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Abstract: The wide availability of multispectral satellite imagery through projects such as Landsat
and Sentinel, combined with the introduction of deep learning in general and Convolutional Neural
Networks (CNNs) in particular, has allowed for the rapid and effective analysis of multiple classes of
problems pertaining to land coverage. Taking advantage of the two phenomena, we propose a machine
learning model for the classification of land abandonment. We designed a Convolutional Neural
Network architecture that outputs a classification probability for the presence of land abandonment
in a given 15–25 ha grid element by using multispectral imaging data obtained through Sentinel
Hub. For both the training and validation of the model, we used imagery of the Łódź Voivodeship in
central Poland. The main source of truth was a 2009 orthophoto study available from the WMS (Web
Map Service) of the Geoportal site. The model achieved 0.855 auc (area under curve), 0.47 loss, and
0.78 accuracy for the test dataset. Using the classification results and the Getis–Ord Gi* statistic, we
prepared a map of cold- and hotspots with individual areas that exceed 50 km2. This thresholded
heatmap allowed for an analysis of contributing factors for both low and intense land abandonment,
demonstrating that common trends are identifiable through the interpretation of the classification
results of the chosen model. We additionally performed a comparative field study on two selected
cold- and hotspots. The study, along with the high-accuracy results of the model’s validation, confirms
that CNN-type models are an effective tool for the automatic detection of land abandonment.
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1. Introduction

The rural landscape of the Łódź Voivodeship (Figure 1), as everywhere else in Poland, underwent
massive structural and functional transformations because of the political upheaval of 1989–2000,
followed by the country’s integration with the European Union [1,2]. However, this restructuring
process was beset with contradictory phenomena. On the one hand, high-quality land was subjected to
more intensive agriculture, resulting in more modern farming methods and the expansion of cultivated
areas. On the other hand, mid- and poor-quality land experienced the emergence of substantial
areas subject to agricultural abandonment [3]. Statistics Poland (GUS) reported an increase from 1.3 to
1.8 mln ha of fallow and abandoned lands in the year 1995 alone [4], further expanding, according to the
official Agricultural Census of 2002, to 2.3 mln ha, or 17.6% of total arable land in Poland [5]. Reasons
for the reduction in agricultural activity include the progressive urbanization of rural areas (most
prominently in suburban zones), declining returns on agricultural production (primarily affecting
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individual agricultural holdings operating in poor-quality areas), and the decline of cattle and sheep
husbandry, leading to agricultural abandonment of meadows and pastures [6,7].

Figure 1. Research area in the geographic context of Poland.

With the availability of direct agricultural subsidies under the so-called Good Agricultural and
Environmental Conditions (GAEC), many farmers decided to resume their activities, resulting in a
marked decrease in abandoned lands. Currently, however, it is impossible to determine the scale of this
phenomenon because of a lack of relevant statistical data. Specifically, in the Agricultural Census of
2010, fallow lands were folded into the category of “other farmlands”, while the Agricultural Census
of 2010 report on Land Utilization [8] did not include the term “abandoned land”. Furthermore, by a
2001-03-29 ordinance of the Minister of Regional Development, neither abandoned nor fallow lands
constitute a unique category; instead, they are incorporated into the category of “arable land” [9].
In consequence, it has become impossible to estimate the amount of abandoned or fallow lands at any
level of administrative subdivision [10,11].

A limited number of publications do include up-to-date maps documenting land abandonment.
These necessitate field survey based on aerial photography. The amount of required effort and
time for utilizing the aforementioned methods has limited its utility to smaller surfaces, such as
catchment areas [12,13], test research areas [3,14–16], and landscape parks [17]. Such land abandonment
intensity identification processes were also utilized on a single area of several thousand km2 on the
basis of orthophoto analysis, supplemented by on-the-ground verification [18–22]. In recent decades,
this approach to identifying land abandonment, in Poland and worldwide, has been increasingly
augmented by the usage of satellite spectral imaging [23] and LIDAR data [24–26].

Abandoned fields, meadows, and pastures are subject to spontaneous plant regeneration and succession.
According to J.B. Faliński [27], vegetation that grows in such a way can be described as “emancipated
vegetation” or “liberated vegetation”, as in “freed” from the long-term influence of humankind. In other
words, abandoned lands are areas regaining their vegetation coverage as a result of autonomous ecological
processes. Frequently, abandoned lands become progressively floristically enriched with the passage of
time, not infrequently including rare or endangered plant species [28]. From the conservationist point
of view, postagricultural, spontaneously overgrowing areas factor in an increase in biological diversity,
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structural heterogeneity, the formation of ecological corridors, and the enrichment of sustenance
opportunities for diverse animal species [17]. In fact, in the environmental conditions of central Poland,
some areas of land abandonment visually resemble a forest stand. According to botanical observations,
spontaneously appearing, newly forested areas are characterized by age and species diversity, correlated
to their local habitat and soil fertility [29,30]. Thus, emergent new plant communities provide a positive
environmental influence and are a costless alternative to aforestation [10,19].

Regions of land abandonment, typically undergoing varying degrees of plant succession,
intermingled with the open spaces of fields, meadows, and pastures, create vistas of considerable visual
allure [31]. For this reason, as well as a societal interest in rural expanses as recreational spaces, these
areas have found themselves under both sparse and dense “vacation settlements”. In addition, dubbed
“tourist colonization”, the process was especially intensified along river valleys and in the vicinity of
the shoreline of flood control reservoirs [32,33]. This was helped along by the progressive decline in
crop- and livestock-related agricultural usage [34,35]. As a consequence, abandoned lands are often
accompanied by seasonal homes and allotments [31].

The principal goal of our study is to evaluate the potential of deep learning, specifically Convolutional
Neural Networks (CNNs), to accurately classify land abandonment and provide new insights into the
origins of the process, especially in the context of the Łódź Voivodeship. The decision to utilize CNNs
over traditional methods, such as Support Vector Machines (SVM) or fully connected artificial neural
networks, is the former’s ability to encode complex image features. This capability is due to the use of
convolutional filters that, in the process of training, gain the ability to detect the presence of specific
patterns. Furthermore, the convolution operation, which is the backbone of CNNs, offers a performance
gain when training the networks on Graphical Processing Units (GPUs). This, in consequence, offers
the potential for training the model on larger datasets and feasibly experimenting with various
hyperparameter values and network architectures. The application of CNNs to solve computer vision
problems, particularly classification, has proven to be a valid and effective approach and become an
industry standard. Because of their effectiveness in recognizing complex features and their usefulness
when processing high-dimensional data, CNNs have also been successfully deployed in land coverage
classification with satellite and aerial imagery [36–40]. We formulate the following hypothesis: an
appropriately prepared Convolutional Neural Network (CNN) is able to detect land abandonment
within the Łódź Voivodeship to a recognizable degree when compared with sources of truth, such as
on-the-ground studies from various time periods.

2. Materials and Methods

2.1. Background

Deep learning in general and Convolutional Neural Network (CNN) architecture in particular
have proven revolutionary in essentially all fields that can be assisted by computer vision, and the
subfield of land use classification proves to be no different. CNN-based approaches do possess a major
disadvantage in that they require a substantial amount of data for the training process. Fortunately,
as noted in [36], considerable quantities of image data have become available in recent years thanks to
deployments of satellites such as Landsat 8 and Sentinel-2 A/B. This temporal correlation becomes
quite apparent when studying the relevant literature, as the bulk of published research concerning the
usage of CNNs for land cover classification dates from 2017 or later, i.e., following the deployment of
Landsat 8 [38] and Sentinel-2A [39]. Earlier works, however, exist in a limited number, and they have
simply utilized other datasets, such as KSC/Pavia [40] and UC Merced [41].

In concert with the availability of data, the architecture has developed, as well. Earlier approaches
favored a combination of established methods, such as Principal Component Analysis (PCA) and
logistic regression [40] or Deep Convolutional Neural Network and Transfer Learning (DTCLE) [42].
Subsequent developments have favored the use of pure CNNs, with methods such as Random
Forests (RF) and/or Support Vector Machines (SVM) only taken into account as baselines [36,43,44].
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The majority of neural networks developed for the tasks of land classification appear to use a custom
neuronal layer architecture. Very few exceptions exist, such as one solution based on AlexNet [45].
This focus on bespoke architectures can be explained by established network layer schemes that have
been developed to handle generic object recognition tasks, such as various ImageNet editions [46,47].
Apart from the variability due to the number of convolutional layers, types of pooling, etc., three other
network architectural trends can be distinguished.

The first is the split and/or filtering of spectral bands for the input vectors. This can range from
over 180 [43] to 6 [44]. Generally, the preference seems to be to take both visible and infrared bands into
account. This may be the result of data availability and the need to ensure interoperability between
different data sources. A reduction in time and cost overheads is, in turn, a possible factor contributing
to the selection of a limited set of bands with comparatively diverse characteristics.

The second categorization is closely related to the former, namely, the dimensionality of the neural
networks. Most networks in the existing literature are either 1-D (e.g., [43]), where the focus is on the
interaction of the spectral bands for a specific pixel, or 2-D (e.g., [48]), where the concentration is on
the interplay between pixel values. Note that the “dimensionality” here pertains to the number of
dimensions of a specific convolution kernel and not that of the input, which is 1 higher for a given
value; i.e., a 2-D CNN receives a 3-D input that consists of k · k · n sets of values, where k is the kernel
size and n is the number of bands. One comparison of dimensionality vs. performance [36] determined
that both approaches have comparable accuracies, with the 2-D CNN providing a slightly increased
accuracy for the specific test dataset used.

The third distinction also deals with dimensionality but along the temporal axis, specifically to
distinguish data that is time-invariant versus time-variable. Of special note here is the use of a Long
Short-Term Memory (LSTM) network in [44]. LSTM networks have a deep learning architecture in
which the antecedent output influences subsequent input, both over short and long intervals, in order
to capture features variously localized in a given linear dimension, such as time (LSTMs also find
use in natural language analysis). In particular, in [44], it was found that LSTMs can offer accuracy
improvements over at least some variants of CNNs. On the other hand, it has been demonstrated that
even a CNN can benefit from time-variable data [43].

An important portion of any machine learning experiment is data preprocessing and preparation.
Deep learning networks allow for some simplifications in that regard, as they automatically handle
several steps necessary in “classic” machine learning methods, such as feature extraction. However,
some problems are unavoidable, even with this type of intrinsic automation. In the area of land cover
classification, special relevance is placed on compensating for missing data, resulting mostly from
cloud cover but also from factors such as intermittency of satellite coverage. Apart from situations in
which a cloud mask is provided [36], methods range from applying a cleanup with Self-Organizing
Kohonen Masks (SOM) [36], through using separate CNNs [49], to simply utilizing images of the same
area, captured on multiple days, as supplementary input [43].

Finally, an aspect of the existing literature that is extremely relevant to our own research is the
specifics of how land cover classification categories can be selected and delineated. In general, every
deep-learning-based approach encountered was trained for multiple classes, ranging from 11 [36] to
even 21 [41]. However, invariably, most of these classes were oriented toward crop types, and no
classification corresponding to our definition of land abandonment could be found. Interestingly,
multiple articles identified problems with noncrop classes, such as meadows, uncultivated areas,
and fallow lands used for active farming [44,50,51]. In particular, the approach in [44] netted a precision
of around 0.46 for LSTM and 0.25 for CNN for the fallow class, compared with ones exceeding 0.85+
for other classes. This demonstrates the existence of a niche for neural network models specializing in
the classification of areas not under active agricultural cultivation.
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2.2. Data and Model Preparation

As is standard with deep learning image classification, we divided the research area into grids.
The fundamental grid element comprises a rectangle of variable dimensions, limited by the following
constraints: a maximum area of 25 ha and a maximum edge length of 500 m. Grid elements are
segmented by superimposing an EPSG:4326 square grid and defining the origin at the northwestern
corner of the rectangle delineating the given research area. Subsequently, the grid is adjusted to
conform to the source classification data for the chosen machine learning model, as well as to the
collection and processing procedures that generate the input vector used for the learning and prediction
process. These adjustments, in turn, effect the aforementioned deviations of edge length and area.
The complete model training process is depicted in Figure 2.

Figure 2. Model training flowchart.
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The research proper was initialized by preparing a classification dataset, which is necessary when
defining training, test, and validation data for the statistical learning system. The authors based their
work on prior research efforts during “The ecological role of abandoned agricultural lands in buffer
zones around landscape parks in the Łódź Voivodeship” project, financed by the Polish National
Science Centre (1760/B/P01/2011/40).

As part of a preliminary study, the research team analyzed the buffer zones of the relevant landscape
parks to categorize them into a 5-point scale of land abandonment intensity. In 25% intervals, the scale
progresses from 0% (1) to 100% (5) of abandoned land that covers the given area. The classification
process was based on a visual evaluation and interpretation of orthophotos dating from 2009, available
through the WMS (Web Map Service) of the Geoportal site [52]. The resultant initial dataset contains
33,692 grid elements encompassing 8423 km2, 46.2% of the voivodeship’s total area.

In practice, however, the research coverage was more limited, as a portion of the grid elements
was located within the 10 km landscape-park buffer zones and/or intersected features, such as forests
and inland waters. These factors limited the effective classification area of the relevant grid elements
and resulted in the conversions of these areas from portions of a square grid to more complex and
occasionally concave polygons. A related consequence is the degeneration of some grid elements,
even to the point of reclassification as limited-area artifacts. The authors decided to overcome the
outlined issues by, firstly, filtering areas to only include those in the range of 15–25 ha and, secondly,
transforming complex polygon borders into their minimal bounding boxes (Figure 3).

Figure 3. Sample portion of a research area. Bounding boxes are superimposed over their respective
grid elements.

Using QGIS 3.8.3, every thus transformed research area had its bounding shape coordinates
normalized to the geographic latitude and longitude. Simultaneously, the class label was reduced
to a binary space: 0 denotes no land abandonment (the null class) and 1 denotes any degree of land
abandonment in the given area. The final classification dataset encompasses 13,328 rectangles of
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3073.05 km2 in total, accounting for 16.87% of the total Voivodeship area. An average grid element
measures 23 ha, with a standard deviation of 2.9 ha. The mode is 25 ha (half of all grid elements).

The classification dataset was enriched by imaging data from the Sentinel-2 satellite project
by assigning a corresponding multiband TIFF file to each of the 13,328 grid elements (examples
in Figures 4 and 5). Data ingestion was accomplished via the Sentinel Hub database [53] and the
sentinel-py library [54]. The referenced image set encompasses satellite imagery from 2015 until 2019,
with cloud cover per element lower than 5%. Each image includes the following emission channels:
near-infrared, red, green, and blue (B08, B04, B03, B02). A 10 m by 10 m square corresponds to a single
pixel. Boundary areas and areas with less than 90% of themselves within the scanning zone were
rejected. Nearest resampling was used to upsample every grid element to 50 px by 50 px with the
help of the rasterio library. In the end, 445,671 files were ingested into a numpy array labeled with the
corresponding class. The data were subsequently split into training (361,337 units), test (44,599 units),
and validation (39,735) sets while ensuring that all three were distinct w.r.t. subarea coverage.

Figure 4. Time series of a single grid element classified as null-grade abandoned land. Original data
class 0. The data sample is presented in RGB and near-infrared channels.
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Figure 5. Time series of a single grid element classified as abandoned land. Original data class 4.
The data sample is presented in RGB and near-infrared channels.

The chosen land abandonment binary classifier architecture is a convolutional neural network
(CNN). The model was implemented using the Keras library, backed by TensorFlow. As is typical
for a CNN, the base architectural unit is a sequence of convolutional, batch normalization, activation,
pooling, and dropout layers with progressively decreasing throughput dimensionality (Figure 6).
Hyperparameter tuning for the outlined layers was performed automatically via a grid search. Because
of the class imbalance of abandoned lands compared with the null class, the output data were assigned
weights according to the following formula:

nsamples

nclasses · bincountclasses

where nsamples is the number of samples, nclasses is the number of classes, and bincountclasses is a vector
containing the occurrences of each class. The result was 0.852 for class 0 and 1.21 for class 1. The trained
model attained 0.855 auc (area under curve), 0.47 loss, and 0.78 accuracy under testing. The confusion
matrix Table 1 results indicate that the model achieved 0.659 precision and 0.777 recall, and therefore,
its F1-score was 0.713. The model representation was subsequently persisted in an h5 file for the
purpose of later prediction.
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Figure 6. Convolutional network architecture for land abandonment classification.

Table 1. The confusion matrix under the test set.

Prediction/Classification Nonabandoned Abandoned

nonabandoned 22,556 3496

abandoned 6328 12,219

The prediction data were collected using Sentinel Hub data from August of 2018, with a 1:1
correspondence between imagery and data (i.e., a single photograph was selected for a given element).
Image identifiers were collected in the form of a CSV file and can be found in the manuscript
Supplementary data. Any discrepancies were corrected via resampling. The preprocessing of prediction
data was conducted in an identical way to that performed during the training process. To be exact,
the entirety of the Łódź Voivodeship was overlaid with a square grid. Image capture was conducted by
maximizing the coverage area, i.e., even grid elements that were only partially within the voivodeship
were taken into account. The final classification input dataset comprised 69,945 grid elements with a
total area of 17,486.25 km2, enclosing 96% of the voivodeship. Every element was classified through the
generated model using a sigmoid activation function and, as mentioned previously, nominalization to
land abandonment/no land abandonment according to the 0.5 activation threshold.
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During fieldwork validation, our results were confronted with on-the-ground August 2018 surveys,
covering 20 research areas of 16 km2 each. Result maps were prepared using the QGIS suite, and auxiliary
graphs and diagrams were generated with the help of matplotlib and seaborn Python libraries.
Subsequently, a surface analysis of value distribution vis-à-vis per-element activation function values
was conducted. The Getis–Ord Gi* was used, which is a cluster detection technique distinguishing
hot- and coldspots with respect to the activation function, corresponding to the appropriate land
abandonment occurrence probability. ArcGis was used to prepare hotspot maps.

3. Results

The primary artifact of the described research approach is a probability distribution map of land
abandonment across the Łódź Voivodeship as of 2018, represented as a heatmap (Figure 7). The final
heatmap is the result of further postprocessing, specifically thresholding, in order to solely render
cold- and hotspots (Figure 8), displaying clusters of low and high probability of land abandonment
according to the Getis–Ord Gi* statistic. The end result is characterized by contiguous areas of low
and high probability, with a significance level of 99%. Further filtering was applied to only include
contiguous, unconnected areas, with individual surfaces greater than 50 km2. Areas with the highest
probability of land abandonment, shown on the map in red, comprise 16 sprawling hotspots (Figure 8,
Table 2). The total surface of all hotspots in the Łódź Voivodeship is 4771.5 km2. Areas with the lowest
probability of land abandonment, colored blue, comprise 9 coldspots displaying comparatively more
compact shapes (Figure 8, Table 3). Coldspots are, overall, the most dominant feature, with a total
surface area of 5011 km2, 27.5% of the voivodeship.

Figure 7. Probability distribution map of land abandonment across the Łódź Voivodeship.
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Figure 8. Heatmap with cold- and hotspots of a surface area greater than 50 km2.

To the best of our knowledge, our study comprises the first comprehensive land abandonment
probability distribution analysis for the entirety of the 18,218.95 km2 area of the Łódź Voivodeship.
Earlier attempts by a subset of the authors [55] were performed in the context of significantly smaller
regions, thus limiting the discoverability of more universal trends influencing this phenomenon for
both cold- and hotspots of the relevant probability distribution. Among the most critical factors for the
occurrence of land abandonment coldspots are (Figure 9):

1. The presence of soil complexes assigned to the highest classes of arability (1,2,3,4,8) [52],
applicable to all coldspots, i.e., (a–i);

2. The presence of soils with a high proportion of silt, a characteristic that affects their air-and-
moisture-related properties, improves vegetation access to groundwater, and simultaneously
retards rain- and meltwater infiltration. This feature is dominant in the following coldspots: (b),
(c), (d), (e), (f), (g), and (i);
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3. The presence of soils developed from till or clayey sand underlain by till. This occurs in all
coldspots other than (f);

4. The presence of a relatively homogeneous landscape, dominated by plains and thus beneficial
to agriculture. Coldspot (a) provides the starkest example with level terrain and a dominant,
slightly southern slope, facilitating drainage of excessive melt- and rainwater towards the Bzura
river valley. Plains also characterize the following coldspots: (b), (e), (h), and (i).

Table 2. Hotspots.

Symbol in
Figure 8

Name Location Surface in
km2

A Central Surrounding Łódź, Zgierz, Zelów, Szczerców, and the
Szczerców Field of Bełchatów Lignite Mine, areas along the
Warta river from the vicinity of Strońsk, through Chojne,
until the southernmost suburbs of Sieradz and the vicinity
of Hipolitów on the Pisia river

2025.25

B Kamieńsk East of Bełchatów, southwest of forest complexes and
Gomunice, spanning along the railway from Radomsko
towards Kamieńsk and subsequently northwards of the
Widawka river valley

292.5

C Grębienice Southeast of the Łódź voivodeship, near Grębienice-Nowa
Góra, and south of Żarnów

254.5

D Tomaszów
Mazowiecki

Along the Plica river valley and near the Spalski and
Sulejowski Landscape Parks

238

E Gidle Southern Łódź voivodeship, stretches North–South along
the Warta and Stara Wiercica river valleys

158

F Skierniewice
Interchange

Along the western border of the Bolimów Landscape
Park and near sparsely forested areas, enveloping the
A2 motorway

147.75

G Struga Węglewska SW portion of the Łódź Voivodeship, interfluve of Struga
Kraszewicka, Struga Węglewska, and Prosna rivers. NE
from Wieruszów

138.75

H Ożegów-Rząśnia Neighborhood of the Oźegów and Rząśnia localities,
stretching east to west

117

I Rawa South of Rawa Mazowiecka and the upper Rawka and
Rylka river valleys, stretching latitudinally

110.5

J Działoszyn South of the Warta river, chiefly east of Grabia river,
extending towards Działoszyn and subsequently curving
in the SE direction

101.25

K Nowy Dwór Stretching longitudinally on the E side of the Rawka valley
and along the Białka valley

90.25

L Strobin Running NW–SE between the localities of Oleśnica
and Osina

88

M Drzewica Extending alongside the eastern border of the voivodeship,
between the Ossa and Rozwady villages, centered on the
Drzewica locality

71.75

N Petrykozy Near the voivodeship’s eastern border, SE of Opoczno,
along the Młynkowska and Drzewiczka river valleys,
centered on Petrykozy

59.75

O Grabina Between the Pichna and Urszulinka rivers, westward
of Zadzim

53.25

P Kliczków Stretches latitudinally between the Izabela and
Kije localities

50.5
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Table 3. Coldspots.

Symbol in
Figure 8

Name Location Surface in
km2

a Northern Mostly within the northern part of the voivodeship, including
the Warsaw-Berlin Urstromtal and the surroundings of Ozorków,
Łęczyca, extending towards Łowicz

2055

b Piotrków
Trybunalski

Elongated along the N–S axis, bounded by the Piasecznica valley
from the north and the Bogdanówka valley from the south, centered
on the localities of Moszczenica and Wolbórz

554

c Wieluń SW portion of the voivodeship, near Wieluń 459.75

d Błaszki-Warta West of the Warta valley, in the vicinity of the Jeziorsko reservoir,
delimited by the voivodeship’s western border. Highly contiguous

429.75

e Jeżów Centered on Jeżów 372.75

f Przedbórz-
Radomsko

Elongated along the W–E axis, in the southern portion of the
voivodeship, extending as far west as Radomsko and as far east
as Przedbórz

169.5

g Chodnów Near Biała Rawska and Chodnów, to the east of the Central Rail
Line, adjacent to the eastern border of the voivodeship

164.75

h Szadek Relatively compact, between the town of Szadek to the south and
Poddębice to the north

70.07

i Sadykierz Bordering the Spalski Landscape Park’s forests southward and the
Luboczanka valley northward. Contains the localities of Sadykierz
and Rzeczyca

66.50

The following natural, socioeconomic, and/or locational factors that contribute to the presence of
hotspots were found:

1. Low-quality soil, usually of those qualified as (6), (7), (9) among arability complexes, as well as
(very) poor meadowland and pastures “3z” [52]. The aforementioned complexes are common
within all identified hotspots;

2. A significant presence of forest complexes, especially in the form of numerous sparse patches.
A characteristic of abandoned land distribution is a higher occurrence on the peripheries of
cultivated fields neighboring forests. This property is intrinsic to all identified hotspots;

3. The vicinity of expressways, motorways, and the associated interchanges. Present in hotspots
(A), (B), and (F);

4. The presence of urbanization and suburbanization near major cities, e.g., Łódź and Zgierz for
hotspot (A), as well as in hotspots (D) and (F);

5. The vicinity of sand, gravel, sandstone, and limestone extraction sites, as well as the presence of
poor-quality soils bordering lignite strip mines. This exploitation of natural resources influences
the scale of land abandonment in hotspots (A), (B), (C), (D), (H), (J), and (L);

6. The presence of forests and zones along riversides and around the shorelines of lakes and reservoirs,
where natural assets have contributed to the development of vacation settlements. Recreational land
use among abandoned lands is characteristic of hotspots (A), (B), (C), (D), (L), (O);

7. Undulating terrain, with an increased occurrence of hills to the point of hindering fieldwork and
facilitating excessive drainage. This relationship arises in hotspots located in the southern portion
of the Łódź Voivodeship, such as (L) and (J), and in the relevant part of the (A) hotspot;

8. Overgrowth of disused meadows and pastures located in river valleys. Present in all relevant
areas but especially prominent in the following hotspots: (A), (B), (C), (D), (E), (J);

9. Frontier and periphery locations combined with low economic feasibility, apparent within the
southeastern and southern borderlands of the voivodeship. These conditions are relevant to the
following hotspots: (C), (E), (J), (M), (N).
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Figure 9. The occurrence of conditions of and contributing factors to the presence of identified land
abandonment cold- and hotspots: 1—soil conditions; 2—landscape; 3—vicinity of roads and/or
interchanges; 4—urbanization and suburbanization; 5—vicinity of forests; 6—surroundings of mineral
exploitation sites.
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4. Discussion

The resultant 2018 land abandonment probability distribution map of the Łódź voivodeship
(Figure 7) displays a marked correspondence to 1996 and 2002 abandonment and fallow communal
land maps of Poland, prepared using then-available statistical data [4,5]. Many communes (lowest
administrative subdivisions) in the southeastern portion of the voivodeship are 20–40% abandoned
lands, with this amount even exceeded locally. In the aforementioned historical reports, areas of considerable
abandonment were also ones of so-called “cultivative problem zones”. The latter encompassed areas of the
lowest agricultural utilization country-wide, unfavorable environmental conditions, and/or conflicting
nonagricultural uses [56]. In fact, the indicated portions of the voivodeship were also within the peripheries
of two cultivative problem zones: the Świętokrzyskie region and the Polish Jurassic Highland. The current
distribution of abandoned lands (Figure 7) confirms the multiannual continuity of the abandonment
process, as well as a potential for advanced, secondary plant succession in some regions. As witnessed
through on-the-ground observations across the Łódź voivodeship, the contemporary degree of tree
canopy cohesion over abandoned lands resembles juvenile-stage forestation.

In order to evaluate the veracity of the land abandonment probability distribution map in the Łódź
Voivodeship (Figure 7), a comparative study was performed to assess the ground-level presentation of
land coverage. Two representative research areas were chosen, each of 16 km2, named “Cieszanowice”
and “Dmenin”. Both units are located outside of the landscape parks utilized to compose datasets for
the machine learning models.

The “Cieszanowice” unit, encompassing the Cieszanowickie Lake and its vicinity, represents
a high-land-abandonment area because it is found within the Kamieńsk hotspot (B). At the end of
the spectrum, the “Dmenin” unit has been subject to intensive agricultural cultivation and is within
the Przedbórz-Radom coldspot (f). The “Cieszanowice” unit, surveyed for land abandonment on
2018-07-25, represents areas with low biotic productivity. The area contains overly permeable glacial
and fluvioglacial sands and gravels, eolian sands, as well as fluvial sands and gravels [57]. As evidenced
through research on the physical and chemical soil properties of similar areas [18,21,22,58–64], these
characteristics often render agricultural activity economically unviable and therefore lead to land
abandonment. In the specific case of the “Cieszanowice” unit, the land abandonment process was
augmented by the creation of a reservoir, as well as the recreational land usage associated with such a
development [65]. The corresponding fragment of the probability distribution map is therefore verified
(Figure 10).

The “Dmenin” unit, surveyed for land abandonment on 2018-07-02, represents a highly cultivated
area. Present here are concentrations of tills, glacial and fluvioglacial sands, and gravels, as well as
outcrops of Cretaceous sands and Jurassic limestones [66]. In addition, there is a series of aeolian,
periglacial dusts, with a thickness of up to 1 m, a deciding factor of high arability. The silts cover
virtually the entire surface of the unit, contributing to beneficial air-and-moisture-related properties,
regardless of whether they coat tills or overly permeable sands and gravels. Another component
advancing the favorable quality of the agricultural production space is the generation of a rich sorption
complex [58,59,67]. The appropriate portion of the probability distribution map aligns with the above
observations (Figure 11).
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Figure 10. Abandoned postagricultural land in the “Cieszanowice” unit, superimposed over land
abandonment probability classes (hotspot B).

Figure 11. Abandoned postagricultural land in the “Dmenin” unit, superimposed over abandonment
probability classes (coldspot f).
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5. Conclusions and Future Work Opportunities

As evidenced by the performed comparative studies, automatic land abandonment detection
based on the application of modern Convolutional Neural Networks via satellite imagery is indeed
viable. The principal benefits of our proposed approach are both time-efficiency and cost-effectiveness.
We were able to classify, designating land abandonment hotspots, an area in excess of 18,000 km2 at a
fraction of the cost and time that a human-run orthophoto analysis would consume. Complementary
to the aforementioned advantage, 5011 km2 of the studied area was located in coldspots. This provides
an ancillary benefit to the possibility of deprioritizing verification fieldwork where it is possibly less
pressing. A potential positive side effect of our proposed method is reduced human involvement in
the classification process. Such increased independence might diminish deleterious factors such as
confirmation bias or possible result tampering. Lastly, result-wise, the extraction of cold- and hotspots
allowed for a high-level analysis of the environmental conditions accompanying sparse and intense
land abandonment in the Łódź Voivodeship. This generates the potential for both further theoretical
study and the refinement of future machine learning models.

Indeed, there are several possible areas of improvement in our approach to perfecting the current
model. Preprocessing could be improved by using a separate CNN [49] or leveraging a specialized
architecture, such as a Generative Adversarial Network (GAN) [68]. Compensating for any missing
data in this way will possibly allow for greater model fidelity. An important subproblem of classifying
abandoned lands is the evolution of vegetation as a given plot is overtaken by successive stages of
overgrowth. This corresponds to the various grades of land abandonment denoted in the Methods
and Materials section. Furthermore, solutions could be derived from the related study of deforestation
analysis, such as that in [69]. As noted in the literature section, adding temporal information either
implicitly through multiple images of the same area [43] or explicitly via encoding in the model
structure [44] could also improve classification results. However, in our particular case, this could
provide limited utility, as source-of-truth surveys are performed at specific times of the year, reducing
the maximum possible temporal resolution of the classification.

Finally, transfer learning, i.e., training new models for different data on the basis of existing ones,
could prove advantageous when classifying additional areas. In fact, this has already been verified as
effective in at least one scenario for land cover classification [42].

Supplementary Materials: The following materials are available online at https://github.com/softwaremill/
land-abandonment-detection/tree/v1: date timestamps for Sentinel Hub data (under “data”), data ingestion and
prediction scripts (under “notebooks”), and trained Convolutional Neural Network architecture model (under
“models”).
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4. Bański, J. Gospodarka Ziemią w Polsce w Okresie Restrukturyzacji; IGiPZ PAN: Warszawa, Poland, 1998; pp. 1–117.
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Polski Środkowej. Probl. Ekol. Kraj. 2008, XXI, 299–310.
16. Krysiak, S. Ekologiczno-krajobrazowy wymiar odłogowanych gruntów porolnych—przykłady z województwa

łódzkiego. In Obszary metropolitalne we współczesnym środowisku geograficznym; Oddział Łódzki PTG—Wydział
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Parks in the Łódź Voivodeship; Krysiak, S.; Adamczyk, J., Eds.; Wydawnictwo Uniwersytetu Łódzkiego: Łódź,
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25. Janus, J.; Bożek, P. Using ALS data to estimate afforestation and secondary forest succession on agricultural
areas: An approach to improve the understanding of land abandonment causes. Appl. Geogr. 2018, 97, 128–141.
[CrossRef]

http://dx.doi.org/10.15576/GLL/2016.3.21
http://dx.doi.org/10.18778/8088-193-8.04
http://dx.doi.org/10.2478/eko-2013-0028
http://dx.doi.org/10.1080/22797254.2017.1412272
http://dx.doi.org/10.3390/rs70708300
http://dx.doi.org/10.1016/j.apgeog.2018.06.002


Land 2020, 9, 82 19 of 21

26. Kołecka, N.; Kozak, J. Wall-to-wall parcel-level mapping of agricultural land abandonment in the Polish
Carpathians. Land 2019, 8, 129. [CrossRef]
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Lodz. 1999, 75, 1–214.
59. Krysiak, S. Waloryzacja geokompleksow Polski Srodkowej na podstawie badan krajobrazowych i badan

wlasciwosci fizycznych i chemicznych utworow powierzchniowych. Zesz. Probl. Postępów Nauk Rol. 2005,
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60. Papińska, E. Cechy siedlisk terenów odłogowanych w strefie otaczającej Park Krajobrazowy Międzyrzecza
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