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Abstract: The rapid urban and industrial development in China has put pressure on the limited
cultivated land resources. In ecologically fragile areas, such as the Dongting Lake Eco-economic Zone,
land pollution and waste emissions from agricultural production cause irreversible damage to
cultivated land. Thus, a method to assess the sustainability of cultivated land use efficiency (CLUE)
is explored. Using the panel data of 25 districts in the province from 2007 to 2017, this study
incorporates agricultural non-point source pollution and carbon emissions into undesirable outputs
of cultivated land. The SBM(Slack-based Measure)-undesirable model was applied to measure the
spatiotemporal characteristics of CLUE under environmental constraints. This study finds that CLUE
with environmental constraints is significantly lower than CLUE without environmental constraints,
and the degree of the impacts of the constraints differs among regions. Second, from 2007 to 2017,
the average CLUE of the province showed a downward trend in each year; this is due to the side
effects of redundant inputs and undesired outputs. Third, in 2017, the CLUE of the Dongting Lake
Eco-economic Zone was high in the west and low in the east, and the redundant inputs of CLUE
were livestock, fertilizer, and pesticide. The study concludes by recommending some policies.

Keywords: cultivated land use efficiency; environmental constraints; agricultural non-point source
pollution; carbon emissions; Dongting Lake Eco-economic Zone

1. Introduction

Cultivated land resources are the basis of human survival and development, and they guarantee
global food and ecological security. Many countries have enacted laws and policies to ensure effective
use and protection of cultivated land [1–3]. However, the rapid urbanization seriously threats
cultivated land preservation in developing countries [4]. For instance, the amount of cultivated land
per capita in the world has declined from 0.41 hectares in 1960 to 0.21 hectares in 2019 [5]. Meanwhile,
urban expansion has brought ecological consequences such as landscape changes and environmental
degradation, especially with respect to the pollution of soil resources [6]. Hawkesford (2014) indicated
that the effect of urbanization on production factors in rural regions became increasingly evident,
especially the input and output of cultivated land utilization caused by regional ecological environment
deterioration [7]. Due to the locust invasion disaster and the COVID-19 pandemic in 2020, the global
food crisis has become a critical issue. These issues put more pressure on the protection of natural
resources and ecosystem globally and further deviate from sustainable development. One of the
greatest challenges associated with these issues is the contradiction of land use in food production,
socio-economic development, and ecological maintenance. Thus, using cultivated land resources
efficiently and reasonably has become the focus of and a challenge to sustainable development
worldwide [8,9].
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China is the world’s largest developing country, and it only uses 7.5% of the world’s land area to
feed 22% of the world’s population. The Chinese government has enacted several protection policies
for the limited cultivated land resources [10], but the reduction in and pollution of cultivated land affect
land use efficiency. According to the National Land Improvement Plan (2016–2020), due to ecological
deforestation, restructuring, construction, and other reasons, the area of cultivated land is expected to
decrease by more than 4666.7 km2 during the “13th Five-Year Plan (2016–2020)” period. In addition,
cultivated land pollution due to excessive use of pesticides, chemical fertilizers, and other chemical
products is common [11,12]. In 2014, China’s comprehensive national soil pollution survey showed that
nearly one-fifth of China’s cultivated land has been polluted to varying degrees, and the highly polluted
areas are mainly the agriculturally developed areas [13]. The Dongting Lake Eco-economic Zone,
located in the middle reaches of the Yangtze River, has been a significant production base for grain and
agricultural products since ancient times. However, excessive chemical products have caused a series
of ecological problems in the cultivated land areas, such as land quality degradation and a decline in
soil fertility.

Land use efficiency (LUE) is a representative concept following the sustainable development
paradigm [14]. Therefore, it is urgent to evaluate and improve cultivated land use efficiency (CLUE)
and prevent land pollution [10]. Scholars have conducted many studies on evaluation index system
and model of land use efficiency. Based on a literature review, the analysis regarding LUE was basically
measured by a single indicator such as the per-capita built-up area [5,15] or land use ratio (specific
output) [16–19]. With the advancement in research, people have realized that the composition of a
land system is very complex, and it is essential to consider multiple inputs and outputs. Since the DEA
(Data Envelopment Analysis) model can be used to process multiple inputs and outputs simultaneously
and prevent model-setting errors, this method is widely used to evaluate land use efficiency [20,21].
For example, Chen et al. (2016) used the DEA model to analyze the changes in built-up land efficiency
in 336 cities of China [22]. Moutinho et al. (2017) took the output–oriented DEA model to estimate the
efficiency of 26 different European countries over 2001 and 2012 by comparing their performance [23].
Furthermore, the Malmquist productivity index proposed by Färe et al. (1994) has been widely used
to describe the dynamic changes in land use efficiency [24]. Hong et al. (2017) used the Malmquist
productivity index to investigate the dynamic evolution of land use efficiency in rural areas from a
scale change perspective [25]. Xie et al. (2019) estimated the dynamic performance of the total-factor
green use efficiency of industrial land, using a global non-radical distance function and the non-radical
Malmquist performance [26].

The key objective of the aforementioned research was to increase output while reducing input
by measuring LUE. However, it ignored the fact that several agricultural inputs are hazardous
to the sustainable utilization of land resources during the production process. Researchers in the
field of environmental science believe that the optimal strategy of effective land use is to optimize
the distribution of resources while reducing the environmental impacts of harmful inputs [3,23,27].
They proposed a new framework in assessing the ecological efficiency, named green efficiency or
environmental efficiency [28,29]. For instance, Korhonen et al. (2004) measured the efficiency
of 24 power plants in a European country to demonstrate how DEA is applied to eco-efficiency
evaluation [30]. Kuosmanen and Kortelainen (2005) integrated the environmental impact assessment
in industrial ecology and the frontier approach into a unified framework [31].

Slack variables cannot be solved with the traditional DEA model, whereas the slack-based measure
(SBM) model proposed by Tone (2001) can be used to solve this problem effectively [32]. SBM was
extended to the SBM-undesirable model to assess efficiency under the premise of environmental
pollution or other undesirable outputs, which is more suitable for input–output oriented measurements
of CLUE [13,33]. However, it is barely used in the field of LUE assessment. Previous studies ignored
environmental constraint impacts on CLUE, which might skew the results and lead to a vicious cycle
of soil pollution. Besides, few studies compare the traditional DEA and SBM-undesirable model to
verify the degree of hazardous impacts. Moreover, researchers have different opinions on constructing
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an index system, and only a few studies have examined environmental pollution or other undesirable
outputs; this might affect the reliability and accuracy of the results. Additionally, industries were
considered on a nationwide or provincial scale in the existing literature; studies that have examined
specific ecological economic zones are rare. Research on the driving forces of CLUE is mainly conducted
with efficiency decomposition or external factor regression, whereas a few studies focused on factor
allocation, looking for internal reasons for efficiency redundancy or loss.

Therefore, this study analyzes the spatial–temporal change characteristics and reasons for
CLUE in the Dongting Lake Eco-economic Zone from 2007 to 2017. First, we selected 25 districts
of the Dongting Lake Eco-economic Zone and used the CCR (Charner, A.; Cooper, W.W.;
Rhodes, E.) [20] and SBM-undesirable models to measure and compare CLUE to identify the effect of
environmental constraints. Then, we analyzed the spatial–temporal change characteristics of CLUE
with environmental constraints and reasons. Finally, the inefficient input–output redundancy was
analyzed, and policies were suggested for sustainable agriculture development.

2. Data and Methodology

2.1. Study Area

The study area, the Dongting Lake Eco-economic Zone in Hunan Province, is approximately
4.6 × 104 km2, which can be divided into four regions and 25 districts (Figure 1): Changsha region
(one district), Yueyang region (nine districts), Changde region (nine districts), and Yiyang region
(six districts). The population of the research area occupies about 1/3 of Hunan Province, and its
economic income is approximately one-quarter of the provincial income. Regarding agricultural
resources, cultivated land and agricultural produce in the Dongting Lake Eco-economic Zone are 20%
and 35%, respectively, that of Hunan Province. However, due to climate change, human activities,
and other factors, the problems of shrinking lakes and ecological degradation have become
increasingly prominent. In the past decade, large amounts of pesticides and fertilizers were
applied in the lake area, and chemical oxygen demand and ammonia nitrogen emissions from
agricultural sources have increased. Therefore, it is urgent to coordinate economic development and
environmental protection.Land 2020, 9, x FOR PEER REVIEW 4 of 15 
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2.2. SBM-Undesirable Model

To examine the effects of non-point source pollution and carbon emissions on CLUE,
we considered two scenarios, without and with environmental constraints. The traditional CLUE
without environmental constraints was measured with the input-oriented CCR model under the
traditional DEA method, whereas CLUE with environmental constraints was calculated with the
SBM-undesirable model. The efficiency gap (the result of the SBM-undesirable model minus the
result of the CCR model) of the two models reflects the degree to which the level of environmental
pollution affects CLUE. Tone (2001) proposed the SBM model that considers slack variables and the
SBM-undesirable model that considers undesired outputs [32]. The basic principle is to treat each
district as a decision-making unit (DMU), assuming that n DMUs contain the input vectors and two
output vectors representing the expected output and undesired output. It is expressed as x ∈ Rm,
ye
∈ Ra, yn

∈ Rb, where m, a, and b represent the input element of the DMU, desirable output and
undesirable output, respectively. The matrices X, Ye and Yn are defined as x = [x1, x2, . . . , xn] ∈ Rm×n,
ye =

[
ye

1, ye
2, . . . , ye

n

]
∈ Ra×n, yn =

[
yn

1 , yn
2 , . . . , yn

n

]
∈ Rb×n, assuming X, Ye, Yn are greater than zero. The

production possibility set is defined based on the input angle and the constant return of scale (CRS):
p =

{
(x, ye, yn

∣∣∣x ≥ Xλ, ye
≤ Yeλ, yn

≤ Ynλ,λ ≥ 0)
}
. The model is as shown in Equation (1):
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1− 1
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s.t. x0 = Xλ+ D−, ye
0 = Yeλ−De, yn

0 = Ynλ−Dn

D− ≥ 0, De
≥ 0, Dn

≥ 0,λ ≥ 0

(1)

where D−, De, and Dn are the slack variables, representing excessive input, insufficient desirable output,
and excessive undesirable output, respectively; ρ* is the CLUE of the DMU, and the range of the value
is 0~1. When ρ∗ = 1, D−, De, and Dn are all zero, which indicates that the evaluation unit is completely
valid (efficient DMU); otherwise, it indicates a loss of efficiency.

2.3. Indicator Selection and Data Source

When selecting the indicators, the input generally has three elements, which are land, capital,
and labor, whereas the output is expressed in terms of economic value or grain production. However,
the existing studies focused only on the expected output and ignored the hazardous output, such as
carbon emissions and agricultural pollution [34–36]. To address this issue, Cecchini et al. (2018)
discussed carbon mitigation by providing efficiency performance measures in the presence of the joint
production of milk and GHC (greenhouse gas) emissions [37]. The SBM model proposed by Tone (2001)
can be used to solve the bias or inaccuracy of the traditional DEA model effectively [32], and after he
extended the model to include undesirable outputs (SBM-undesirable model), it has often been used in
studies to measure environmental efficiency or eco-efficiency [37–39]. Based on Lu’s (2018) research,
the total volume of household waste water discharged, industrial waste gas emissions, and industrial
solid wastes generated are treated as indicators of undesirable output, and the regional differences
in the CLUE of the 31 provinces in China were estimated with SBM-undesirable and Gini coefficient
decomposition models [40]. Under the goal of promoting the sustainable development of agriculture,
considering only the favorable output is not conducive to accurately evaluate CLUE. Incorporating
negative output into the efficiency assessment framework will enable a comprehensive assessment of
the capacity of land use [41].

The existing research results of CLUE show that the inputs and outputs are generally considered
comprehensively [13]; the indicator system is shown in Table 1.
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Table 1. Index system of cultivated land use efficiency.

Index Indicators Variables

Input

Land input Total sown area of the crops (103 hm2)

Labor input Crop farming practitioners (104 people)

Capital input

Application of (purified) chemical fertilizer (104 t)
Application of pesticide (104 t)

Application of agricultural plastic film (104 t)
Total machinery power applied in crop farming

(104 kw·h)
Amount of livestock

Effective irrigation area (103 hm2)

Output

Desirable output Total production value of crop farming (104 Yuan)

Undesirable output Total carbon emissions (104 t)
Total agricultural non-point source pollution (104 t)

The input mainly includes three elements, which are land, capital, and labor. Land input: some
scholars use the area of the agricultural land to represent land input, but the regional differences do
not reflect the actual cultivated land input, so in this study, the total sown area of the crops is used to
represent land input. Labor input: due to the lack of data on crop farming practitioners in the “Hunan
Rural Statistical Yearbook”(2008–2018), the value of this variable is separated from that of generalized
agricultural (comprising agricultural, forestry, animal husbandry, and fishery) practitioners, using the
ratio of the output of crop farming to the output of generalized agricultural. Capital input: this
covers a wide range of production materials, including chemical fertilizer, pesticide, agricultural film,
mechanical power, draught animals, as well as water resources, and they are represented by the
application of (purified) chemical fertilizer, application of pesticide, application of agricultural plastic
film, total machinery power applied in crop farming, amount of large livestock, and effective irrigation
area, respectively. The total crop-farming machinery power is separated from the total agricultural
machinery power, and the method of calculation is the same as that of the crop farming practitioners.
The outputs include both desirable and undesirable outputs. Economic production is mainly used
to represent the desirable output. It is described as the total production value of crop farming to
maintain a unified statistical caliber. All prices were converted using 2007 as the base year to eliminate
the impact of changes in price. The undesirable output includes total carbon emissions and total
non-point source pollution. The accounting method is as follows. The main sources of carbon
emissions are agricultural tillage, agricultural machinery usage, and direct or indirect application
of irrigation, fertilizers, pesticides, and agricultural film. The total amount of carbon emissions is
calculated as follows:

E =
∑

Ei =
∑

Tiδi (2)

where Ti and δi represent the value for each source of carbon emission and the coefficient of carbon
emission, respectively. The emission coefficients of each source of carbon emission are presented in
Table 2. Agricultural non-point source pollution is mainly caused by excessive use of chemical fertilizers,
pesticides, and agricultural film. In this study, the total amount of agricultural non-point source
pollution comprises the amount of loss of nitrogen and phosphorus in chemical fertilizers, the amount
of the ineffective use of pesticides, and the residual amount of agricultural film. The calculation of the
correlation coefficient is based on the literature and the “First National Pollution Survey: Fertilizer Loss,
Pesticide Loss, and Film Residue Coefficient Manual” while considering the regional difference (Table 3).
The basic data used in this study are from the “Hunan Statistical Yearbook” (2008–2018) and “Hunan
Rural Statistical Yearbook” (2008–2018).
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Table 2. The coefficient of carbon emission of major sources of carbon in cultivated land use.

Source of Carbon Coefficient of Carbon Emission Source of Carbon Coefficient of Carbon Emission

Fertilizer 0.8956 kg/kg Agricultural machinery 0.18 kg/kw
Pesticide 4.9341 kg/kg Farmland tillage 312.6 kg/km2

Agricultural film 5.18 kg/kg Agricultural irrigation 20.476 kg/km2

Table 3. The type of pollution and amount of agricultural non-point source.

Pollution Type Amount of Pollution

nitrogen (Nitrogen content of compound fertilizer and application rate of
nitrogen fertilizer) × Pollution intensity

phosphorus (Phosphorus content of compound fertilizer and application rate of
phosphate fertilizer) × Pollution intensity × 43.66%

pesticide Use of pesticides × Invalid coefficient
Agricultural film Agricultural film use × Residual coefficient

3. Results and Analysis

3.1. Environmental Restrictions on CLUE

We relied on the DEA-SOLVER PRO5.0 platform to calculate the CLUE of the 25 districts in
the Dongting Lake Eco-economic Zone from 2007 to 2017. The results are shown in Table 4 (due to
limited space, only the results of CLUE for four years are listed). Due to environmental constraints,
the average CLUE in the Dongting Lake Eco-economic Zone from 2007 to 2017 was 0.662, which means
that the current actual output level is 66.2% of the ideal output level. If the potential of existing
production factors is fully realized, the output level can be increased by approximately 33.8%. The results
of the SBM-undesirable model in all districts are less than or equal to the results of the CCR model.
The average CLUE with undesired outputs in 2007, 2011, 2014, and 2017 is 0.753, 0.716, 0.628, and 0.595,
respectively, The average CLUE without the undesired output in 2007, 2011, 2014, and 2017 is 0.949,
0.896, 0.848 and 0.827, respectively. Adding undesirable output indicators, such as non-point source
pollution and carbon emissions, reduces CLUE significantly. Thus, evaluating the traditional CLUE
without environmental constraints distorts the results.

To analyze the impact of environmental restraints, we have presented the efficiency score calculated
with the CCR and SBM-undesirable models, the average efficiency gap of CLUE from 2007 to 2017,
in descending order as follows: Yueyang (0.299) > Yiyang (0.294) > Changde (0.097). At the district level,
except for Junshan, the efficiency gap of other districts in the Yueyang Region exceeds 0.3, among which
Yunxi (0.444) and Miluo (0.417) have the largest efficiency gap. Moreover, the efficiency gap of 87.5%
of Yueyang and 50% of Yiyang districts is greater than 0.3, whereas the reduction rate of the undesired
output is higher than the growth rate of the desired output. Regarding undesirable agricultural
pollution output, Wangcheng, Linli, Taoyuan, and Jinshi can achieve the optimal allocation of resources,
both inputs and outputs.

3.2. Temporal Characteristics of CLUE with Environmental Constraints

From 2007 to 2017, the average CLUE with environmental constraints of the Dongting Lake
Eco-economic Zone ranged from 0.753 to 0.595. From 2007 to 2011, the CLUE in Changde and
Yueyang fluctuated, and after reaching its peak in 2011, the efficiency value declined gradually.
Yiyang’s efficiency peaked in 2013 and then declined gradually. The annual average CLUE in each
region during the study period is ranked in descending order as follows: Changde (0.862) > Yueyang
(0.568) > Yiyang (0.448). Wangcheng, Yueyanglou, Lintong, Taoyuan, and Jinshi were efficient frontiers
(efficiency score=1) of all DMUs during the 10 years. Except for Hanshou and Shimen, the efficiency
scores of all districts increased slightly, but those of other districts decreased to different degrees.
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Table 4. Evaluation results of cultivated land use efficiency in major years.

Region District
2007 2011 2014 2017 Average (2007–2017)

CCR SBM-U CCR SBM-U CCR SBM-U CCR SBM-U CCR SBM-U

Changsha Wangcheng 1 1 1 1 1 1 1 1 1 1

Yueyang

Yueyanglou 1 1 1 1 1 1 1 1 1 1
Yunxi 0.966 0.595 0.888 0.460 0.840 0.391 0.752 0.388 0.873 0.429

Junshan 1 1 1 1 1 1 0.933 0.502 0.994 0.955
Yueyang 0.955 0.599 0.836 0.478 0.735 0.400 0.625 0.376 0.783 0.443
Huarong 0.927 0.594 0.835 0.420 0.738 0.336 0.652 0.307 0.778 0.386
Xiangyin 0.989 0.786 0.933 0.611 0.909 0.535 0.851 0.475 0.921 0.599
Pingjiang 0.836 0.407 0.710 0.379 0.582 0.303 0.640 0.295 0.696 0.338

Miluo 1 0.688 1 1 0.921 0.376 0.881 0.369 0.975 0.558
Linxiang 0.912 0.487 0.811 0.431 0.694 0.355 0.639 0.345 0.782 0.401
Average 0.954 0.684 0.890 0.642 0.824 0.522 0.775 0.451 0.867 0.568

Changde

Wuling 1 1 1 1 0.940 0.401 0.873 0.384 0.871 0.607
Dingcheng 0.976 0.787 1 1 0.986 0.794 0.908 0.650 0.956 0.783

Anxiang 1 1 1 1 1 1 1 1 0.993 0.951
Hanshou 0.902 0.754 1 1 1 1 1 1 0.967 0.889

Lixian 0.933 0.792 0.834 0.526 0.801 0.430 0.833 0.503 0.846 0.551
Linli 1 1 1 1 1 1 1 1 1 1

Taoyuan 1 1 1 1 1 1 1 1 1 1
Shimen 0.962 0.758 1 1 1 1 1 1 0.997 0.978
Jingshi 1 1 1 1 1 1 1 1 1 1

Average 0.975 0.899 0.982 0.947 0.970 0.847 0.957 0.837 0.959 0.862

Yiyang

Ziyang 0.815 0.457 0.777 0.338 0.534 0.269 0.468 0.242 0.626 0.307
Heshan 0.862 0.600 0.756 0.430 0.611 0.373 0.565 0.380 0.664 0.417
Nanxian 0.945 0.670 0.803 0.448 0.682 0.389 0.883 0.399 0.812 0.487
Taojiang 0.893 0.576 0.730 0.463 0.653 0.407 0.643 0.367 0.726 0.443
Anhua 0.930 0.587 0.794 0.502 0.864 0.539 0.868 0.519 0.861 0.540

Yuanjiang 0.914 0.678 0.704 0.415 0.698 0.399 0.673 0.378 0.762 0.492
Average 0.893 0.594 0.761 0.433 0.674 0.396 0.683 0.381 0.742 0.448

Total average 0.949 0.753 0.896 0.716 0.848 0.628 0.827 0.595 0.875 0.662

Note: (1) CCR represents the value of CLUE without environmental constraints. (2) SBM-U represents the value of CLUE with environmental constraints. (3) Wangcheng is the only DMU
in Changsha, so the DMU in Changsha cannot be compared.
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3.3. Spatial Differentiation of CLUE with Environmental Constraints

Based on relevant literature, each district’s CLUE was divided into three levels: high-efficiency
(0.7–1.0), medium-efficiency (0.5–0.7), and low-efficiency (0–0.5). The spatial distribution of CLUE with
environmental constraints in 2017 was plotted with ARCGIS 10.2 visualization (Figure 2). The figure
shows that the CLUE of the Dongting Lake Eco-economic Zone is depicted as high in the west and
low in the east. There are eight main highly efficient DMUs that are mainly concentrated in Changde,
and the rest are scattered in Wangcheng and Yueyanglou, whereas four DMUs with medium efficiency
are located in Lixian, Dingcheng, Junshan, and Anhua. There are 12 low-efficiency DMUs, accounting
for approximately half of the total research area.

Changde region has the highest CLUE. There are six highly efficient districts where their
efficiency reached the optimal level (with an efficiency score of 1). That means the agricultural
resources are saved as much as possible, with the lowest agricultural pollution. The efficiency
scores of districts in the Yueyang and Yiyang regions vary from each other, and most of them are
low-efficiency DMUs. This indicates that improvement should be made to coordinate development by
adjusting the agricultural input level or by reducing undesirable agricultural pollution emissions to
achieve optimal efficiency.
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3.4. Reasons Analysis

According to the SBM-undesirable model, when the CLUE does not reach a relatively effective
state (efficiency value <1), it may be due to excessive input, insufficient desirable output, or excessive
undesirable output. The corresponding redundancy ratio can be obtained by dividing each
redundancy amount, D−, De, and Dn, by its corresponding input indicators, desirable output
indicators, and undesirable output indicators, respectively. Based on that, the redundancy of input
and undesirable output is calculated while keeping the desirable output unchanged (De=0), and then
the reasons for the reduction of CLUE with environmental constraints can be identified, leading to
each improvement direction.

From 2007 to 2017, the CLUE of Dongting Lake Eco-economic Zone decreased; this can be
observed from the indicators of the redundancy rate presented in Table 5. First, the side effects of input
redundancy on CLUE increased every year, and the inefficiencies due to the redundancy of livestock,
fertilizer, and machinery inputs became more and more obvious, which increased by 32.62%, 18.28%,
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and 16.11%, respectively from 2007 to 2017. In general, the most obvious redundant inputs affecting
the CLUE were livestock, fertilizers, and pesticides, and their average redundancy rates were 43.90%,
33.19%, and 31.90%, respectively, from 2007 to 2017, which indicates excessive investments in the
overall agricultural production process and a low conversion rate of chemical fertilizers and pesticides
in the Dongting Lake Eco-economic Zone. Second, the side effects of cultivated land use due to
undesirable output redundancy increased every year. The increase in the output redundancy rate of
carbon emissions and non-point source pollution reached 14.52% and 12.95%, respectively, and the
average redundancy was 23.26% and 32.48%, respectively. Excessive non-point source pollution was
the most important factor affecting the improvement of CLUE, and the impact of carbon emissions on
CLUE became more obvious.

Table 5. Redundancy rate of each input–output indicator of cultivated land use efficiency from 2007
to 2017.

Year

Labor Land Capital Undesirable Output

Practitioner Sown
Area Fertilizer Plastic

Film Pesticide Machinery
Power

Effective
Irrigation Livestock Carbon

Emission

Non-Point
Source

Pollution

2007 12.50% 13.47% 21.06% 23.60% 26.79% 8.12% 26.69% 21.94% 13.77% 23.01%
2008 15.63% 18.26% 25.28% 21.44% 25.09% 7.55% 17.20% 31.28% 18.24% 26.26%
2009 21.32% 25.44% 34.73% 29.09% 34.79% 16.17% 29.08% 47.08% 25.52% 35.23%
2010 23.22% 24.71% 36.11% 30.29% 31.48% 18.24% 27.48% 50.05% 24.77% 36.14%
2011 17.90% 20.27% 29.80% 25.05% 24.66% 13.37% 11.55% 39.98% 20.09% 29.87%
2012 20.38% 23.70% 33.87% 30.85% 29.97% 19.24% 9.25% 45.93% 23.39% 33.60%
2013 19.54% 22.04% 32.80% 24.38% 33.25% 17.68% 26.07% 42.73% 22.17% 32.25%
2014 24.07% 26.08% 36.59% 24.70% 35.79% 21.94% 30.99% 49.40% 26.22% 34.89%
2015 25.95% 25.35% 35.94% 25.20% 36.71% 20.34% 30.44% 48.19% 25.51% 33.33%
2016 28.84% 27.67% 39.61% 25.69% 35.57% 23.36% 33.00% 51.75% 27.82% 36.70%
2017 28.45% 28.08% 39.34% 27.54% 36.81% 24.23% 34.71% 54.56% 28.30% 35.96%

Increase 15.95% 14.60% 18.28% 3.95% 10.01% 16.11% 8.02% 32.62% 14.52% 12.95%
average 21.62% 23.19% 33.19% 26.16% 31.90% 17.30% 25.13% 43.90% 23.26% 32.48%

3.5. Redundancy of Input and Undesirable Output

The results for 2017 can be used to analyze the redundancy from two aspects of input and
undesirable output to improve the efficiencies of DMUs with environmental constraints (Tables 6
and 7).

(1) From the Perspective of Input Indicators
Redundancy in livestock, fertilizer, and pesticide inputs commonly affects CLUE. The livestock

input is the most redundant of all the indicators, with an average of 54.56%. Chemical fertilizer
is the second most redundant input, with an average redundancy of 39.34%. Residual fertilizer
products flow into fields and penetrate into the groundwater, which not only causes a decline in
the quality of cultivated land and affects agricultural outputs but also seriously endangers drinking
water for humans and animals. Pesticides are the third most influential factor, with an average
redundancy of 36.81%. Pesticides and chemical fertilizers are major components of undesirable outputs
of agricultural production; pesticide ingredients are harmful and difficult to degrade in the soil.

There are regional differences in the effects of irrigation, labor, agricultural film, and land and
machinery inputs on CLUE. Regarding irrigation, in some districts, such as Linxiang and Taojiang,
the redundancy of the effective irrigation area is higher than 60%, whereas the redundancy in Wuling is
only 12.73%; however, in most districts, it is about 50%, which is due to the abundant water resources and
the lack of attention to the development of water-saving agriculture in studies. Regarding redundancy
in labor input, it varies significantly among the regions, with a redundancy rate of 73.23% in Anhua,
followed by 72.28% in Pingjiang. Both regions are poor districts in Hunan Province, which shows that
the region’s economic level is closely related to local labor employment. The flat terrain around the
Dongting Lake Eco-economic Zone and its climate condition are suitable for agricultural production.
Its cultivation and reclamation potential are small, and the multiple crop index is high. However,
the land input redundancy in Taojiang and Linxiang is higher than 50%, indicating that its land use
potential has not been fully utilized, resulting in extensive use of cultivated land. The redundant
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land input in other districts is mostly 30–40%. Regarding, agricultural film input, the redundancy
in Xiangyin is the lowest, only 4.49%. Pingjiang (89.95%), Huarong (85.90%), and Yunxi (85.48%)
have higher redundancy. The redundancy of planting machinery investment is relatively minimal,
with an average of 24.23%, but the regional differences are high, for example, the redundancy in
Yiyang (except for Nanxian) exceeds 44%, whereas that in Ziyang is 70.13%. In general, the Dongting
Lake Eco-economic Zone relied on agricultural machinery cooperatives to realize comprehensive
agricultural mechanization in the early years. Moreover, the subsidy policy of agricultural machinery
led to an enthusiasm for agricultural machinery production.

(2) From the Perspective of the Undesirable Output
Most of the low-efficiency DMUs in 2017 (efficiency value <0.5) have a high amount of non-point

source pollution, which means that there is extensive use of pesticides, fertilizers, and agricultural films
in the production process, and undesirable output increases, causing second-hand farmland pollution
and resulting in inefficient use of cultivated land. The agricultural carbon emission redundancy of the
Dongting Lake Eco-economic Zone is as high as 28.30%; the carbon emission redundancy of Yiyang
is significantly higher than that of the other regions, and it is as high as 53.2% and 53.2% in Ziyang
and Taojiang, respectively.

Table 6. Top three input–output factors affecting the cultivated land use efficiency.

Region DMU 2007 2011 2014 2017

Changsha Wangcheng / / / / / / / / / / / /

Yueyang

Yueyanglou / / / / / / / / / / / /
Yunxi PF P F PF LS NPS LS PF NPS LS PF NPS

Junshan / / / / / / / / / LS F NPS
Yueyangxian I PF NPS LS NPS F LS F NPS LS F NPS

Huarong PF NPS F PF LS P PF LS P LS P NPS
Xiangyin P I M LS P F P LS I LS P I
Pingjiang PF LS I PF I P LS PF L LS PF L

Miluo LS P PF / / / LS P PF LS P NPS
Linxiang I F NPS LS F NPS LS I F LS I F

Changde

Wuling / / / / / / LS P F LS P F
Dingcheng I C PF / / / I C F I P F

Anxiang / / / / / / / / / / / /
Hanshou P F L / / / / / / / / /

Lixian P I NPS LS F NPS LS F I LS F I
Linli / / / / / / / / / / / /

Taoyuan / / / / / / / / / / / /
Shimen L I L / / / / / / / / /
Jingshi / / / / / / / / / / / /

Yiyang

Ziyang PF F NPS PF P F P F NPS P F NPS
Heshan P F NPS P F PF P F I LS P I
Nanxian NPS F P NPS F LS F NPS P F LS NPS
Taojiang I LS M LS F NPS LS F L LS F I
Anhua LS L I LS I L LS L M LS L M

Yuanjiang F NPS LS LS F NPS LS F P LS F P

Note: PF: plastic film, P: pesticide, F: fertilizer, LS: livestock, NPS: non-point source pollution, I: irrigation, M:
machinery power, L: Practitioner, C: carbon emission.
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Table 7. Redundancy of inputs and outputs of cultivated land use efficiency in 2017.

Region DMU
Labor Land Capital Undesirable Output

Practitioner Sown Area Fertilizer Plastic
Film Pesticide Machinery

Power
Effective
Irrigation Livestock Carbon

Emission
Non-Point Source

Pollution

Changsha Wangcheng 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Yueyang

Yueyanglou 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Yunxi 26.34% 24.78% 67.05% 85.48% 51.59% 18.80% 55.43% 86.65% 25.81% 68.81%

Junshan 18.46% 31.63% 54.66% 33.72% 32.98% 1.68% 56.17% 90.05% 32.38% 46.48%
Yueyangxian 40.63% 48.19% 63.50% 53.52% 33.12% 32.89% 56.17% 89.55% 48.38% 60.31%

Huarong 34.84% 39.47% 69.02% 85.90% 77.70% 40.81% 56.30% 82.79% 39.94% 70.19%
Xiangyin 27.47% 30.42% 43.54% 4.49% 74.74% 42.72% 49.44% 88.24% 30.94% 31.08%
Pingjiang 72.28% 36.04% 50.87% 89.95% 57.96% 48.90% 50.82% 97.02% 36.42% 65.36%

Miluo 11.90% 35.49% 57.68% 72.22% 81.09% 24.88% 54.52% 92.65% 36.02% 64.81%
Linxiang 36.13% 51.48% 61.74% 48.29% 37.92% 58.25% 67.92% 87.55% 51.96% 55.91%

Changde

Wuling 56.70% 43.17% 67.67% 43.39% 71.70% 39.95% 12.73% 77.42% 42.79% 61.31%
Dingcheng 13.30% 39.27% 39.79% 0.00% 40.59% 0.00% 45.17% 0.00% 39.44% 38.64%

Anxiang 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Hanshou 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Lixian 31.45% 33.94% 56.43% 0.00% 48.97% 17.11% 52.59% 77.53% 34.54% 44.77%
Linli 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Taoyuan 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Shimen 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Jingshi 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Yiyang

Ziyang 64.08% 53.18% 76.81% 72.40% 81.33% 70.13% 53.69% 72.95% 53.20% 74.24%
Heshan 52.89% 45.07% 51.18% 41.56% 62.04% 50.54% 59.68% 71.82% 45.46% 34.76%
Nanxian 44.81% 41.08% 71.88% 30.87% 65.40% 14.87% 54.58% 69.74% 41.44% 68.45%
Taojiang 60.74% 52.99% 64.53% 6.28% 38.14% 52.89% 61.55% 95.68% 53.20% 47.25%
Anhua 73.23% 46.25% 22.63% 0.00% 6.01% 47.12% 38.85% 94.25% 46.11% 8.22%

Yuanjiang 45.90% 49.47% 64.46% 20.47% 58.88% 44.13% 42.25% 90.14% 49.35% 58.45%

Total 28.45% 28.08% 39.34% 27.54% 36.81% 24.23% 34.71% 54.56% 28.30% 35.96%
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4. Discussion

Due to the complex relationship between inputs and outputs in the cultivated land
utilization process, the limited availability of data, and the quantification of indicators, the existing
research does not have absolute standards and a unified measurement framework. Moreover, due to
the defects of the DEA model, the efficiency value cannot be used for a time series comparison, and it is
only significant when ranking is performed in the same period. Due to the differences in the conditions
of natural and socio-economic resources between regions, CLUE is affected by both internal productive
factor allocation and other external factors. This study analyzes only the cause of land use efficiency
loss from the perspective of productive factor allocation. In addition, due to the limited sample size,
this study does not examine the spatial correlation.

Results show that most districts indicate modest levels of CLUE and the scores decline, consistent
with other studies [27,42], e.g., Bonfiglio et al. (2017) assessed the radial eco-efficiency of arable
farm in the Le Marche region (Italy) in the period of 2011–2014, it is confirmed that most arable
farms exhibit a modest level of eco-efficiency and are characterized by specific eco-inefficiency in
relation to the use of fertilizers and pesticides [27]. Moutinho et al. (2017) estimated the economic and
environmental efficiency in 26 different European countries from 2001 to 2012 using DEA. Their results
show the eco-efficiency scores decreased when comparing 2009–2012 with those of the previous
2005–2008 period. This decrease resulted from lower domestic material consumption and an increase in
resource productivity [23]. Besides, CLUE with environmental constraints is generally lower than the
traditional value of CLUE [37,43] which indicates that CLUE could be increased by reducing the use of
harmful components contained in fertilizers (nitrogen and phosphorus) and other toxicity associated
with the pesticides. However, farmers may only value more economic benefits; it is difficult for them
to understand the urgent need for organic farming. The research process of this study and its main
policy implications for managing the situation are as follows.

First, although the CLUE is significantly reduced when there are environmental constraints in
several DMUs, it is possible to achieve an optimal input–output arrangement. The DMUs with higher
CLUE should focus on coordinating agricultural production and the ecological environment. Ecological
agriculture is based on traditional agriculture; DMUs with lower CLUE should change their extensive
agricultural management models, reduce pollution emissions, and develop ecological agriculture.
Measures, such as promoting the application of biological pesticides and organic fertilizers, formulating
fertilizers based on regular soil tests, and advocating the use of environmentally friendly chemical
supplies to minimize the hazardous impacts on the ecological environment, should be taken to control
carbon emissions and the generation of agricultural pollution. The government should construct a
comprehensive monitoring system, design a feasible ecological compensation mechanism, and call for
the full participation of local residents, for example, the residents should be required to report illegal
sewage discharge or other behaviors that are harmful to the ecological balance.

Second, the overall level of CLUE in the Dongting Lake Eco-economic Zone shows that Changde is
high and relatively balanced, whereas the efficiency gap between districts in Yueyang and Yiyang is high.
To address the uneven distribution of CLUE in the Dongting Lake Eco-economic Zone, the government
should integrate various resources among regions and exert the effect of coordinated governance.
The government should break the barriers of regional governance by setting cross-regional or
cross-sectoral governance and supervision authority, which will help to reduce the agricultural
efficiency gap in adjacent areas. The government should also set realistic agricultural development
goals and evaluation mechanisms, such as quantitatively assessing the performance of cross-regional
governance and building carbon or other emission trading platforms.

Finally, regarding the input–output redundancy, it is necessary to accelerate agricultural
industrialization, establish new types of agricultural management entities, and accelerate rural land
transfer based on local conditions. A similar policy has been shown by the Kazakhstan government to
show a positive effect [44]. Additionally, vigorously supporting the upgrading and transformation
of leading eco-agricultural enterprises in the lake area will establish a mechanism for farmers to
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connect and continuously improve tourism, for example, to make full use of the ecological resources in
the Dongting Lake Eco-economic Zone to create a unique industry that integrates tourism, leisure,
and ecological agriculture in the area, thus increasing local agricultural production and income.

5. Conclusions

Under the premise of the environmental constraints of carbon emissions and non-point source
pollution, this study uses the SBM-undesirable model and considers undesired outputs to evaluate
the CLUE of 25 districts in the Dongting Lake Eco-economic Zone from 2007 to 2017. The results
show that the CLUE with environmental constraints is significantly lower than the CLUE without
environmental constraints, indicating that it has high sustainable land use potential to be improved.
Moreover, the CLUE with environmental constraints shows an overall gradual decline, and its spatial
pattern varies greatly among research areas. Based on the comparative analysis of the CLUE with
undesirable outputs, this study suggests that land use management needs to formulate rational policy
strategies that serve to (1) coordinate the balance of agricultural production and pollution emissions,
(2) break through the barriers of regional governance, and (3) upgrade resource allocation and avoid
input–output redundancy.

Although the research has only focused on the Dongting Lake Eco-Economic Zone in China,
the cultivated land use efficiency and farmland pollution and waste emission problems show that
similar results can arise in many other regions around the world, particularly in developing countries.
Assessing CLUE containing undesirable outputs will contribute to the identification of redundancy of
ineffective DMUs and the development of more efficient management solutions by understanding
the connotation of CLUE, developing an evaluation index system, and evaluating the CLUE based
on productivity factor inputs, desirable outputs, and undesirable outputs. Given the findings from
this research, the government should focus on coordinating agricultural production and the ecological
environment. Besides, the research idea and method can be used for reference in other fields, such as
manufacturing and construction, and it is also feasible for management departments or governors to
assess project performance.
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