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Abstract: In the context of China’s economic transformation, the consumption of mineral resources 

plays an important role in its economy’s sustainable development, and so improving mining 

efficiency is regarded as the basis of industrial development. However, in the pursuit of mine 

exploitation, the destruction of land resources has attracted greater attention by government and 

society, with many scholars focusing more on land rehabilitation in recent years. Thus, from the 

perspective of climate change, this research synthetically analyzes the two stages of mining 

production and land rehabilitation, by applying mining employees, fixed assets’ investment stock, 

production of non-petroleum mineral resources, accumulated destruction of land area, 

rehabilitation investment, rehabilitation of land area, and average temperature to the dynamic two-

stage directional-distance-function data envelopment analysis (DEA) model under exogenous 

variables for 29 provinces in China. The results show that the overall efficiency of mining-

production-land rehabilitation in most provinces fluctuates around 0.5 and spans a large range of 

improvement. The efficiency of the mining production stage fluctuates around 0.55 and is relatively 

flat over four years. The efficiency of the land rehabilitation stage fluctuates during the four years, 

with it being higher in 2014, but lower in 2015. Generally speaking, the efficiency of the land 

rehabilitation stage is higher, promoting the improvement of overall efficiency, but the efficiencies 

of some provinces’ land rehabilitation stage are quite different, as some provinces still need to 

improve their overall efficiency level. There are also differences in the efficiencies of each decision-

making units (DMU)’s variables. In sum, China should initiate corresponding policies according to 

specific situations, promote scientific mining in each province, and coordinate the development of 

mining production and land rehabilitation. 

Keywords: mining production; land rehabilitation efficiency; two-stage dynamic DEA; meta-

frontier; undesirable outputs 

 

1. Introduction 

Mining plays an important role in promoting China’s economic transformation and sustainable 

and efficient development. With the advancement of reforms and opening up, the country’s gross 

national product (GDP) has maintained rapid growth. Its proven mineral resources account for about 

12% of the world’s total, ranking third, and 158 kinds of minerals have been found throughout the 

country. According to its proven reserves, 25 of China’s 45 major minerals rank in the top three 

globally, of which 12 are rare earth, gypsum, vanadium, titanium, tantalum, tungsten, bentonite, 

graphite, Glauber’s salt, barite, magnesite, and antimony. China is certainly one of the few countries 

in the world with abundant mineral resources, a broad range of mineral resources, and supportive 
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service facilities around mining areas, such as water (water source), electricity, roads, etc. As an 

important non-petroleum mineral resource, coal made up around 60% of mining in 2017, and 

although its proportion within total energy consumption has gradually fallen, it still plays an 

important role in China’s energy supply. At present, over 95% of energy, over 80% of industrial raw 

materials, and over 70% of the agricultural means of production come from mineral resources. This 

shows how mining and the development of mines provide the necessary material basis and resource 

guarantee for the development of China’s economy and help improve the employment level and 

income level of its citizens. Therefore, its government should pay particular attention to the 

improvement of mining input–output efficiency. 

The process of mining not only leads to the destruction of land, but also to the damaging of 

property and loss of life [1]. In China’s pursuit of mining production, it must consider the 

rehabilitation of destructed land caused by mining. For example, for the period 2012–2017, the 

accumulated destructed or occupied land totaled over 2 million hectares. In 2013, Inner Mongolia 

saw 50 million hectares of land occupied or destroyed during the mining process, which is about 100 

times higher than that in 2012. In 2013, the accumulated destructed or occupied land in all provinces 

of China increased by about 17 times, compared with that in 2012, while non-petroleum mineral 

resources’ production in the same year showed a downward trend. This shows that the contradiction 

between mineral exploitation and land destruction caused by mining is becoming increasingly 

fiercer. 

Starting with the outline of the 13th five-year plan, China’s economic path has changed from 

high-speed development to high-quality development, among which investment in the mining 

industry continues to decline, while land protection requirements for resource exploitation are 

increasing. In 2016–2017, the area of rehabilitation due to mining in China increased by over 80%. 

Driven by government policies, land destructed or occupied by mining in China is being alleviated. 

President Xi Jinping pointed out at the 19th Communist Party of China (CPC) National Congress, on 

October 18, 2017, that the country should target harmonious coexistence between mankind and 

nature and practice the concept of “Clear waters and green mountains are as good as mountains of 

gold and silver”. On August 31, 2018, the 5th Session of the 13th National People’s Congress (NPC) 

passed a law for the People’s Republic of China, on the prevention and control of soil pollution, which 

regulates prevention and protection, risk control and repair, and guarantee and supervision. Among 

them, risk control and restoration are distinguishable between agricultural land and construction 

land. On April 27, 2019, the Office of the Work Safety Committee of the State Council issued a notice 

on the closure of non-coal mines that do not meet specific conditions for safe production. The notice 

pointed out that the task of ensuring the closure of over 1000 non-coal-mine mountains (including 

tailings ponds) that do not meet such requirements is to be completed in 2019, so as to prevent and 

defuse major safety risks at the source. For land-destruction problems caused by mining, the 

government uses administrative means to further strengthen land protection. When insisting upon 

sustainable development, China should focus on both the economic output brought by mining and 

the land rehabilitation after mining. Problems and solutions to this process have led to extensive 

investigation by Chinese scholars. 

As the material basis for the survival of a country, land resources are also affected by natural 

factors, such as changes in weather and climate patterns. In northern mines, climate factors have an 

important impact on open-pit mining and land restoration—for example, (1) the difficulty of mining 

equipment maintenance increases in winter; (2) in freezing winter, permafrost and other factors can 

negatively impact mining; and (3) during mining restoration, a cold climate aggravates the process, 

while high temperatures in summer affect and interfere with vegetation restoration in the process of 

land restoration. Therefore, when exploring the overall efficiency of mining production and land 

rehabilitation, climate factors, as external variables, become interference factors to mining and land 

rehabilitation. 

To fully understand the problems existing in the mining process in China, one must explore the 

amount of mineral resources and the degree of land destruction during the process, as well as the 

efficiency of land rehabilitation. By finding the weak link of low efficiency, provinces in China can 
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then implement practical policies by using existing resources that promote a balance between mining 

and land protection. Data envelopment analysis (DEA) is a relatively effective method for evaluating 

the efficiency of decision-making units (DMU) and has been widely used in different industries and 

departments, as it has a stronger advantage in dealing with multi-index inputs and multi-index 

outputs, making it a favorite of many scholars around world and suitable for this research topic. 

Most studies in the existing literature on industrial environmental pollution are from the 

perspective of macro-environmental pollution, or they separately analyze coal among mining 

resources. In general, scholars have used one-stage DEA to look into the damage to land caused by 

mining. Based on the dynamic two-stage directional distance function DEA model under the 

exogenous variables model, this paper studies 29 provinces of China (not including Tibet and 

Shanghai, due to a lack of data, and excluding Hong Kong, Macao, and Taiwan). This paper calculates 

the overall efficiencies of mining production and land rehabilitation and the efficiency of each stage 

for 2014–2017 and also studies the efficiency of each variable on mining production and land 

rehabilitation, so as to put forward specific suggestions for each province’s own situation that can 

improve mining production and land destruction efficiencies. 

This paper’s contribution to the development and improvement of China’s mining areas mainly 

includes the following points. First, it is a pioneer research that explores mining production and land 

destruction in 29 provinces of China, from the national level. In the mining production stage, fixed 

assets’ investment stock and mining employees are regarded as the input variables, non-petroleum 

mineral resources are the desirable output, and accumulated destruction of land area is the 

undesirable output. On this basis, the accumulated destruction of land area is the intermediate 

variable of the two stages. In the land rehabilitation stage, rehabilitation investment is the input 

variable, and rehabilitation of land area is the output variable. Second, by comparing mining 

production and land rehabilitation efficiency of 29 provinces in China, this paper observes the overall 

efficiency for each year and each stage, demonstrating the contribution and misappropriation of 

various variables in each region to total efficiency. Third, we discuss the characteristics and numerical 

fluctuations of the mining production stage and land rehabilitation stage from a local perspective and 

put forward specific suggestions for the efficiency changes of each province, providing guiding 

opinions for the sustainable development of China’s mining industry. Fourth, this paper introduces 

local annual temperature as an exogenous variable, and by adding this, the influence of temperature 

changes in the mining area can be taken into account and therefore help provide a reasonable 

conclusion for the evaluation of a mining area. 

2. Literature Review 

Environmental pollution caused by mining is not a unique problem in China. Using remote-

sensing-GIS (geographic information system) techniques, it was found that the Jharia coalfield in 

India also resulted in the reduction of vegetation covering [2]. Ghana in Africa has mapped land-

cover images of gold-mining areas in Western Ghana through satellite images that show open-pit 

mining there has resulted in 58% deforestation and 45% loss of farmland [3]. Effective improvement 

and solution to the problem of land damage in the mining process are not only of great significance 

to the high-quality development of China, but are also relevant to the mining and management of all 

regions around the world. It can be seen in its industrial transformation that China urgently needs to 

accelerate the transformation of its mining operation mode and mining volume and pay attention to 

both mining efficiency and environmental protection. 

The majority of scholarly research on mining and land destruction explores the topic from the 

following three aspects: mining production and environmental pollution; land pollution control; and 

unified management of production and land destruction. Below, we present them in greater detail. 

2.1. Research on Mining Production and Land Pollution 

Venkateswarlu, Nirola et al. used mineralogical analysis and physiochemical analysis on 

abandoned metalliferous mines (AMLs), showing that a lack of awareness for timely management of 

the environment surrounding a metal mine site results in several adverse consequences, such as 
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rampant business losses, abandonment of the highly lucrative mining industry, domestic instability 

and a rise in ghost towns, increased environmental pollution, and indirect long-term impacts on the 

ecosystem [4]. In view of the situation at that time, some suggestions on metal mine reclamation were 

put forward, such as enhancing the stability of native plants through microbially enhanced 

phytoremediation and nanotechnology for the efficient reclamation of AMLs and initiating laws 

governing the management of mined sites and ecological restoration, so as to effectively promote the 

improvement of AMLs’ environment. Bhuiyan et al. used multivariate statistical analysis, principal 

component analysis, and cluster analysis to evaluate heavy metals in mine drainage soil and 

surrounding farmland in Northern Bangladesh. They employed energy dispersive X-ray fluorescence 

(EDXRF) methods to carry out the mining soil samples and applied enrichment factors (EF), geo-

accumulation index (Igeo), pollution load index (PLI), etc. to evaluate the situation of soil pollution. 

Their results showed that the average concentrations of titanium (Ti), manganese (Mn), zinc (Zn), 

lead (Pb), arsenic (As), ferrum (Fe), rubidium (Rb), strontium (Sr), niobium (Nb), and Zirconium (Zr) 

in the soil of this area exceed the world’s normal average values, and in some cases, Mn, Zn, and Pb 

surpass the toxicity limits of corresponding metals. PLI (pollution impact index) shows that pollution 

in the far part of the affected area is the most serious (PLI of 4.02) [5]. 

Li et al. utilized multiple linear regression models to analyze and study China’s coal resources 

from 1997 to 2010. They took the variables raw coal (RCO), coal industrial output (GCIOV), new 

investment in fixed assets of coal (CFANI), gross domestic product (GDP), and gross value of 

industrial output (GIOV) to measure the relationship between coal industry development and 

economic growth. They showed that environmental degradation caused by coal mining and washing 

is calculated by the given environmental damage cost model, and that there is a significantly positive 

correlation between coal development and economic growth, in which the total environmental loss 

of coal mining and washing covers approximately 2.7% of the average price of coal. This method uses 

a multiple regression to investigate the linear relationship between the variables of coal mining on 

economic development and environmental damage, but it does not effectively consider the time 

factor in the model, as well as the impact of individual variables on the environment and economy 

[6]. 

Razo et al. employed a pH measurement, X-ray diffraction analysis, principal component 

analysis (PCA), and contour mapping, to test the area of Villa de la Paz-Matehuala, San Luis Potosi 

(Mexico). Their results showed that cuprum (Cu) in the soil samples of the mining site is seriously 

over regulatory standards, and the maximum arsenic concentration in the local water tank exceeds 

that in Mexico by five times the drinking-water-quality guidelines [7]. Du et al. applied the 

coefficients of heavy metal enrichments (CHMEs) to evaluate the capability of crop accumulating 

heavy metals and the availability and mobility of heavy metals in soils and used target hazard 

quotients (THQs) to assess health risks from heavy metals in Hunan, China. The results showed that 

the average value of Cadmium (Cd) in the soil is 0.13–6.02 mg kg-1, the over standard rate is 59.6%, 

and total-Cadmium (T-Cd) in the soil varies greatly, with the coefficient of variation reaching 146.4%. 

The regression results also denoted that a significant correlation exists between T-Cd and 

hydrochloric acid-Cd (HCI-Cd) in the soil (r = 0.77, ρ < 0.01) [8]. Li et al. used cold vapor atomic 

absorption spectrometry (CVAAS) and a dual-stage Au amalgamation method to calculate the total 

Hg (T-Hg) content in wastewater, steam water, soil, and moss samples in the mining area of Tongren, 

Guizhou, and determined that pollution to the local environment is caused by manual mercury 

mining. Thus, it indicates that the mining of mercury causes heavy metal pollution to the paddy fields 

due to atmospheric subsidence and mercury settling to the soil surface in the local mining area of 

Tongren [9]. 

Li et al. used the geo accumulation index and data from the U.S. Environmental Protection 

Agency (USEPA), to evaluate heavy metal polluted soils originating from mining areas in China. By 

quantifying the harm of soil pollution to human health in a mining area, their results showed that 

heavy-metal pollution not only causes harm to the environment, but also brings high cancer risk to 

people [10]. Acosta et al. utilized multivariable statistical and spatial analyses to calculate two tailing 

ponds (Lirio and Gorguel) from an abandoned Pb-Zn mine. The soil samples were tested by using 
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the pH value and electrical conductivity (EC). The article also used the correlation matrix and PCA 

to evaluate heavy-metal-waste properties, showing results that the two ponds are polluted by Cd, 

Pb, and Zn. In the flow of the natural environment, polluted soil will even infiltrate into groundwater, 

causing serious environmental pollution [11]. Simon et al. utilized the structural development index 

(SDI) and inductively coupled plasma mass spectrometry (ICP-MS) to study pyrite in Southern Spain, 

with results showing that the main pollutants in the mining area are Zn, Pb, Cu, As, Sb, Bi, CD, and 

Tl. The permeability of tailings depends on the soil properties, in which Zn exceeds the maximum 

concentration range allowed by the international community. However, due to a drier climate, the 

drying of tailings and the accompanying aeration make sulfide become oxidized to sulfate, thus 

alleviating pollution. If the tailings are not cleaned up quickly, then future rainfall may aggravate the 

pollution problem. This article pointed out that environmental factors also make a difference on 

mining production [12]. 

Wang et al. discussed the degree of pollution and spatial distribution role of heavy metals in 

agricultural soil of a Sb mining area and determined the heavy-metals content and metal 

concentration of 29 environmental samples collected by using aqua regia, ICP-MS, atomic 

fluorescence spectrometry (AFS-2202), and inductively coupled plasma atomic emission 

spectrometry (ICP-AES). The results showed that Sb is over the standard, and the soil is polluted 

seriously by heavy metals. The heavy-metal concentrations in the topsoil of the Xikuangshan area are 

mostly higher than the background values, especially Sb and As. Heavy metal pollution is caused by 

both mining activities and agricultural activities [13]. Equeenuddin et al. explored and studied coal 

mining in Northeast India. The main environmental pollution problem studied is acid mine drainage 

(AMD), and the nature of direct mine discharge is high acidity to alkalinity (up to pH 7.6). The results 

showed that Mn, Fe, and Pb are seriously polluted in groundwater resources of the mining area, 

while the groundwaters close to the collieries and AMD affected creeks are highly polluted, but the 

major rivers are less polluted by AMD. It can be seen that research on mining and land destruction 

in the current literature is mostly concentrated on the mining and destruction of individual minerals, 

with a lack of research on China’s overall mining production [14]. 

2.2. Research on Mining Pollution Treatment 

Andres and Mateos used de-trended correspondence analysis (DCA) and canonical 

correspondence analysis (CCA) to evaluate the mining rehabilitation situation of a mining area in 

Santa Margarida, Spain. The article primarily evaluated four post-mining-restoration treatments (soil 

spreading, soil spreading + grass and herb sowing, soil spreading + tree planting, and soil spreading 

+ sowing + planting). However, after 12 years of restoration, no one treatment method can achieve 

the restoration of forest soil pretreatment conditions, with soil spreading as the most ineffective 

treatment method, and soil spreading + sowing and soil spreading + sowing + planting inducing 

grassland soil conditions. In their research, the number of taxa, diversity of species, and communities 

of Collembola and Orion were used to evaluate the effect of soil restoration [15]. Hilson commented 

on current research and policies in dealing with mercury pollution in gold mines. The results showed 

that the technology implemented to improve any harm to workers and operators on acute mercury 

exposure and to prevent further pollution has little effect on mercury pollution control in mining 

areas. Only by increasing the understanding of small-scale gold mining communities and enhancing 

the acquisition of knowledge about mercury pollution by regional governments and donor agencies 

can environmental solutions and appropriate policy support be promoted in mining areas [16]. 

Macias et al. discussed the metal removal process of AMD by a pilot multistep passive remediation 

system. The reactive transport model predicts that 1 m3 of MgO-DAS can treat a flow of 0.5L/min of 

highly acidic water (total acidity of 788 mg/L CaCO3) for more than three years [17]. 

By analyzing the distribution of resources in China’s metal mines, Chen put forward two 

methods for pollution control in its mines. The first is to treat and manage the pollution of tailings 

from the source, so as to ensure the deep treatment of mineral water in the beneficiation process. The 

second is to repair the pollution situation from physicochemical and phytoremediation technologies, 

so as to realize sustainable development of the mining area [18]. Akcil and Koldas introduced the 
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generation and processing technology of AMD, and their document divided mine pollution control 

into three levels. The first level is primary prevention, which is control of the acid production process. 

The second level is secondary control, which is the deployment of acid discharge prevention 

measures. The third level is tertiary control, which is the collection and treatment of wastewater [19]. 

Zhang et al. utilized the life-cycle assessment (LCA) method to study an opencast coal mining area 

in Yimin. Their research took 100 tons of coal production as the functional unit, evaluating the 

environmental risks of coal stripping, mining, transportation, processing, and reclamation. Through 

the assessment of environmental risk in the production stage, the results showed that the contribution 

rate of dust to the environmental impact is 36.81%, which is the largest. In order to slow down the 

pollution of a mining area, the paper put forward some suggestions, such as sprinkling water, clean 

transportation, improving processing efficiency, etc. At present, most of the literature available for 

reference is based on presenting relevant governance methods on specific mining areas and for 

macro-size non-petroleum mineral areas, but there are no relevant governance and solutions [20]. 

Grant used a state-and-transition successional model to assist Alcoa in determining which 

locations will or will not meet the established restored completion criteria. Five desirable and nine 

deviated states were identified and described in detail. The results showed in the 6429 hectares of 

local species recovered between 1991 and 2002 that 98% of the species are at or above the desired 

successional trajectory [21]. Based on the analysis of the main environmental problems in the mining 

area, Lei et al. put forward the application of the landscape strategy and “natural” technology for 

mine ecological restoration. In addition, a multi-objective integration method based on landscape 

planning was proposed to protect and reasonably utilize the mining land through local or regional 

actions and cooperation, so as to realize the sustainable development of China’s mining industry [22]. 

Neri and Sanchez tested the nine limestone quarries and conformity indices, showing results that 

most of the quarry planning practice is poor, 50% of quarry businesses hit a high level of compliance, 

and management practice has achieved moderate conformity [23]. Based on the background of 

Australia’s post-mined landscape, Doley et al. proposed a framework with the special features of 

“novel” ecosystems and agro-ecosystems having a range of business and social values that can bridge 

the conceptual gap and that separate the ecological functions of under-restored (e.g., derelict sites) 

from re-instated “natural” landscapes [24]. Anawar et al. conducted an analysis on vegetation 

development and community succession in the abandoned Sao Domingos pyrite mining area. Their 

conclusion is that appropriate soil development that is rich in nutrients and nature of mining waste 

is conducive to promoting high vegetation growth, mine restoration, and ecological restoration of 

degraded land in mining areas [25]. 

2.3. Research on Mining Production and Pollution Treatment 

Song et al. established the non-radial, non-angular slacks-based measurement (SBM) model to 

comprehensively evaluate the operating efficiency of 36 coal companies in China. The DEA model is 

also used to explore the efficiency of the production and pollution control process of coal companies. 

In the production process, non-current and current assets are selected as input variables in the 

production process, while the desired variables in the output stage are set as the operating income. 

Considering the unexpected output in asset flow and equipment operation, they are selected as 

alternative values. Based on the input redundancy and output deficiency of each enterprise, their 

article coordinated and unified the production and environmental management of coal enterprises 

and put forward suggestions for the production of coal enterprises [26]. Liu et al. relied on a range-

adjusted measure model of DEA and built three projects, including operational efficiency, 

environmental efficiency, and unified efficiency, to reflect the sustainability impact of this integration 

policy. That study compared the two representative provinces of Shanxi and Inner Mongolia (2005–

2012), evaluating the policy effect of the transformation of coal industry to sustainable development. 

The results suggested that, although the integration reform of China’s coal industry has a negative 

impact on coal production capacity, it has significantly improved the industry’s environmental 

performance. However, the method of nationalization cannot exceed that of market orientation, 

because the inefficiency of capital factors offsets the results of efficiency improvement [27]. 
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Wang et al. used an index system evaluation method to evaluate the diversity of Mineral 

Resources Carrying Capacity (MRCC) in China’s mining cities. Their research divided the city 

development potential into one level and put forward a guarantee period. The development potential 

of regional mineral resources is evaluated by calculating the guarantee period of each region. Their 

results showed that MRCC has a strong development potential in the mining cities of central and 

western regions and for developing mining cities. Mature and developing mining cities have strong 

development potential, while the environmental pollution of developing mining cities is more 

serious. The coordination between the development of mineral resources and the environmental 

protection of western and developing mining cities needs to be improved [28]. Li et al. established 

the modified dynamic DEA SBM model, with the intermediate variable set as fixed assets. The DEA 

SBM model is used to analyze the relationship between coal production and land destruction. The 

results showed that the coal-production efficiencies of Shanxi, Inner Mongolia, Fujian, Jiangxi, 

Shandong, Guizhou, and Shaanxi are not very obvious, the land-loss efficiencies of 17 provinces vary 

quite a bit, and 15 provinces need to be improved. Therefore, it is necessary to speed up the 

exploitation of new energy resources for coal mining and to reduce land damage [29]. Based on the 

Range-Adjusted Measure (RAM) method, Wang et al. analyzed China’s regional energy and 

environmental efficiency in 2006–2010. By introducing the economic concepts of natural disposability 

and managerial disposability, the method replaces strong and weak disposability in conventional 

environmental efficiency evaluation. The results showed that Beijing, Shanghai, and Guangdong 

have the highest integrated energy and environmental efficiency during the study period, which can 

be used as a benchmark for other inefficient areas. Moreover, China’s average production efficiency 

has slightly decreased, while the average emission efficiency has slightly increased and still has great 

potential for energy conservation and emission reduction. Therefore, the document suggested that 

China should pay more attention to technological innovation, to improve energy efficiency [30]. 

3. Model and Method 

The DEA model can be divided into radial DEA model and non-radial DEA model. In the case 

of Charnes et al. with fixed returns to scale, the CCR model is proposed, and Banker et al. then 

replaced the constant returns to scale (CRS) BCC model with variable returns to scale (VRS) [31,32]. 

The non-radial DEA model is represented by the slack-based measure (SBM) model proposed by 

Tone [33]. In addition to the CCR, BCC, and SBM models, Chung et al. set up the directional distance 

function ray DEA model, with the direction vector composed of input direction vector and output 

direction vector. The direction vector values of different input and output indicators represent their 

degrees of relative priority (or importance). This model can also be applied to undesirable output and 

has been applied to the fields of energy, environment, and ecology. However, Chung et al. proposed 

the concept of the radial distribution function (RDF), which is an extended RDF [34]. The traditional 

directional distance function (DDF) is a ray measurement model, but efficiency calculation fails to 

cover all non-zero margins, meaning all inefficient sources are covered. Therefore, the efficiency 

value is overestimated, and non-radial DDF has the advantage of being a pragmatic measure of 

manufacturers’ operational efficiency. In order to solve this kind of problem, Fare and Grosskopf 

established a non-directed distance function that is better than other methods, because it provides a 

more reasonable and accurate estimate [35]. 

When traditional DEA is evaluated for efficiency, it transforms the efficiency between the two 

variables through input and output projects, and the conversion process is identified as a “black box”. 

Fare et al. considered that the production process is composed of multiple production technologies, 

and a sub-production technology is regarded as a sub-DMU, and hence the efficiency of each sub-

process can be analyzed [36]. Chen and Zhu, Kao and Hwang, and Kao linked all stages through 

some intermediate outputs [37–39]. By linking the stages in this way, they calculated the efficiencies 

of each stage under different conditions. After Fare et al., Tone and Tsutsui put forward the weighted 

slack-based measures model [40]. The analysis basis of the network DEA model takes the linkage 

among departments of decision-making units and regards each department as a sub-DMU, to find 

the optimal solution. In the network DEA model, the dynamic method is also allowed, in which 
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DMUs are evaluated at different periods of time, and a carryover is introduced to connect different 

stages of DMUs in different periods [41]. In the development of dynamic DEA, Klopp proposed 

window analysis and first used dynamic analysis [42]. Fare and Grosskopf were the first to put 

interconnecting activities into the dynamics, while Fare and Grosskopf presented dynamic DEA 

modification and extension [43,44]. Following Fare et al., Tone and Tsutsui extended the model to a 

dynamic analysis of a slacks-based measure [36,41]. Tone and Tsutsui once again proposed the 

weighted SBM dynamic network DEA model, taking the linkage among departments of decision-

making units as the analysis basis of the network DEA model and regarded each department as a 

sub-DMU, with carryover activities as the linkage [45]. 

In this paper, we consider the influence of exogenous variables of climate change on the 

efficiency of mining and land destruction. Therefore, we refer to the concept of a dynamic two-stage 

model and add the DDF model, to consider the exogenous variables for climate change. Thus, to solve 

the shortage of static one-stage and exogenous variables, this paper proposes the dynamic two-stage 

directional distance function DEA, model under exogenous variables. At the same time, to fully 

understand the overall picture of industrial operation performance and avoid the underestimation 

or overestimation of efficiency value and improvement space, an empirical study of the new model 

considers the impact of average temperature change on mining production and land destruction 

efficiency. Below, we propose the dynamic two-stage DDF, considering exogenous variables for 

climate change. 

3.1. Dynamic Two-Stage DDF with Exogenous Variables 

Suppose DMU has two stages (mining production stage and land rehabilitation stage) in each 

time period t (𝑡 = 1, … , 𝑇) . The mining production stage has M inputs 𝑋𝑖𝑗
𝑡 (𝑖 = 1, ⋯ 𝑚) , D 

intermediate products 𝑍𝑑𝑗
𝑡 (𝑑 = 1, ⋯ 𝐷) , and K desirable outputs 𝑞𝑘𝑗

𝑡 (𝑘 = 1, ⋯ 𝐾). The land 

rehabilitation stage includes G inputs 𝑊𝑔𝑗
𝑡 (𝑑 = 1, ⋯ 𝐺) and S desirable outputs 𝑦𝑟𝑗

𝑡 (𝑟 = 1, ⋯ 𝑆). 

𝑍𝑑𝑗
𝑡 (𝑑 = 1, ⋯ 𝐷):   links the mining production stage and land rehabilitation stage;    

𝐶ℎ𝑗
𝑡−1(ℎ = 1, ⋯ 𝐻): the carryover variable; 

V: external variables;  

𝑋𝑖𝑗
𝑡 : the inputs of mining production are mining employees 

𝑍𝑑𝑗
𝑡 : the link between the mining production stage and land rehabilitation stage, which 

is accumulated destruction land area; 

𝑞𝑘𝑗
𝑡 : the output of mining production, which is production of non-petroleum mineral 

resources; 

𝑊𝑔𝑗
𝑡 : the input of land rehabilitation stage is rehabilitation investment; 

𝑦𝑟𝑗
𝑡 : rehabilitation of land area; 

𝐶ℎ𝑗
𝑡−1: fixed assets investment stock; 

𝑏𝑢𝑗
𝑡 (𝑈 = 1, ⋯ 𝑉): average temperature 

The model is as follows: 

Max ∑ 𝑉𝑡(𝑊1
𝑡𝑇

𝑡=1 𝜃1
𝑡 + 𝑊2

𝑡𝜃2
𝑡) (1) 

S.T. is the constraints: 

Mining production stage Land rehabilitation stage 

∑ 𝜆𝑗
𝑡𝑋𝑖𝑗

𝑡 ≤ 𝜃1
𝑡𝑋𝑖𝑝

𝑡   ∀𝑖 ∀𝑡 

𝑛

𝑗

 ∑ 𝜇𝑗
𝑡𝑍𝑑𝑗

𝑡 ≤ 𝜃2
𝑡𝑍𝑑

𝑡   ∀𝑑 ∀𝑡 

𝑛

𝑗

 

∑ 𝜆𝑗
𝑡𝑧𝑑𝑗

𝑡 ≤ 𝜃1
𝑡𝑧𝑑𝑝

𝑡   ∀𝑑 ∀𝑡 

𝑛

𝑗

 ∑ 𝜇𝑗
𝑡𝑍𝑑𝑗

𝑡 ≤ 𝜃2
𝑡𝑍𝑑

𝑡   ∀𝑑 ∀𝑡 

𝑛

𝑗

 

∑ 𝜆𝑗
𝑡𝑞𝑘𝑗

𝑡 ≥ 𝜃1
𝑡𝑞𝑘

𝑡   ∀𝑘 ∀𝑡 

𝑛

𝑗

 ∑ 𝜇𝑗
𝑡𝑤𝑔𝑗

𝑡 ≤ 𝜃2
𝑡𝑤𝑔

𝑡  ∀𝑔 ∀𝑡 

𝑛

𝑗

 

∑ 𝜆𝑗
𝑘 ≤   ∀𝑡                 

𝑛

𝑗

 ∑ 𝜇𝑗
𝑡 = 1  ∀𝑡 

𝑛

𝑗
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𝜆𝑗
𝑡 ≥ 0  ∀𝑗  ∀𝑡 𝜇𝑗

𝑡 ≥ 0  ∀𝑗  ∀𝑡 

The exogenous variables are as follows: 

∑ 𝜆1
𝑡𝑇

𝑗=1 𝑏𝑈𝑗
𝑡 = 𝜃1

𝑡𝑏𝑈
𝑡   ∀𝑈 ∀𝑡 (2) 

The link between the two stages is as follows: 

∑ 𝜆𝑗
𝑡

𝑛

𝑗=1

𝑍𝑑𝑗
𝑡 = ∑ 𝜇𝑗

𝑡

𝑛

𝑗=1

𝑍𝑑𝑗
𝑡     ∀𝑑  ∀𝑡 (3) 

The link between the two periods is as follows: 

∑ 𝜆𝑗
𝑡−1

𝑛

𝑗=1

𝑐ℎ𝑗
𝑡 = ∑ 𝜆𝑗

𝑡

𝑛

𝑗=1

𝑐ℎ𝑗
𝑡    ∀ℎ ∀𝑡 (4) 

Among them, 𝛾𝑡  is the weight assigned to time period, t; and 𝑤1
𝑡  and 𝑤2

𝑡  are the weights 

assigned to the mining production stage and land rehabilitation stage in time period, t, respectively. 

Therefore, for each time period (t), 𝑤1
𝑡 , 𝑤2

𝑡 , 𝛾𝑡 ≥ 1, and ∑ 𝛾𝑡
𝑇
𝑡=1 = 1. 

We can calculate the following four efficiency groups through the linear programming formula 

in Equations (5–8). 

The efficiency of the mining production stage is as follows: 

𝜌1
𝑡 = 1 − 𝜃𝑙

𝑡∗
; l=1,2;  𝑡 = 1,2, ⋯ , 𝑇 (5) 

The efficiency of the land rehabilitation stage is as follows: 

𝜌2
𝑡 = 1 − ∑ 𝛾𝑡𝜃𝑡

𝑡∗𝑇
𝑡=1 ; l=1,2 (6) 

The period efficiency value is as follows: 

To evaluate the overall efficiency of each period, T, of the DMU being evaluated in this group, 

we express it as follows: 

𝜌𝑡 = 𝑤1
𝑡𝜌1

𝑡 + 𝑤2
𝑡𝜌2

𝑡 ;  𝑡 = 1,2, ⋯ , 𝑇 (7) 

The DMU’s overall efficiency is evaluated in this group and is given by the weighted sum of 

periodic efficiency on t, which can be expressed as: 

𝜌 = ∑ 𝛾𝑡𝜌𝑡

𝑇

𝑡=1

 (8) 

3.2. Input, Desirable Output, and Undesirable Output Efficiency 

We use Hu and Wang’s total-factor energy-efficiency index to overcome any possible biases in 

the traditional energy efficiency indicators, for which there are four key efficiency models:  

production of non-petroleum mineral resources, accumulated destruction of land area, rehabilitation 

investment, and rehabilitation of land area [46]. “I” represents area, and “t” represents time. The 

efficiency models are defined in the following: 

Input efficiency = 
𝑇𝑎𝑟𝑔𝑒𝑡 𝑖𝑛𝑝𝑢𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑖𝑛𝑝𝑢𝑡
 (9) 

Undesirable output efficiency = 
𝑇𝑎𝑟𝑔𝑒𝑡 𝑈𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑈𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡
 (10) 

Desirable output efficiency = 
𝑇𝑎𝑟𝑔𝑒𝑡 𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡
 (11) 

If the target inputs equal the actual inputs, then the efficiencies are 1 and indicate overall 

efficiency; however, if the target inputs are less than the actual inputs, then the efficiencies are less 

than 1 and indicate overall inefficiency. 

If the target desirable outputs are equal to the actual desirable outputs, then the efficiencies are 

1 and indicate overall efficiency; however, if the target desirable outputs are more than the actual 

desirable outputs, then the efficiencies are less than 1 and indicate overall inefficiency. 
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If the target undesirable outputs are equal to the actual undesirable outputs, then the efficiencies 

are 1 and indicate overall efficiency; however, if the target undesirable outputs are less than the actual 

undesirable outputs, then the efficiencies are less than 1 and indicate overall inefficiency. 

4. Data, Index, and Empirical Analyses 

In this section, we first describe the study area and the meaning of the variables and apply the 

dynamic two-stage directional distance function DEA model under exogenous variables model to 

calculate mining production stage and land rehabilitation stage efficiencies, overall efficiency, and 

variable efficiency. We also carry out an empirical analysis on the provinces. 

4.1. Data and Variables 

This study uses panel data from 2014 to 2017 for 29 provinces in China. We use the variables in 

this paper to interpret and statistically analyze the data. 

4.1.1. Explanation of Variables 

This paper takes 29 provinces (cities and districts) in China as the subjects of research. Therefore, 

the research areas of this literature are Beijing, Tianjin, Chongqing, Hebei, Shanxi, Liaoning, Jilin, 

Heilongjiang, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, 

Guangdong, Hainan, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Inner Mongolia, 

Guangxi, Ningxia, and Xinjiang. 

In the mining production stage, mining employee and fixed assets’ investment stock are used as 

input variables. One output variable, accumulated destruction of land area, is an undesired output. 

Because oil and gas mining mostly entails deep mining and has little impact on the surface, it is not 

included in the scope of variable statistics. The desirable output is set as production of non-petroleum 

mineral resources. In the land rehabilitation stage, this paper takes rehabilitation investment as the 

input variable and rehabilitation of land area as the output variable. The accuracy of the two-stage 

data is increased by introducing average temperature as the climate exogenous variable. 

Accumulated destruction of land area is selected as an intermediate factor to connect the mining 

production stage and land rehabilitation stage. Table 1 shows the data for the specific variables. 

Table 1. Input and output variables. 

Stage   Variable Unit 

Stage 1 Input Mining Employees 10,000 people 

  Fixed Assets’ Investment Stock 100 million RMB 

 
Output Production of Non-Petroleum Mineral Resources  10,000 tons 

 Accumulated Destruction of Land Area Hectare 

Stage 2 Input Rehabilitation Investment 100 million RMB 

 Output Rehabilitation of Land Area Hectare 

Climate variable   Average Temperature Centigrade 

 

Figure 1 shows the flow structure of this paper by using flow chart. See Figure 1 for details. 
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Figure 1. Network dynamic model. 

The raw data for the mining employees and fixed assets’ investment stock are from the China 

Statistical Yearbook 2014–2018. The raw data for the production of non-petroleum mineral resources 

are from the China Land and Resources Statistical Yearbook 2014–2018. The raw data for 

rehabilitation investment, rehabilitation of land area, and accumulated destruction of land area are 

from the China Statistical Yearbook on Environment 2014–2018. The raw data for the average 

temperature are from the China Meteorological Yearbook. Some data on rehabilitation investment 

and rehabilitation of land area are missing, and the missing data are calculated by the interpolation 

method. In some provinces, the average temperature is missing and replaced by the average 

temperature of the provincial capital. 

The specific variables are explained below. 

①Average Temperature (AT): It is the sum of the monthly average temperatures of the 12 

months in the year divided by 12 or the annual average temperature. The average annual temperature 

in some of these provinces is in the range of intervals; herein, the maximum value and the minimum 

value are accumulated to get the average value. 

②Mining Employees (ME): This number of employees worked in mining industry on the last 

day of the reporting period and received wages or other forms of remuneration for their work. 

③Fixed Assets’ Investment Stock (IS): This paper considers the “perpetual inventory method” 

of depreciation of capital stock. According to the depreciation of fixed assets in China, the 

depreciation rate of material capital is set as 0.096. The formula for the perpetual inventory method 

is as follows: 

𝐾𝑖𝑡 = 𝐾𝑖,𝑡−1(1 − δ) + 𝐼𝑖𝑡 (12) 

where 𝐾𝑖𝑡 and 𝐾𝑖,𝑡−1 are the investment stock of the current year and the investment stock of the 

previous year, respectively, and δ represents the depreciation rate. 

④Production of Non-Petroleum Mineral Resources (MP): For the exploitation of non-petroleum 

mineral resources by various regions, non-petroleum resources refer to the non-oil and gas state and 

solid natural enrichment produced by geological action, most of which are contained within the 

surface or crust of the land. 

⑤Accumulated Destruction of Land Area (AD): The total land area occupied or destructed by 

tailings, discharged solid waste, open-pit mining, mining collapses, and other geological disasters in 

mines at the end of the reporting period. 

⑥Rehabilitation Investment (RI): It refers to investment for the rehabilitation of the mine 

environment during the reporting period, including central finance, local finance and mining 

enterprise input, and private investment. 
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⑦Rehabilitation of Land Area (RA): It refers to the area of rehabilitation of governance during 

the reporting period, including reclamation, ground-collapse management, forest, grass, 

construction, use, and so on. 

4.1.2. Data Description 

The average temperature in various regions of China is influenced by latitude factors. The 

maximum temperature is 25.30 ℃, while the minimum temperature is only 2.90 ℃, and so there is 

differentiated regional distribution. However, due to the particularity of average temperature factors, 

the standard deviation is 5.44, and the temperature horizontal differences between regions are low. 

The maximum number of mining employees is 0.99 million. In this variable, the standard deviation 

is low, at only is 20.35. The average production of non-petroleum mineral resources is 275.76 million 

tons, the maximum value is 962.93 million tons, and the minimum value is 9.32 million tons, greatly 

correlating to the distribution of natural resources in various regions. The maximum value of 

accumulated destruction land area is 926,606 hectares, and the minimum value is 1646 hectares. The 

average amount of rehabilitation investment is 4,097,063 million RMB, and the sample standard 

deviation is 46,298.26, closely correlating to the accumulated destruction of land area in various 

regions. The average rehabilitation of land area is 1755.47 hectares, while the minimum value is only 

22 hectares, and the maximum value is 15,511 hectares. The sample standard deviation of fixed assets’ 

investment stock is 3323.19, and so the data numbers are large. 

Table 2 statistics are made from the 2014–2017 exogenous variables, as well as the mining 

production stage and the land rehabilitation stage variables. The data are counted by taking the 

average, sample standard, maximum value, and minimum value. See Table 2 for details. 

Table 2. Input and output variables. 

Variable Mean Min Max SD 

Mining Employees (10,000 people) 17.99 0.47 98.52 20.35 

Production of Non-Petroleum Mineral Resources (10,000 Tons) 27575.75 931.80 96293.03 20668.17 

Accumulated Destruction of Land Area (Hectare) 90093.26 1646.00 926606.00  168069.90  

Rehabilitation Investment (100 million RMB) 
40970.63

0 
396.00 278978.00  46298.26 

Rehabilitation of Land Area (Hectare) 1755.47 22.00 15511.00  2760.42 

Fixed Assets’ Investment Stock (100 million RMB) 4027.38 69.42 14586.76  3323.19 

Average Temperature (Centigrade) 14.14 2.90 25.30 5.44 

Note: Min - minimum; Max - maximum; SD - standard deviation. 

4.2. Results and Analysis 

Through the use of MaxDEA8.0 software, we applied the dynamic two-stage directional distance 

function DEA model under the exogenous variables model, to evaluate overall efficiency, mining 

production stage and land rehabilitation stage efficiencies, and variable efficiency. 

4.2.1. Overall Efficiency Analysis 

The overall efficiencies of Shanxi and Fujian reached 1 in 2014 and 2016, respectively, but fell in 

other years, failing to maintain an efficient state. Shanxi fell from 1 to 0.652 in 2015, or the biggest 

drop in four years. Ningxia’s annual overall efficiency was 1 in 2014 and 2017, but fell slightly in 



Land 2020, 9, 76 13 of 27 

2015–2016, from 0.797 in 2015 to 0.643 in 2016. The annual overall efficiencies of Qinghai, Hainan, and 

Guangxi were 1 in 2014, but fell to 0.602, 0.852, and 0.585 in 2015, respectively. In the following years, 

Qinghai and Guangxi recovered to different degrees, reaching 0.72 and 0.756 in 2017. The efficiency 

of Hainan was on the decline, falling to 0.638 in 2017. Jilin’s efficiency hit 1 in 2015, but continuously 

declined in the following years, dropping to 0.586 in 2017. Gansu’s efficiency increased significantly 

in 2014–2015, reaching 0.868 in 2015, but then declined in the following years, dropping to 0.749 in 

2017. Jiangxi’s efficiency decreased significantly from 0.668 in 2014 to 0.226. However, it rose in the 

years that followed, reaching 0.641 in 2017. Beijing’s efficiency fluctuated sharply over four years, 

from 0.807 in 2014 to 0.531 in 2016, rebounding to 0.975 in 2016, but falling to 0.608 in 2017. Chongqing 

and Liaoning’s efficiencies were low for the four years, with both at about 0.2. Overall, Chongqing 

was on the rise, going to 0.237 in 2017, with Liaoning having 0.296 efficiency in 2016, or the highest 

of these two provinces. Gansu, Xinjiang, Sichuan, Anhui, Guizhou, and other provinces tended to 

increase in general, but the increase was not significant. Gansu rose from 0.561 to 0.749 in 2017, which 

was a significant increase. Guangdong, Zhejiang, Shaanxi, Henan, and Shandong tended to decline 

in general and are low in the overall efficiency ranking. Among them, Shaanxi’s efficiency decreased 

from 0.574 in 2014 to 0.304 in 2017, which is a significant decrease. 

Table 3 shows the annual overall efficiency and arranges DMUs according to the overall 

efficiency of each province in 2014–2017. 

Table 3. Overall efficiency for each province, from 2014 to 2017. 

Province 2014 2015 2016 2017 Province 2014 2015 2016 2017 

Heilongjiang 1 1 1 1 Hubei 0.246 0.28 0.411 0.315 

Inner Mongolia 1 1 1 1 Guangxi 1 0.585 0.537 0.756 

Tianjin 1 1 1 1 Henan 0.32 0.276 0.295 0.202 

Shanxi 1 0.652 1 0.889 Guizhou 0.221 0.441 0.246 0.289 

Fujian 1 0.806 1 0.659 Shandong 0.308 0.512 0.196 0.172 

Ningxia 1 0.797 0.643 1 Beijing 0.807 0.531 0.975 0.608 

Gansu 0.561 0.868 0.851 0.749 Hunan 0.408 0.253 0.176 0.212 

Hainan 1 0.852 0.749 0.638 Jiangsu 0.349 0.332 0.172 0.317 

Xinjiang 0.736 0.544 0.619 0.749 Hebei 0.248 0.176 0.275 0.244 

Qinghai 1 0.602 0.661 0.72 Yunnan 0.153 0.218 0.168 0.353 

Guangdong 0.773 0.715 0.624 0.667 Shaanxi 0.574 0.111 0.557 0.304 

Sichuan 0.462 0.525 0.359 0.516 Anhui 0.238 0.12 0.207 0.321 

Jiangxi 0.668 0.226 0.523 0.641 Liaoning 0.205 0.176 0.296 0.233 

Jilin 0.658 1 0.627 0.586 Chongqing 0.177 0.132 0.211 0.237 

Zhejiang 0.67 0.797 0.645 0.581           

From the perspective of the overall efficiency of each province, Heilongjiang, Inner Mongolia, 

and Tianjin had the highest overall efficiency, as their efficiency levels hit the DEA optimum. 

However, the overall efficiencies of Anhui, Liaoning, and Chongqing were low, and the overall 

efficiencies of these three provinces fluctuated around 0.2. The overall efficiencies of Qinghai, 

Guangdong, Sichuan, Jiangxi, and Jilin were about 0.5, and thus they need to improve. Figure 2 shows 

the overall efficiency of China by using the bitmap. 
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Figure 2. Overall efficiency for each province. 

By dividing DMUs into eastern, central, and western regions, this paper shows that there are 

provinces with higher efficiency level and provinces with lower efficiency level in all three regions 

of China, and the regional internal differences are large. For example, in the eastern region, the 

efficiency levels of Hebei, Jiangsu, and Liaoning fluctuated around 0.2, while that of Beijing, Fujian, 

and Guangdong were mostly above 0.6. However, the difference between regions is not significant, 

and the average levels of efficiencies of the three regions were above 0.4. In 2014–2016, the efficiency 

of the eastern region was higher than that of the central and western regions, but in 2017, the average 

efficiency level of the western region was the highest. 

Figure 3 analyzes the efficiency levels of Eastern, Central, and Western China in 2014–2017, by 

a cluster column chart and broken line chart. 



Land 2020, 9, 76 15 of 27 

 

Figure 3. Overall efficiencies: (a) Eastern China; (b) Central China ; (c) Western China; and (d) 

comparison of the three regions. 

4.2.2. Analysis of Mining Production Stage and Land Rehabilitation Stage Efficiencies 

(1) Mining production stage efficiency 

In the mining production stage, the mean efficiency of most provinces remained at a high level, 

among which the efficiencies of Beijing, Fujian, Guangdong, Guangxi, Hainan, Heilongjiang, Jilin, 

Inner Mongolia, Ningxia, Qinghai, Shanxi, Tianjin, and Zhejiang hit 1 in the four years. The 

efficiencies of Anhui and Hebei were below 0.2 in the four years, but continued rising to 0.147 and 

0.159, respectively. The efficiencies of Henan, Shandong, Yunnan, and Hunan were low and under 

0.1 in the four years. The efficiency of Henan in 2014 was 0.035, and its mean efficiency was 0.046, or 

the lowest value overall. Gansu’s efficiency continued rising in the four years, with all values above 

0.7 and maintaining a high level. It is worth noting that the efficiencies of Guizhou, Jiangsu, Hubei, 

Liaoning, and Chongqing were also low, fluctuating around 0.2. The efficiency of Xinjiang was more 

than 0.5 in the four years, but on the whole, it shows a downward trend. The mean efficiency of 

Shaanxi was only 0.121, and the efficiency has been declining for four years, dropping to 0.091 in 

2017. 

(2) Land rehabilitation stage efficiency 

In the land rehabilitation stage, the mean efficiency of most provinces remained above 0.4, 

showing a more balanced situation. The mean efficiencies and annual efficiencies of Heilongjiang, 

Inner Mongolia, and Tianjin were all 1 in the four years, showing a trend of high efficiency levels. 

The efficiencies of Fujian, Shaanxi, and Shanxi hit 1 in 2014 and 2016, but fluctuated dramatically in 

2016 and 2017, among which the efficiency of Shaanxi sharply decreased from 1 in 2014 to 0.09 in 
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2015. The efficiencies in Guangxi, Hainan, and Jiangxi were 1 in 2014, but declined by different 

degrees in the following three years. Among them, Jiangxi’s efficiency rose to 0.984 in 2017 after a 

decline and remained at a high level. However, the efficiency level of Guangxi declined significantly, 

dropping to a low level in 2016 at only 0.074. After reaching 1, the efficiency of Hainan continued 

declining to 0.277 in 2017. The efficiencies of Henan, Guangdong, Hunan, Shandong, and Jiangsu 

showed a downward trend in the four years. Hunan’s efficiency dropped from 0.732 in 2014 to 0.338 

in 2017. The efficiency levels of Sichuan and Xinjiang reached over 0.9 in 2017, showing high values. 

Table 4 summarizes the annual efficiency and mean efficiency of each province in the mining 

production stage and land rehabilitation stage in 2014–2017. 

Table 4. Mining production stage and rehabilitation stage efficiencies from 2014–2017. 

Province M-S1 M-S2 14-S1 14-S2 15-S1 15-S2 16-S1 16-S2 17-S1 17-S2 

Anhui 0.129  0.315  0.127  0.350  0.108  0.132  0.133  0.282  0.147  0.495  

Beijing 1.000  0.461  1.000  0.614  1.000  0.063  1.000  0.950  1.000  0.216  

Fujian 1.000  0.733  1.000  1.000  1.000  0.613  1.000  1.000  1.000  0.319  

Gansu 0.737  0.777  0.710  0.411  0.736  1.000  0.702  1.000  0.802  0.696  

Guangdong 1.000  0.389  1.000  0.546  1.000  0.430  1.000  0.247  1.000  0.334  

Guangxi 1.000  0.439  1.000  1.000  1.000  0.169  1.000  0.074  1.000  0.511  

Guizhou 0.127  0.471  0.134  0.309  0.116  0.765  0.128  0.365  0.132  0.445  

Hainan 1.000  0.620  1.000  1.000  1.000  0.705  1.000  0.497  1.000  0.277  

Hebei 0.126  0.346  0.109  0.387  0.118  0.233  0.116  0.434  0.159  0.330  

Henan 0.046  0.501  0.035  0.605  0.034  0.518  0.048  0.543  0.068  0.336  

Heilongjiang 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Hubei 0.147  0.479  0.148  0.343  0.138  0.422  0.138  0.685  0.165  0.465  

Hunan 0.089  0.435  0.085  0.732  0.089  0.417  0.097  0.255  0.087  0.338  

Jilin 1.000  0.435  1.000  0.316  1.000  1.000  1.000  0.253  1.000  0.172  

Jiangsu 0.162  0.423  0.154  0.543  0.166  0.497  0.188  0.156  0.138  0.496  

Jiangxi 0.249  0.780  0.336  1.000  0.148  0.304  0.214  0.833  0.297  0.984  

Liaoning 0.198  0.256  0.205  0.205  0.200  0.152  0.210  0.382  0.179  0.287  

Inner Mongolia 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Ningxia 1.000  0.720  1.000  1.000  1.000  0.594  1.000  0.286  1.000  1.000  

Qinghai 1.000  0.492  1.000  1.000  1.000  0.204  1.000  0.323  1.000  0.441  

Shandong 0.062  0.533  0.065  0.552  0.064  0.960  0.061  0.331  0.056  0.288  
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Shanxi 1.000  0.771  1.000  1.000  1.000  0.304  1.000  1.000  1.000  0.779  

Shaanxi 0.121  0.652  0.148  1.000  0.132  0.090  0.115  1.000  0.091  0.518  

Sichuan 0.134  0.797  0.152  0.771  0.135  0.915  0.118  0.600  0.129  0.903  

Tianjin 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Xinjiang 0.565  0.759  0.626  0.846  0.530  0.558  0.563  0.676  0.540  0.957  

Yunnan 0.078  0.368  0.078  0.228  0.079  0.358  0.080  0.256  0.076  0.631  

Zhejiang 1.000  0.346  1.000  0.340  1.000  0.594  1.000  0.289  1.000  0.162  

Chongqing 0.158  0.221  0.186  0.169  0.124  0.141  0.154  0.269  0.168  0.305  

Note: S1 - mining production stage; S2 - land rehabilitation stage; M -mean value. 

The efficiencies of the two stages in all provinces of China were, on the whole, above 0.5. The 

average efficiency of the land rehabilitation stage was slightly higher than the mining production 

stage, and the efficiencies of these two stages were relatively balanced. Based on the average 

efficiency of each province, we divide the areas into four parts: high-high, low-low, high-low, and 

low-high. Among them, there are many high-high and low-low areas, showing serious polarization 

in the mining production stage and land rehabilitation stage input–output efficiencies. Comparing 

the high-low and low-high areas, there are more provinces in high-low areas, including Beijing, 

Guangdong, Guangxi, Jilin, Qinghai, and Zhejiang. The mining production stage efficiency is higher, 

while the land rehabilitation stage efficiency is below average. See Figure 4 for the distribution of 

specific provinces. 

High-High:
Fujian, Gansu, Hainan, 

Heilongjiang, Inner Mongolia, 

Ningxia, Shanxi, Tianjin, 

Xinjiang

High-Low:
Beijing, Guangdong, Guangxi, 

Jilin, Qinghai, Zhejiang

Low-High:

Jiangxi, Shaanxi, Sichuan

Low-Low:
Anhui, Guizhou, Hebei, 

Henan, Hubei, Hunan, Jiangsu, 

Liaoning, Yunnan, Chongqing, 

Shandong

S1 : 0.5561

S2 : 0.5696

 

Figure 4. Province distribution by mining production and land rehabilitation stages. 

There were great differences in the efficiencies of different stages in the provinces of China. 

There were also great fluctuations among the provinces in each year, which closely relate to the 

mineral resources of each region and the measures taken. In the four years, the efficiency of the 

mining production stage was higher than that of the land rehabilitation stage. 

In the mining production stage, the level of DEA hit 1, but in the land rehabilitation stage, the 

efficiency was less than 0.5, including Beijing, Hainan, Jilin, and Qinghai. Figure 5 applies a radar 

map to describe the mining production stage and land rehabilitation stage efficiencies of each 

province. 
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Figure 5. Regional overall stage efficiency. 

4.2.3. Efficiency Analysis of Input and Output Variables 

In the input of the mining production stage, the efficiencies of mining employees in most 

provinces were high, among which the efficiencies of Beijing, Fujian, Guangdong, Guangxi, Hainan, 

Heilongjiang, Jilin, Inner Mongolia, Ningxia, Qinghai, Shanxi, Tianjin, and Zhejiang were all 1 in the 

four years. In the mining production stage, the production efficiencies of non-petroleum mineral 

resources in most provinces were high. The efficiencies of Beijing, Fujian, Guangdong, Guangxi, 

Hainan, Jilin, Inner Mongolia, Ningxia, Shanxi, Tianjin, and Zhejiang all remained at 1. However, the 

efficiencies of Hubei, Hunan, and Jiangsu were relatively low, among which the efficiency of Jiangsu 

continued declining in the four years, arriving at 0.292 in 2017. The efficiency in Jiangxi fluctuated 

dramatically in the four years, with an efficiency of 1 in 2014 and 2016, but it dropped to 0.622 in 2017. 

Liaoning’s efficiency kept above 0.9 in 2014–2016, but dropped to 0.579 in 2017, which is a significant 

decline. In general, the efficiencies of Sichuan and Yunnan showed a downward trend, respectively 

falling to 0.61 and 0.482 in 2017. Except for 2014, when the efficiency of Chongqing remained at 1, the 

efficiencies of the other years fluctuated around 0.3. 

In the mining production stage, the accumulated destruction of land area is the undesirable 

output. Since the accumulated destruction of land area is a special connecting variable of the two 

stages, the efficiencies of most provinces remained at 1, showing a high level. However, the efficiency 

of this variable was relatively low in Chongqing, at under 0.2 in 2015-2017. The efficiency of Jiangxi 

was 1 in 2014, but then decreased to 0.418 in 2015, for a significant decline. 

Table 5 lists the output variables in the mining production stage, the production amount of non-

petroleum mineral resources, and the accumulated destruction of land area.
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Table 5. Input and output efficiencies in the mining production stage. 

Province ME-14 ME-15 ME-16 ME-17 MP-14 AD-14 MP-15 AD-15 MP-16 AD-16 MP-17 AD-17 

Anhui 0.127  0.108  0.133  0.147  0.999  1.000  1.000  0.586  1.000  1.000  1.000  1.000  

Beijing 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Fujian 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Gansu 0.710  0.736  0.702  0.802  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Guangdong 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Guangxi 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Guizhou 0.134  0.116  0.128  0.132  0.862  1.000  0.771  1.000  0.693  1.000  0.751  1.000  

Hainan 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Hebei 0.109  0.119  0.116  0.159  0.960  1.000  0.999  1.000  0.999  1.000  0.794  1.000  

Henan 0.035  0.034  0.048  0.068  0.926  1.000  0.710  0.655  0.998  1.000  0.999  0.972  

Heilongjiang 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Hubei 0.149  0.138  0.138  0.165  0.442  1.000  0.509  1.000  0.388  1.000  0.420  1.000  

Hunan 0.085  0.089  0.097  0.087  0.551  1.000  0.653  1.000  0.522  1.000  0.443  1.000  

Jilin 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Jiangsu 0.154  0.166  0.188  0.138  0.524  1.000  0.510  1.000  0.357  1.000  0.292  1.000  

Jiangxi 0.336  0.148  0.214  0.297  1.000  1.000  0.752  0.418  1.000  0.754  0.622  0.617  

Liaoning 0.205  0.200  0.210  0.179  0.923  1.000  0.999  1.000  0.999  1.000  0.579  0.713  

Inner Mongolia 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Ningxia 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Qinghai 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Shandong 0.065  0.065  0.061  0.056  0.886  1.000  0.999  1.000  0.999  1.000  0.679  1.000  

Shanxi 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Shaanxi 0.148  0.132  0.115  0.091  0.928  1.000  0.999  1.000  0.999  1.000  0.999  1.000  

Sichuan 0.152  0.135  0.118  0.129  0.908  1.000  0.745  1.000  0.646  1.000  0.610  1.000  

Tianjin 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Xinjiang 0.626  0.530  0.563  0.540  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Yunnan 0.078  0.079  0.080  0.076  0.752  1.000  0.815  1.000  0.780  1.000  0.482  0.629  

Zhejiang 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Chongqing 0.186  0.124  0.154  0.168  1.000  0.595  0.358  0.112  0.270  0.130  0.301  0.164  

Note: MP - production of non-petroleum mineral resources; AD - accumulated destruction of land area; ME - mining employees.



Land 2020, 9, 76 20 of 27 

Land 2020, 9, 76; doi:10.3390/land9030076 www.mdpi.com/journal/land 

In the input variables of the land rehabilitation stage, the efficiencies of Heilongjiang, Inner 

Mongolia, and Tianjin were all 1 in the four years. In 2014 and 2016, the efficiencies of Fujian, Shanxi, 

and Shaanxi reached 1, but in 2015 and 2017 the efficiency of Fujian dropped to 0.189 in 2015, or the 

most serious drop among the three provinces. The efficiencies of Hainan and Gansu were higher at 

above 0.9 in the four years, while that of Gansu was 1 in 2015 and 2016. Guangxi’s efficiency was 1 in 

2014, but continued declining in the following two years, rebounding to 0.949 in 2017. The efficiency 

of Guizhou fell significantly in 2014–2015, but recovered to above 0.9 in 2016–2017. Zhejiang’s 

efficiency continued declining in 2014–2016, but rebounded to 0.956 in 2017. The efficiencies of 

Liaoning, Chongqing, Henan, and Guangdong were relatively high at about 0.9 in 2014–2017. 

Chongqing’s efficiency in 2014 was 0.847, or the lowest among the four provinces. 

In the output variables of the land rehabilitation stage, the efficiencies of most provinces were 

below 0.5. Among them, the efficiencies of Fujian, Shaanxi, and Shanxi were similar to the efficiency 

of rehabilitation investment. In 2014 and 2016, their efficiencies hit 1. The efficiencies for the 

abovementioned provinces in 2015 and 2017 decreased, but the efficiency of the rehabilitation of the 

land area variable decreased more dramatically. In 2015, the efficiency of Shaanxi decreased to 0.103. 

The efficiencies of Anhui and Chongqing were poor compared with the efficiency of rehabilitation 

investment, and their efficiencies in 2015 were 0.144 and 0.15, respectively. Thus, Anhui should pay 

attention to improving the efficiency of the output stage. The efficiencies in Guangxi and Hainan hit 

1 in 2014, but declined in the following years, with the efficiency in Guangxi going to 0.1 in 2016. 

Beijing’s efficiency fluctuated in four years, with a trough of 2015 when the efficiency was only 0.072 

and a peak of 2016 when the efficiency was 0.957. 

Table 6 summarizes the input and output variables of the land rehabilitation stage, including 

rehabilitation investment and rehabilitation of land area. 

Table 6. Input and output efficiencies in the land rehabilitation stage. 

Province RI-14 RA-14 RI-15 RA-15 RI-16 RA-16 RI-17 RA-17 

Anhui 0.955  0.366  0.915  0.144  0.918  0.307  0.946  0.523  

Beijing 0.962  0.638  0.873  0.072  0.993  0.957  0.923  0.234  

Fujian 1.000  1.000  0.189  0.616  1.000  1.000  0.965  0.330  

Gansu 0.952  0.432  1.000  1.000  1.000  1.000  0.970  0.718  

Guangdong 0.965  0.565  0.940  0.457  0.910  0.272  0.951  0.352  

Guangxi 1.000  1.000  0.886  0.191  0.742  0.100  0.949  0.539  

Guizhou 0.478  0.314  0.187  0.768  0.955  0.383  0.969  0.460  

Hainan 1.000  1.000  0.970  0.727  0.907  0.548  0.931  0.297  

Hebei 0.723  0.396  0.459  0.241  0.840  0.449  0.929  0.355  

Henan 0.969  0.625  0.948  0.547  0.936  0.579  0.927  0.363  

Heilongjiang 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Hubei 0.720  0.351  0.254  0.427  0.973  0.705  0.965  0.482  

Hunan 0.572  0.737  0.548  0.429  0.399  0.260  0.955  0.354  
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Jilin 0.936  0.338  1.000  1.000  0.850  0.298  0.913  0.188  

Jiangsu 0.705  0.552  0.264  0.503  0.926  0.169  0.968  0.512  

Jiangxi 1.000  1.000  0.917  0.332  0.968  0.860  0.998  0.985  

Liaoning 0.948  0.216  0.923  0.164  0.837  0.456  0.928  0.309  

Inner Mongolia 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Ningxia 1.000  1.000  0.927  0.641  0.817  0.350  1.000  1.000  

Qinghai 1.000  1.000  0.932  0.219  0.867  0.372  0.942  0.468  

Shandong 0.614  0.560  0.489  0.961  0.951  0.348  0.944  0.306  

Shanxi 1.000  1.000  0.933  0.326  1.000  1.000  0.979  0.795  

Shaanxi 1.000  1.000  0.873  0.103  1.000  1.000  0.964  0.537  

Sichuan 0.987  0.781  0.336  0.918  0.971  0.618  0.990  0.912  

Tianjin 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Xinjiang 0.986  0.858  0.954  0.585  0.939  0.719  0.995  0.962  

Yunnan 0.664  0.234  0.700  0.372  0.928  0.276  0.960  0.657  

Zhejiang 0.613  0.347  0.307  0.600  0.549  0.298  0.956  0.170  

Chongqing 0.847  0.199  0.938  0.150  0.855  0.315  0.931  0.328  

Note: RI - rehabilitation investment; RA - rehabilitation of land. 

4.3. Policy Analysis 

4.3.1. Efficiency of Special Provinces 

With the transfer of Beijing’s non-capital functions, its mining industry has gradually shut down. 

In this process, the accumulated destruction of land area in Beijing remained basically unchanged. In 

2015, the efficiency in Beijing fell to a low level, and in 2016 it rose to a peak. This is closely related to 

the lag in the process of land destruction. Generally speaking, in the land rehabilitation stage, it is 

still necessary to improve the historical land destruction in Beijing by strengthening land 

rehabilitation efficiency. The efficiencies of Shanxi and Shaanxi decreased significantly in 2015 and 

2017, which closely relate to the low efficiencies of rehabilitation investment and rehabilitation of 

land area variables in the land rehabilitation stage. As they are provinces with large mining resources, 

although the mining production stages of Shanxi and Shaanxi in 2014–2017 have high levels of output 

variable efficiency, they must strengthen remediation in the land rehabilitation stage and thus help 

promote overall efficiency. 

The efficiency of Jiangxi tended to rise in 2014–2017, but in the mining production stage, its 

efficiency was poor, thus dragging down its overall efficiency. The regulations of Jiangxi Province on 

the management of the mining of mineral resources issued in 2015 clearly planned for the protection 

and restoration of the geological environments of mines, supervision and management, and legal 

responsibility, and so the efficiency of Jiangxi in the land rehabilitation stage remained at a high level. 

However, in the mining stage, Jiangxi should pay attention to the improvement of input and output 

variables’ efficiencies and promote the improvement of the overall level of efficiency. Jilin’s efficiency 
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declined sharply in 2017, which is closely related to the sharp decline of its land rehabilitation 

efficiency in 2015. It can be seen during the process of mining production and land rehabilitation that, 

although mining production stage efficiency is high, some variables in the land rehabilitation stage 

need to improve their efficiency level to enhance overall efficiency. Due to the low quality of mines 

in Hebei, the efficiency in the mining production stage is low. To undertake the process of Beijing’s 

non-capital function, the supply of primary mineral products is in great demand, which promotes 

the quantity of mining in Hebei, but ignores the efficiency problem in the mining process. Although 

land rehabilitation stage efficiency is higher than mining production stage efficiency, the former is 

still at a low level. 

4.3.2. Improvement of Each Province 

In order to distinguish between the variables that need to be improved in each province, we set 

0~0.33 as grade I, 0.33~0.66 as grade II, and 0.66~1 as grade III. Grade I means the indicator needs 

more focused improvement, grade II means the indicator needs improvement, and grade III means 

the need for slight improvement or no need for improvement. The provinces that do not need to be 

improved include Fujian, Gansu, Heilongjiang, Inner Mongolia, Ningxia, Shanxi, and Tianjin; 

Guizhou, Hebei, Henan, Hubei, Hunan, Liaoning, and other provinces need to focus on improvement 

and strengthen their overall governance according to the local situation; and Chongqing needs to 

focus on mining production and land rehabilitation as a whole, among which accumulated 

destruction of land area and rehabilitation area need focused improvement, and one variable needs 

improvement, which is the production of mineral resources. Table 7 shows the room for 

improvement of provinces in more detail. 

Table 7. Improvement for each province. 

Province MP AD RI RA Province MP AD RI RA 

Anhui Ⅲ Ⅲ Ⅲ Ⅱ Jiangxi Ⅲ Ⅲ Ⅲ Ⅲ 

Beijing Ⅲ Ⅲ Ⅲ Ⅱ Liaoning Ⅲ Ⅲ Ⅲ Ⅰ 

Fujian Ⅲ Ⅲ Ⅲ Ⅲ Inner Mongolia Ⅲ Ⅲ Ⅲ Ⅲ 

Gansu Ⅲ Ⅲ Ⅲ Ⅲ Ningxia Ⅲ Ⅲ Ⅲ Ⅲ 

Guangdong Ⅲ Ⅲ Ⅲ Ⅱ Qinghai Ⅲ Ⅲ Ⅲ Ⅱ 

Guangxi Ⅲ Ⅲ Ⅲ Ⅱ Shandong Ⅲ Ⅲ Ⅲ Ⅱ 

Guizhou Ⅲ Ⅲ Ⅱ Ⅱ Shanxi Ⅲ Ⅲ Ⅲ Ⅲ 

Hainan Ⅲ Ⅲ Ⅲ Ⅱ Shaanxi Ⅲ Ⅲ Ⅲ Ⅲ 

Hebei Ⅲ Ⅲ Ⅲ Ⅱ Sichuan Ⅲ Ⅲ Ⅲ Ⅲ 

Henan Ⅲ Ⅲ Ⅲ Ⅱ Tianjin Ⅲ Ⅲ Ⅲ Ⅲ 

Heilongjiang Ⅲ Ⅲ Ⅲ Ⅲ Xinjiang Ⅲ Ⅲ Ⅲ Ⅲ 

Hubei Ⅱ Ⅲ Ⅲ Ⅱ Yunnan Ⅲ Ⅲ Ⅲ Ⅱ 

Hunan Ⅱ Ⅲ Ⅱ Ⅱ Zhejiang Ⅲ Ⅲ Ⅱ Ⅱ 

Jilin Ⅲ Ⅲ Ⅲ Ⅱ Chongqing Ⅱ Ⅰ Ⅲ Ⅰ  
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Jiangsu Ⅱ Ⅲ Ⅲ Ⅱ      

Note: I: 0~0.33; II: 0.33~0.66; III: 0.66~1 

5. Conclusion and Policy Recommendations 

5.1. Conclusion 

This research uses the dynamic two-stage directional distance function DEA model, with 

environmental exogenous variables, to measure the mining production/land rehabilitation 

efficiencies of 29 provinces in China and arrived at the following conclusions. 

The overall efficiencies of most provinces in China are in general below 0.5. Among them, the 

efficiencies of Tianjin, Inner Mongolia, and Heilongjiang reached the DEA optimal level, which 

closely relate to the distribution of local natural resources and policy guidance. The efficiencies of 

Anhui, Chongqing, Jiangsu, and Liaoning were relatively low. There was a big fluctuation in the 

efficiency of the land rehabilitation stage in the four years, but the average efficiency was slightly 

higher than that in the mining production stage. Thus, the fluctuation of land restoration efficiency 

should be reduced to make it grow steadily better. For the process of demand-and-supply 

transformation of the mining industry, China still faces greater risks and problems that must be 

improved. 

By comparing the efficiencies of the mining production stage and the land rehabilitation stage, 

we find that the efficiency of the former is relatively low. Thus, mining efficiency should urgently be 

improved in order to promote the overall efficiency of a region. 

The efficiency distribution of China’s provinces is not uniform, which relates to regional policy 

and resource distribution. For overall efficiency levels, Jiangsu, Anhui, Shaanxi, and Chongqing are 

lower, while Inner Mongolia, Heilongjiang, and Tianjin are higher. 

This paper employs a theoretical analysis of 29 provinces’ mining efficiency in China. The aim 

is to effectively guide each province in mining and rehabilitation and to deal with the lack of 

specialization in China for this sector, presently and in future. While this research paper’s sample 

selection is scientific and objective, it fails to fully simulate the various emergencies of mining and 

land restoration. 

5.2. Policy Recommendations 

Due to the great difference between the resource distribution and efficiencies of provinces in 

China, the projects for improving the efficiency level of each province are different. Thus, 

corresponding policies need to strengthen these efficiencies. Based on the development efficiency for 

the period 2014–2017, the following suggestions are made. 

5.2.1. Integrate Mining Resources 

Through the market guidance mechanism, developed provinces should be able to control their 

mining output and promote the sustainable development of mining areas. Speeding up the business 

of mining area integration can help to gradually replace the situation of decentralized mining of 

small- and medium-sized mines in China. Integrating regional resources can spur a region to achieve 

a good state of economies of scale and scope. By integrating resources, mining areas with similar 

resource reserves and quality can share technology, machinery, and equipment and thus reduce 

repeated investment in fixed assets. This is also conducive to the spillover effect in the land 

rehabilitation stage, so that mining areas with a similar environment and damage conditions can 

reduce rehabilitation investment and obtain better rehabilitation of land area. China should continue 

to promote the improvement of efficiency in the land rehabilitation stage. Provinces with low 

efficiency levels, like Shaanxi, can learn from provinces with a similar climate environment and 

mining-area types, introduce advanced mining and land rehabilitation technology locally, and 

implement technology improvement so as to increase their level of efficiency. The government should 

strengthen with the surrounding water, circuit, and other infrastructure. On the premise of not 
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affecting the life of residents around the area, the government can give priority to providing cheap 

hydropower resources and mine-road subsidies for mining areas. Integration of surrounding 

infrastructure can achieve the purpose of resource integration around a mining area. 

5.2.2. Eliminate Backward Capacity and Technology 

Mining firms can phase out backward production capacity and replace old existing fixed assets 

by introducing high-tech mining machines and accessories. At the same time, they can set up 

corresponding research bases according to the unique situation locally, increase R&D investment, 

strengthen their scientific and technological levels, change from rough mining to scientific mining, 

and conform to the trend of high-quality development in China. In addition, a special group for land 

rehabilitation should set up a scientific and technological research base. By analyzing the local mining 

environment and soil conditions, damaged or occupied land can be restored into a historical mining 

park or reclaimed as cultivated land, in order to give full play to the residual value of damaged soil. 

Such actions can strengthen the efficiency of the land rehabilitation stage. 

In view of the amount of seriously damaged land, biochemical measures should be introduced 

in each area, to gradually repair damaged land and improve the environment of mining areas by 

building a stable ecosystem. For the mountainous provinces of Guizhou, Sichuan, and Chongqing, 

environmental restoration should be planned according to the geological conditions of mines in each 

area. For the land restoration of mining areas in mountainous regions, crops with economic value 

and in line with China’s market, such as artemisia argyi or Conyza canadensis (L.) Cronq., can be 

selected as vegetation restoration options in the southwest part of the country. Depending on varying 

slopes, different vegetation can be adopted to firm up the slopes and prevent the occurrence of 

landslides, so as to ensure smooth mining and land restoration. For winter freezing conditions in 

areas like Xinjiang, Heilongjiang, Jilin, Liaoning, and Inner Mongolia, it is necessary to solve the 

problem of frozen soil. By introducing new winter mining technology, the impact of bad weather on 

mining should be able to slow down. For the current operation of mining machines, it is possible to 

retrieve the braking and driving devices of crushers or excavators and clean their internal widgets 

after each use, especially those that are easily damaged by freezing. Mining firms must pay attention 

to the temperature while cleaning and check whether the widgets are leaking. 

5.2.3. Strengthen Government Administrative Measures 

For serious damage caused by mining, local governments should intervene in administrative 

management and guide the coordinated development of mining production and land rehabilitation. 

National and local people's congressional bodies should enhance the laws and regulations on the 

examination and approval of mining licenses, the handling of safety production licenses, and the 

division of responsibility for mining accidents and further guide the coordinated development of 

regional production and environment. As to the mining sector, each province can give appropriate 

tax exemptions to mining enterprises that run under high efficiency and strong land rehabilitation 

efficiency according to the situation of their own conditions. Through the leading role of excellent 

mining enterprises, the efficiency of land rehabilitation can be improved. For some old mining areas 

that are short of funds, each province should set up special cash reserves that can support old mining 

areas to update their own equipment and strengthen their efficiency level. In order to improve the 

use of special funds for the environmental restoration of mining areas in each province, local 

governments should closely track the whereabouts of the funds and present restoration results in real 

time, thus curbing any misappropriation of money or financial corruption. Implementing these 

measures should help China clean up the land damage caused by mining in local mining areas and 

promote the improvement of overall efficiency in this important industrial sector. 
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