LULC map of the Mato Grosso state showed an overall accuracy of 92.4% for 2015, with user
accuracy and producer accuracy above 78% (Table 3). The highest confusion was among dry savanna,
humid savanna, and pastureland (~86–95% user accuracy), as such classes present a mixture of woods,
shrubs, and grasslands [31].

Table 3. Confusion matrix among the major land use and land cover classes from Mato Grosso
state using the validation dataset. The values in parentheses indicate the number of training and
validation samples, respectively. UA, user accuracy; PA, producer accuracy. Overall accuracy = sum of
diagonal/total number of samples = 243/263 = 92.4%.

Reference/
Classified

Cropland
(67/84)

Forest-Land
(72/56)

Water
Body

(29/14)

Humid
Savanna
(64/36)

Pasture-Land
(63/37)

Dry
Savanna
(64/36)

Total
(263/359) UA

Cropland 76 0 0 0 8 0 84 90
Forestland 0 55 0 0 1 0 56 98
Water Body 0 0 14 0 0 0 14 100
Humid
Savanna 0 0 0 31 0 5 36 86

Pastureland 0 0 0 0 35 2 37 95
Dry Savanna 0 0 0 3 1 32 36 89
Total 76 55 14 34 45 39 263
PA 100 100 100 91 78 82 92

Water bodies presented 100% confidence, although we acknowledge that the spatial resolution of
100 m limits the classification of small rivers and lakes. For instance, only a few parts of the Xingu
River in the Parque do Xingu indigenous land, corresponding to its largest riverbeds, could be mapped
in this study (Figure 8). Croplands, forestlands, and water bodies obtained high user accuracy and
producer accuracy >90%. Pasturelands, on the other hand, showed high user accuracy (95%) but low
producer accuracy (78%).



Land 2020, 9, 139 13 of 20

4. Discussion

4.1. Classification Performance and Uncertainties

The proposed approach demonstrated that the highest value of the fraction images on the
annual composite allowed the discrimination of LULC classes based on their highest peaks during
the year, while standard deviation emphasized the seasonality of these classes, improving the
separability of LULC classes with similar spectral responses. However, some misclassifications
remained, for example, the confusion between pasturelands and croplands that has already been
reported by several authors [5,6,17]. The managed pastures promote vegetation growth similar to that
of the croplands. Such homogeneous vegetation covering confuses the classifier, hence reducing the
accuracy of this class [5,6]. For other natural classes from the Cerrado biome, such as the dry and
humid savannas reported here, the misinterpretation may be even worse. According to the Cerrado
vegetation classification system proposed by [45], there are at least seven different phytophysiognomies
in the Cerrado biome, which differ in terms of vegetation cover, the amount of biomass, and proportion
of trees, shrubs, and grasses. In addition, the changes in LULC classes during the observed year can
produce error in the classification, confusing the classifier when assigning the last change as a correct
class. For instance, the conversion of forest in pasture could classify this class as forest due to the
highest vegetation fraction in that year.

Compared with the validation sample design applied in the MapBiomas project, we noticed that
cropland, forestland, water bodies, and pastureland presented similar user and producer accuracies
(92–100%) (Table 4). However, dry and humid savannas presented high levels of mismatches
(53–64%), probably due to the legend definitions. The overall accuracy classification performance
for Mato Grosso state was similar to that reported by the MapBiomas project, which was 90% in
2015 [16]. The overall accuracy in terms of biome was 95% for the Amazonia, 83% for the Cerrado,
and 81% for the Pantanal, demonstrating again the greater difficulty in mapping savanna formations
(https://mapbiomas.org/en/estatistica-de-acuracia?cama_set_language=en).

Table 4. Confusion matrix among the major land use and land cover classes with the MapBiomas project.

Reference/
Classified Cropland Forestland Water

Body
Humid

Savanna Pastureland Dry
Savanna Total UA

Cropland 83 0 0 1 0 0 84 99
Forestland 0 56 0 0 0 0 56 100
Water Body 0 0 14 0 0 0 14 100
Humid
Savanna 0 0 0 19 2 15 36 53

Pastureland 0 0 0 1 36 0 37 97
Dry Savanna 0 0 0 12 1 23 36 64
Total 83 56 14 33 39 38 263
PA 100 100 100 58 92 61 88

The total area classification performance agreed with that of the previous study [16] for most
classes (Table 5). One of the main differences between those mappings was that the extent of cropland
estimates was 32%. Here, it is important to note that the MapBiomas maps do not differentiate
between annual and perennial crops. Perennial crops are classified as forestlands in our classification.
Our approach did not discriminate among perennial and semiperennial crops and annual crops because
of the low seasonality of the perennial and semiperennial crops. If the semiperennial crops (sugarcane,
for example) were excluded from the area comparison based on the MapBiomas project, the difference
would be 10% higher. Furthermore, both initiatives have the limitation of not classifying more than
one annual harvest cycle (typically, double cropping), a common practice in Mato Grosso state [34,57].
Other studies showed larger cropland estimates than those in our method: 98,488 km2 [58] and
98,723 km2 [59], in which double-cropped areas were counted twice [59]. To overcome this limitation,
one possibility is the use of a crop calendar (wet-dry seasons), as proposed by [60], including the short

https://mapbiomas.org/en/estatistica-de-acuracia?cama_set_language=en
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and long crop cycles in the estimates, or using a metric that clearly identifies two cycles in the same
time series [19,52,57].

Table 5. Comparison of the areas mapped by this study and by the MapBiomas project.

Classes This study (km2) MapBiomas (km2) Difference

Cropland 39,464 52,219 −32%
Forestland 421,954 432,923 −3%
Water Body 3429 17,711 −416%

Dry Savanna 131,875 97,944 26%
Pastureland 228,208 231,189 −1%

Humid Savanna 77,336 68,962 11%

Total 902,266 900,947

The forestland showed a 3% difference between the two studies. In the MapBiomas project,
the tree-dominated savannas, tree-dominated wetlands, and the Amazon rainforest were grouped
in the forestland class. The area estimation of pastureland differed by only 1% in relation to the
MapBiomas project, even though pasturelands are difficult to map because of the similar spectral
response with the savanna grasslands and other land covers [5]. Farmers often use natural fields for
cattle ranching, making it difficult to differentiate them from native savanna grassland [61]. In that
manner, pastures were confused with dry savanna (Table 1). The commission error was better than the
omission error, leading to a most likely overestimation of the area of pastures. Pasture conversion
represented an average of 79% of new cropland area in Brazil and 20% of natural vegetation conversion
during the 2000–2014 period, which represents approximately 8% of pasture conversion per year [59].

The greatest difference in area estimation was found in the water body class, which was 4.1 times
lower than the MapBiomas project estimation. The main reason for this difference was probably
related to the lower spatial resolution of the PROBA-V (100 m) in comparison to that of the Landsat
collection (30 m) classification of the MapBiomas. Another possible reason is the underestimation
in this study of the Pantanal biome because of the use of the maximum shade fraction in the annual
composite, different from that of the other initiatives [e.g., 16], which perform classification using wet
season datasets when there is a lack of data. Another Brazilian initiative, called TerraClass, computed
4747 km2 of water bodies in Mato Grosso state in 2014 using Landsat mosaic composites and visual
interpretation [62]. In this sense, the proposed approach minimizes the influence of the seasonality of
the native vegetation of the savanna and wetlands by not determining single dry or wet periods, which,
in turn, vary throughout Mato Grosso state [63] and may affect the area estimation in LULC mappings.

4.2. Novel Approach

Although the results have shown inconsistencies in the classification of certain classes, uncertainties
may be associated with the heterogeneity of the landscape within the 100 m × 100 m cell of the sensor
used, making it difficult to map small environmental changes that may not be detected due to the
spatial resolution. On the other hand, the better temporal resolution increased the probability of
finding pixels without the influence of clouds, making it possible to extract values at least once a year,
which might not occur in sensors with lower temporal resolution.

Thus, from the point of view of quickly assessing the main LULC classes with the low computational
cost of cloud computing and human resources, the proposed approach has the advantage of presenting
a higher availability of cloud-free pixels. For example, Landsat-like sensors can have a maximum
of 23 cloud-free pixels in a year and up to 60 in the Sentinel-2A and Sentinel-2B satellites (only
Sentinel-2A scenes are available in Brazil, so far), while PROBA-V can obtain up to 73 synthetic 5-day
composites [64]. In fact, these are hypothetical values that depend on the frequency of cloud cover,
especially during the rainy season (October–April), which reduces data availability. Figure 9 shows
the frequency of the cloud-free and cloud shadow-free pixels over Mato Grosso state in 2015 and
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their comparison with the moderate spatial resolution. The average number of clear observations
was 29 pixels without cloud and cloud shadows over the year (Figure 9B). In addition, there was a
clear gradient of the spatial distribution of data availability from east to west (Figure 9A). In the east,
a drier region with a predominance of Cerrado physiognomies, we found clearer observations than
those in the west, which is characterized by dense Amazon forest (Figure 9A). Data availability is a
limiting factor in reconstructing the phenological behavior of the main LULC classes in a time series
classification [57]. Nevertheless, PROBA-V imagery has an excellent trade-off between data availability
and spatial resolution, with a minimum of 20 “clear” pixels per year (Figure 9A).
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Figure 9. (A) Spatial distribution of cloud-free and cloud shadow-free pixels in an annual PROBA-V
100-m composite. (B) Histogram of the frequencies of cloud-free and cloud shadow-free pixels in
Mato Grosso state. Vertical, dashed lines represent a hypothetical maximum number of pixels in the
Landsat-8 OLI and Sentinel-2 collection. (C) Enlargement of a cropland-dominated region located in
the Campo Novo do Parecis municipality. In the upper right, the red-NIR-SWIR color composite of
PROBA-V. In the center right, the spatial distribution of data availability of a year of PROBA-V images
and Sentinel-2 (bottom right).

4.3. Perspective

The method presented encouraging results for Mato Grosso state, but it may face some difficulty
in other regions or in discriminating more detailed LULC classes. For example, the Cerrado biome
is characterized by landscape patterns varying from open grassland to dense canopies; therefore,
obtaining accurate LULC classification in this biome may be slightly challenging [65]. In this study,
we grouped Cerrado physiognomies into dry savanna and humid savanna to produce LULC classes
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with good performance. However, if there is a necessity to discriminate among the seven types of
physiognomies (two grassland classes, three shrubland classes, and two forestland classes) according
to the Cerrado vegetation classification system proposed by [45] or to precisely discriminate between
natural grasslands and planted pasturelands, the accuracy of the method may decrease substantially
because of the similarities in the spectral responses.

The use of spectral mixture models has been reported to estimate woody and herbaceous cover
using the photosynthetic vegetation (PV) fraction in addition to the nonphotosynthetic vegetation
(NPV) fraction [66,67], which can include materials such as dry organic matter, litter, wood, and dry
logs. According to [67], using only the vegetation fraction can overestimate seasonal vegetation,
and the use of NPV can be useful to analyze the dynamics, function, and structure of vegetation.
The use of four components (PV, NPV, shade, and soil) to generate land cover classifications in forested
areas with high biomass, such as the Amazon rainforest, has been considered [68]. Recent research
has focused on collecting photosynthetic and nonphotosynthetic endmembers of vegetation to enable
the discrimination of dry and wet vegetation in environments with strong seasonality during the
year [69]. However, few studies have investigated the applicability of these four components to
quantify and monitor changes in seasonal vegetation and with low levels of biomass, as is the case for
the Cerrado biome.

Currently, there are some innovative methods and image synergisms that have been tested to
improve the discrimination of land cover classes. The use of L-band synthetic aperture radar (SAR)
images provided a significant improvement in the discrimination of woody canopy cover from African
dry savanna [70]. This radar-based approach may improve the classification of humid savannas since
SAR data are sensitive to moist vegetation. The use of the tasseled cap transformation of the Landsat
and Sentinel-2 time series to discriminate the Cerrado physiognomies presented an overall accuracy
of 63% [43]. Previous studies also showed that Bayesian unsupervised classification and multiple
platforms/sensors improved LULC discrimination [71]. Harmonic models applied to time series have
been used to classify forest types [72], facilitating the overview of phenological cycles that could be
used to improve interclass separation.

For future investigations, we suggest evaluating the feasibility of combining the proposed
approach with other methods that rely on multiple sensors and different image processing techniques
to derive accurate LULC products in complex ecosystems.

5. Conclusions

In this study, a novel method to produce LULC maps based on the classification of the three
maximum fraction images and three standard deviations derived from annual composites of the 100-m
spatial resolution PROBA-V dataset was presented. The innovative idea involves the analysis of the
temporal (annual) behavior of the proportions of vegetation, soil, and shade of the main LULC classes
to classify them according to their maximum peaks and standard deviations (seasonality), which are
closely related to the biophysical and phenological behaviors of those classes.

This study presented an overall accuracy classification of 92.4% and an agreement of 88% with
the LULC map produced by the MapBiomas project. The user accuracy and the producer accuracy
of classifying croplands, forestlands, and water bodies were above 90%. The method is suitable for
processing in cloud-computing platforms, such as the Google Earth Engine, which helps address
the high dimensionality of the data; therefore, it can be easily tested for regional- and global-scale
classification purposes.

One of the main limitations of the method is the low number of observations (pixels) without cloud
and cloud shadows in some regions over the year to attribute the maximum and standard deviation
into the correct LULC class. Data fusion or data synergism may be a proper initiative to address the
lack of temporal information or the mixture complexity of the annual proportion of endmembers in
the Cerrado physiognomies or even the spectral differences related to either well-managed or poorly
managed pastures.
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