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Abstract: There is a growing interest for scientists and society to acquire deep knowledge on the
impacts from environmental disasters. The present work deals with the investigation of vegetation
dynamics in the Chernobyl area, a place widely known for the devastating nuclear disaster on the
26th of April 1986. To unveil any possible long-term radiation effects on vegetation phenology,
the remotely sensed normalized difference vegetation index (NDVI) from the Moderate Resolution
Imaging Spectroradiometer (MODIS) was analyzed within the 30 km Exclusion Zone, where all
human activities were ceased at that time and public access and inhabitation have been prohibited
ever since. The analysis comprised applications of seasonal trend analysis using two techniques,
i.e., pixel-wise NDVI time series and spatially averaged NDVI time series. Both techniques were
applied in each one of the individual land cover types. To assess the existence of abnormal vegetation
dynamics, the same analyses were conducted in two broader zones, i.e., from 30 to 60 km and from
60 to 90 km, away from Chernobyl area, where human activities were not substantially altered.
Results of both analyses indicated that vegetation dynamics in the 30 km Exclusion Zone correspond
to increasing plant productivity at a rate considerably higher than that of the other two examined
zones. The outcome of the analyses presented herein attributes greening trends in the 30 km and the
30 to 60 km zones to a combination of climate, minimized human impact and a consequent prevalence
of land cover types which seem to be well adapted to increased radioactivity. The vegetation greening
trends observed in the third zone, i.e., the 90 km zone, are indicative of the combination of climate
and increasing human activities. Results indicate the positive impact from the absence of human
activities on vegetation dynamics as far as vegetation productivity and phenology are concerned in
the 30 km Exclusion Zone, and to a lower extent in the 60 km zone. Furthermore, there is evidence
that land cover changes evolve into the prevalence of woody vegetation in an area with increased
levels of radioactivity.

Keywords: NDVI trend; vegetation productivity; vegetation dynamics; MODIS land products;
Chernobyl; effects of radiation on plants

1. Introduction

Human casualties and associated increases in human mortality rate from natural and
human-induced disasters have been extensively studied [1,2]. Nuclear disasters, in particular,
have resulted in lasting impacts on human populations in the areas surrounding the disaster sites [3].
Those impacts are related to the acute radioactivity dose over a relatively short period, usually a few
months, transforming into chronic exposure to decreasing levels of radioactivity, which are, however,
lower than the lethal dose [4]. Furthermore, during the 35-year period since the nuclear accident in
Chernobyl, numerous research articles have been published, aiming to highlight impacts from such an
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unprecedented event on humans as well as on plant and animal species. Results indicated the severity
of impacts to people exposed to acute radioactivity immediately after the accident, whereas there is
still no indisputable conclusion on the chronic effects of the exposure to lower radioactivity doses on
life [4,5].

Several studies conducted within a decade of the accident found considerably higher mutation
rates in both mice and human populations [6,7]. However, later studies contradict these earlier
findings, showing inconclusive results on the long-term effects of such catastrophic events on biota [3,8].
Scientists that initially concluded on devastating effects on many organisms have gradually changed
their position and acknowledge the lack of sound scientific data that could support reliable results
for science and society [4]. Recently, researchers have demonstrated that the Chernobyl ecosystem
supports a highly diverse and efficient vertebrate scavenging community, which is an indicator of
abundant wildlife populations [9]. Surprisingly, recent research has documented thriving wildlife in
exclusion zones, such as those associated with the Chernobyl and Fukushima nuclear disasters, and it
is shown that rewilding of affected ecosystems can happen which is attributed, to a major extent, to the
absence of humans after disastrous events [10–13]. Concerning plant species, there are considerably
less works published mainly demonstrating the effects of chronic low-dose exposure in places like
Chernobyl, affected by a serious radioactive accident, which can destabilize the genetic structure of
plants [14]. An interesting finding is that plants seem to have developed a stress response and a defense
strategy that prevents genome instability, which allows them to survive in extreme environments,
like those contaminated by nuclear accidents [15].

While all previously mentioned works focus on field experiments and collection of in situ data,
either for human or animal and plant impact studies, there is a great potential of remotely sensed
information to contribute to an environmental impact assessment. Currently, there are numerous studies
being published on environmental monitoring and impact assessment using mainly satellite derived
remotely sensed data. Environmental remotely sensed information has been available to scientists
for almost fifty years, e.g., the Landsat missions, or the Terra and Aqua satellites from the NASA’s
Earth Observing System Data and Information System (EOSDIS), among many others. It is, however,
only after the advances of IT and especially the evolution of the internet, when scientists achieved easy
access to a long enough time series of environmental data at a global scale, that scientists have been
able to perform regional and global assessments concerning climate change [16–19], hydrology [20–24],
vegetation productivity and changes [25–29]. The aim of the present work is to identify whether
vegetation productivity has been affected by the catastrophic failure of Chernobyl Power Plant on
the 26th of April 1986, i.e., exactly 34 years before the present work. Vegetation productivity was
assessed using MODIS remotely sensed normalized difference vegetation index (NDVI) data from
2000 to 2020, in three distinct zones in the Chernobyl Power Plant area, i.e., the 30 km Exclusion Zone
and two surrounding zones, i.e., the 30 to 60 km zone (hereafter 60 km zone) and the 60 to 90 km
zone (hereafter 90 km zone). The magnitude and direction of vegetation productivity (increasing or
decreasing trends) were computed applying seasonal trend analysis at the pixel level and with spatially
averaged time series of NDVI values, in various land cover types in each one of the three zones.
Results were evaluated considering also the dominant land cover changes that took place in each zone.

Concerning Chernobyl’s vegetation monitoring and assessment, an interesting work is presented
by [30], where vegetation conditions in the Chernobyl Exclusion Zone are studied before and after the
accident using Landsat observations, and it concluded that NDVI showed to be independent from the
radiation values measured and that the increase in NDVI values long after the accident is attributed
mostly to land abandonment. Analogous conclusions also using Landsat data were reported in [31].
The present work, however, is considerably different from those two publications, since it focuses
on comparison of vegetation productivity trends in Chernobyl’s Exclusion Zone compared to two
surrounding zones where human activities were not interrupted after the accident. It also analyzes
the NDVI time series of those three zones making use of the MODIS NDVI and land cover products.
It does not aim to determine pre- and post-accident vegetation conditions such as the works of [30,31].
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2. Materials and Methods

2.1. Study Area Description

The Chernobyl area is located in the north part of Ukraine, bordering Belarus. The region is
a rural area, covered mostly by woodlands and marshlands. Major urban centers used to be the
cities of Chernobyl and Pripyat which have been uninhabited for the last 35 years. Chernobyl is
widely known for the nuclear accident that occurred on 26 April 1986. The disaster resulted in the
evacuation of 116,000 individuals from the area. The wildlife that remained in the abandoned area was
further affected by exposure to very high doses of radioactivity immediately following the accident.
Studies related to the long-term effects of radiation on mammal abundance in the Chernobyl area did
not support evidence of a negative influence of radiation [10], whereas the need for further research on
the ecological consequences of radiation on specific vertebrate and invertebrate species is highlighted
in relevant studies [3]. Many of the people who evacuated the Chernobyl area moved to a new city,
50 km east of Chernobyl, namely Slavutych. The Chernobyl accident released radioactive isotopes into
the atmosphere, polluting a major portion of land in Europe [3]. Immediately after the accident, a 30 km
radius area around Chernobyl Nuclear Power Plant was established by the Soviet Union, known as
the Chernobyl Exclusion Zone (Figure 1). The study area is the bounding region of approximately
32,000 km2 of the Chernobyl Power Plant. It comprises the 30 km Exclusion Zone, and two additional
bounding zones, i.e., the 60 km zone, formed as a region covering the area from 30 to 60 km around the
Chernobyl site, and the 90 km zone covering the area from 60 to 90 km from Chernobyl (Figure 1).
Land cover types based on the MODIS 2018 MCD12Q1 product [32] (MODIS/Terra+Aqua Land
Cover Type Yearly L3 Global 500 m SIN Grid V006 DOI: 10.5067/MODIS/MCD12Q1.006) in the three
examined zones can be seen in Figure 2. Land cover classes are defined according to the International
Geosphere-Biosphere Program (IGBP) classification scheme. Table 1 provides information on the area
occupied by the individual land cover types in each zone. Vegetation dynamics were determined in all
three individual zones in the different land cover types and the results for the 30 km Exclusion Zone
(abandoned area where no human activities take place) were compared against the 60 and 90 km zones
(zones where human activities did not cease).
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Figure 2. Land cover types based on the Moderate Resolution Imaging Spectroradiometer (MODIS)
2018 MCD12Q1 product. Coordinates are in Universal Transverse Mercator (UTM) Zone 35N.

Table 1. Areas occupied by various land cover types in the three examined zones based on the Moderate
Resolution Imaging Spectroradiometer (MODIS) 2018 land cover product.

Land Cover Type 30 km Exclusion Zone (km2) 60 km Zone (km2) 90 km Zone (km2)

Evergreen Needleleaf Forests 368.8 1144.8 1014.3
Evergreen Broadleaf Forests - - -

Deciduous Needleleaf Forests - 0.8 2.5
Deciduous Broadleaf Forests 54.5 222.5 273.0

Mixed Forests 836.3 2328.8 2644.5
Closed Shrublands - - -
Open Shrublands - - -
Woody Savannas 900.0 3466.0 3899.3

Savannas 475.0 1764.5 1762.3
Grasslands 139.3 1548.5 2995.3

Permanent Wetlands 29.3 65.5 37.0
Croplands 6.3 918.5 4505.3

Urban and Built-up Lands 15.5 4.8 130.8
Cropland/Natural Vegetation

Mosaics - 34.0 166.3

Permanent Snow and Ice - - -
Barren 5.3 - 0.8

Water Bodies 30.8 418.5 267.0

2.2. NDVI and Land Cover Change Analyses

NDVI is a non-dimensional index calculated from the remotely sensed reflectance measurements
in the spectral regions of red (visible) and near-infrared and is a measure of the vegetation greenness
but also health and productivity. It ranges from −1 to 1 [33]. Negative or very low positive NDVI
values (<0.05) correspond to barren land, desert, snow or presence of water bodies. Moderate and high



Land 2020, 9, 433 5 of 19

positive NDVI values correspond to various types of vegetation. The higher NDVI values correspond
to locations where the more photosynthetically active vegetation is present, with NDVI > 0.6 typically
highlighting areas of dense forests or tropical rainforests [34,35]. Various ecosystem changes have
been studied at local and global scales such as plant growth [34], greening and browning patterns
in specific areas [36–38], seasonal vegetation productivity [39], detecting and predicting vegetation
anomalies [40], assessment of human impact on vegetation [41], monitoring of forest conditions [42],
drought monitoring [43] and changes in length of growing seasons [44]. Known limitations of the
satellite-derived NDVI are cloud cover, presence of very steep topographic features, presence of snow
or ice and adverse atmospheric conditions [25].

Various satellite-derived NDVI products are today available. Among them, the NDVI from
the Global Inventory Monitoring and Modeling System (GIMMS) project (“National Center for
Atmospheric Research Staff (Eds). Last modified 14 Mar 2018. ‘The Climate Data Guide: NDVI:
Normalized Difference Vegetation Index-3rd generation: NASA/GFSC GIMMS.’ Retrieved from
https://climatedataguide.ucar.edu/climate-data/ndvi-nor\T1\textquotedblright) has been widely used
due to its long temporal coverage of approximately 30 years. GIMMS NDVI is produced from the
Advanced Very High Resolution Radiometer (AVHRR) and provides high-quality NDVI data at a
2-weekly temporal and 8 km spatial resolution [45]. High-quality NDVI products are also released
from the Earth Observing System (EOS) Terra and Aqua platforms carrying the MODIS instrument.
MODIS NDVI products have been released at 16-day time steps at a spatial resolution from 1 km to
250 m from 2000 until today. MODIS NDVI products have been widely used and tested in numerous
areas all over the world and are nowadays considered as a “state-of-the-art” standard dataset [46,47].
The high spatial resolution, the long coverage period and the extended validation over a wide range of
representative conditions place MODIS NDVI products among the best NDVI datasets.

In the present work, the NDVI was retrieved from Collection 6 of MOD13Q1 [48], a product
generated every 16 days at 250 m spatial resolution. Each MODIS NDVI product is released with
pixel-level metadata in binary encoding [49], i.e., the VI quality layer, describing the quality, usefulness,
atmospheric conditions, presence of clouds, snow or ice and presence of shadow or other conditions
that constitute questionable pixel quality. In this work, the VI quality layer was used to filter pixels
that were covered with clouds, snow or ice or whose quality was reported as low due to atmospheric
conditions. More specifically, as the filtering procedure is conducted using the 16-bit flags provided in
the VI quality layers of the MOD13Q1 product, information from the quality assurance bits/fields in the
VI quality assessment science datasets table (Table 5 from [48]) was used. Regarding Bits 0–1 of the VI
quality layer, those describing pixels produced, but most probably cloudy, or pixels not produced due to
other reasons than clouds were excluded. Regarding Bits 2–5, only the highest-quality pixels remained,
while for Bits 6–7, pixels with high aerosol quantities were excluded. For Bit 8, only pixels with no
adjacent cloud detected were kept, while for Bit 9, all values were accepted. For Bit 10, only pixels with
no mixed clouds were kept, while for Bits 11–13, only pixels describing moderate or continental ocean
and deep ocean were excluded (not present in the study area anyway). Bit 14 describes the possible
presence of snow/ice, therefore pixels with value of 1 (possible snow/ice) were excluded. For Bit 15,
only pixels with a value of 0 were kept, i.e., possible shadows not present. The period of the NDVI
data analyzed in this work spanned from 5 March 2000 to 18 February 2020.

Land cover changes in the three examined zones were assessed using the MODIS MCD12Q1
land cover product [50], and the dominant changes in all three zones were highlighted. MCD12Q1
comprises 5 legacy classification schemes, among which the IGBP classification provides the most
categories, classifying Earth’s surface into 17 land cover types (Table 1). MCD12Q1 is provided globally
at an annual time step from 2001 to 2018, with 500 m spatial resolution. The latest collection, i.e.,
Collection 6 of the MCD12Q1, was used in the present work.

https://climatedataguide.ucar.edu/climate-data/ndvi-nor\T1\textquotedblright 
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2.3. Data Analysis

To determine the direction and magnitude of statistically significant vegetation trends,
pixel-wise harmonic regression incorporating trend and seasonality was implemented, which is
analogous to Fourier analysis and is known as seasonal trend analysis, which can also handle unequally
spaced data in time [39,43,45,51]:

yt = a1 + a2t +
k∑

j=1

γ j sin
(

2π jt
f

+ δ j

)
+ εt (1)

In Equation (1), t is time and f is the frequency of the NDVI time series (i.e., in the present case of
16-day temporal resolution f = 23), γ1 . . . γκ are amplitudes and δ1 . . . δ j are the phases (i.e., seasons),
a1 is the intercept of the NDVI series and a2 is the trend (slope). Phase values range from 0◦ to 359◦,
with 30◦ representing a shift of approximately 30 days, i.e., one month. In the present case, three
harmonic terms were employed and therefore k = 3 This is found to robustly describe variations of the
MODIS NDVI time series [43]. As normality of the NDVI time series is a requirement for applying
Equation (1), a Box–Cox transformation [52] was applied in those time series where normal distribution
was not evidenced.

The significance of the trend is estimated from a t-test with a rejection of the null hypothesis
of zero trend being reported at a significance level of 5% (p-value < 0.05). Only pixels that did not
experience land cover change during the period of analysis were used in the computational process.
To avoid any bias in computed means due to different sample sizes in the three zones, equal areas
(equivalent to the zone with the least areas with significant trends in the pixel-wise analysis) in each
land cover type were selected randomly and their spatial means of NDVI trends in each land cover
zone were evaluated.

Only a small portion of pixels in examined areas demonstrates statistically significant trends [38],
especially in areas of high altitude or high latitude where snow cover is frequent. To overcome this
problem, the spatial means of NDVI values were extracted for each date in each individual land
cover category, excluding pixels that have undergone land cover change during the analysis period.
Equal numbers of pixels in each land cover category were selected randomly in each one of the three
examined zones, with total area in each land cover category being the smallest area among the three
examined zones (lowest value from each line of Table 1). Thus, for each land cover category, a time
series of spatial means of the NDVI was computed and analyzed using Equation (1) in each one of the
three examined zones.

Input data were continuous MODIS NDVI images, at a 16-day time step for the period 2000 to
2020, i.e., the complete time series of MODIS NDVI products, after applying a filter based on the 250 m
16-day VI quality layer, to exclude problematic pixels as described in Section 2.2. It is true that the
year 2000 is 14 years after the Chernobyl disaster happened, so the analysis presented herein does not
represent the conditions immediately after the accident, which is beyond the scope of the present work.
The methodology could have been applied blending multisource NDVI data, e.g., the GIMMS NDVI
dataset, or the NDVI from Landsat satellites. However, the different products offer different spatial
resolution and time coverage, and although data blending techniques have been developed [53], they all
introduce errors to some extent. Therefore, in the present work, for keeping data consistency, one data
source was used, even though it cannot capture the full progress of the phenomenon. However, the goal
is to detect differences in vegetation dynamics and observe whether vegetation has recovered in the
same manner in the 30 km Exclusion Zone and the two surrounding zones, i.e., the 60 and 90 km zones.
This can be safely accomplished using the 20-year dataset of MODIS NDVI products.

All computations were conducted with the R open software for statistical computing (“The R
Project for Statistical Computing. https://www.r-project.org/\T1\textquotedblright). Spatial analysis
was performed with the Raster R package [54].

https://www.r-project.org/\T1\textquotedblright 
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3. Results

3.1. Land Cover Change Analysis

Analysis of all 18 annual land cover type images revealed that approximately 20% of the 30 km
Exclusion Zone changed land cover type. Dominant land cover changes are identified in Savannas
(tree cover 10–30%, canopy >2 m) with an increase of approximately 5%, followed by Mixed Forests with
an increase of approximately 2.5%, Woody Savannas (tree cover 30–60%, canopy >2 m) with an increase
of ~1.5% and Evergreen Needleleaf Forests with an increase of approximately 1%. A considerable
decrease in Grasslands losing ~10% of the area is observed, whereas the rest of the land cover changes
are related to <1% of this specific zone (Figure 3). It seems thus that land abandonment in this zone
has led to an expansion of dense and sparse forest areas at the expense of grassland areas.

Figure 3. Land cover type changes in the 30 km Exclusion Zone.

Concerning the 60 km zone, Figure 4 depicts the transitions that happened during the eighteen-year
period, i.e., 2001 to 2018. According to the land cover change analysis conducted, the 60 km zone
experienced a transformation of 12.7% of its land. Croplands demonstrated a steady increase in their
area throughout the analysis period and gained areas of ~3% of the 60 km zone. Woody Savannas
and Mixed Forests both increased up to 2013 and declined thereafter, resulting in net increases of ~1%
and 0.7%, respectively. Grasslands demonstrated a decrease up to 2012 and an increase thereafter,
gaining thus almost all previously transformed land. Savannas and Evergreen Needleleaf Forests lost
around 3% and 0.75% of their areas, respectively, in the 60 km zone.

Land cover transitions in the 90 km zone are shown in Figure 5. Overall, 10.6% of this specific
zone has changed land cover type. A common feature compared to the 60 km zone is the steady
increase in Croplands, which gained ~4% of the 90 km zone. On the contrary, Savannas demonstrated
a decrease of ~2%, whereas Woody Savannas experienced net gains of ~0.7%. Grasslands lost ~1%,
whereas Mixed Forests demonstrated almost zero net changes. All other land cover types showed
minor land transitions.
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Figure 4. Land cover type changes in the 60 km zone.

Figure 5. Land cover type changes in the 90 km zone.

3.2. Pixel-Wise NDVI Time Series Analysis

Pixel-wise vegetation trend analysis in the three distinct zones provided statistically significant
results at the level of 5% (p-values < 0.05) for an area of 6556 km2, approximately 20% out of the total
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32,000 km2 of the study area. This is expected, as remotely sensed NDVI acquisitions are restricted
by factors such as cloud cover or atmospheric conditions [45]. As the study area is in a high-latitude
region, cloud and snow cover days are frequent, resulting in loss of data and consequently areas
where statistically significant trends in vegetation (either increasing or decreasing) can be detected
are considerably decreased compared to mid- and low-latitude regions. Table 2 provides means of
the statistically significant NDVI trends in different land cover categories in the three distinct zones,
but also mean NDVI trends that are randomly selected from equal areas in each examined zone in
various land cover types. Only land cover types common to all three zones are included in Table 2.
Water Bodies and Permanent Wetlands were excluded from this analysis.

Table 2. Mean of the statistically significant (p < 0.05) pixel-wise Normalized Difference Vegetation
Index (NDVI) trends from 2000 to 2020 in different land cover types in the three examined zones and
the associated areas.

30 km Exclusion Zone 60 km Zone 90 km Zone

Land Cover
Type

Mean NDVI
Trend (yr−1)

Area (km2) Mean NDVI
Trend (yr−1)

Area (km2) Mean NDVI
Trend (yr−1)

Area (km2)

Evergreen
Needleleaf Forests

1.93 × 10−3 177.5 1.70 × 10−3 242.2 3.30 × 10−3 44.7
2.12 × 10−3 44.7 1.63 × 10−3 44.7 3.30 × 10−3 44.7

Deciduous
Broadleaf Forests

6.90 × 10−3 47.2 7.69 × 10−3 23.2 5.73 × 10−3 57.5
6.93 × 10−3 23.2 7.69 × 10−3 23.2 5.66 × 10−3 23.2

Mixed Forests
5.56 × 10−3 231.0 5.13 × 10-3 529.5 5.26 × 10−3 196.5
5.75 × 10−3 196.5 5.11 × 10−3 196.5 5.26 × 10−3 196.5

Woody Savannas
6.85 × 10−3 762.5 4.63 × 10−3 1490.2 5.45 × 10−3 661.5

7.01 × 10−3 661.5 4.21 × 10−3 661.5 5.45 × 10−3 661.5

Savannas
5.98 × 10−3 24.7 3.84 × 10−3 498.0 4.14 × 10−3 293.7
5.98 × 10−3 24.7 3.86 × 10−3 24.7 4.01 × 10−3 24.7

Grasslands
4.85 × 10−3 39.5 −1.10 × 10−3 268.0 −6.42 × 10−4 351.5
4.85 × 10−3 39.5 −0.85 × 10−3 39.5 −6.11 × 10−4 39.5

Croplands −5.94 × 10−3 3.2 −5.14 × 10−3 228.5 −3.60 × 10−3 385.5
−5.94 × 10−3 3.2 −5.01 × 10−3 3.2 −3.20 × 10−3 3.2

The weighted average (using equal areas of each land cover type as the weighting factor) of NDVI
trends over the 30 km Exclusion Zone is 6.38 × 10−3yr−1, in the 60 km zone it is 4.11 × 10−3yr−1 and in
the 90 km zone it is 2.61 × 10−3yr−1.

All three zones demonstrate both increasing and decreasing vegetation dynamics. In the 30 km
Exclusion Zone, approximately 45% of the area showed statistically significant trends, whereas this
percentage drops to approximately 27.5% in the 60 km zone and reaches the lowest value in the 90 km
zone, with 11.2% of area demonstrating significant pixel-wise NDVI trends.

3.3. Time Series Analysis with Spatial Aggregates of NDVI

To estimate the regression line for each zone but also to highlight changes in seasonality in
each land cover category in the three examined zones, the spatially averaged NDVI time series were
extracted for different land cover types as described in Section 2.3. The observed and modeled,
using Equation (1), time series are presented in Figures 6–13, together with the trend lines and a 95%
confidence interval. Trends were considered significant at the level of 5% (p values < 0.05), rejecting the
null hypothesis of zero slope of the trend line. Table 3 shows the slopes of the trend lines in each land
cover type and the associated examined areas.
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Table 3. Slope of the trend lines of the time series (2000–2020) of spatial averages of the NDVI in
different land cover types in three examined zones.

Land Cover Type Area (km2) Mean NDVI Trend (yr−1)
in 30 km Exclusion Zone

Mean NDVI Trend
(yr−1) in 60 km Zone

Mean NDVI Trend
(yr−1) in 90 km Zone

Evergreen Needleleaf Forests 295 6.67 × 10−4 2.99 × 10−4 8.52 × 10−4

Deciduous Broadleaf Forests 48.5 4.17 × 10−3 2.60 × 10−3 2.55 × 10−3

Mixed Forests 669 2.32 × 10−3 2.02 × 10−3 1.40 × 10−3

Woody Savannas 720 1.29 × 10−2 2.01 × 10−3 9.30 × 10−4

Savannas 380 2.16 × 10−3 1.12 × 10−3 8.24 × 10−4

Grasslands 108.7 −2.94 × 10−4
−2.90 × 10−4

−1.24 × 10−4

Croplands 5 −3.31 × 10−3, * −2.24 × 10−3, * −1.44 × 10−3

Urban and Built-up Lands 4 5.37 × 10−3, * 2.18 × 10−3, * 1.50 × 10−3, *

* Statistically significant at 6% (p < 0.06).

Averages of trend line slopes of Table 3 weighted based on areas of each land cover type in
each examined zone were evaluated and found to be 5.77 × 10−3 yr−1 for the 30 km Exclusion Zone,
1.64 × 10−3 yr−1 for the 60 km zone and 1.10 × 10−3yr−1 in the 90 km zone. Concerning seasonality,
all land cover types demonstrated analogous seasonal patterns of the NDVI in the three examined
zones in all land cover types.

4. Discussion

Comparing values of the NDVI time series trends estimated with the two approaches outlined
above, i.e., the pixel-wise approach and the spatially averaged NDVI, in the different land cover types
of the 30, 60 and 90 km zones around Chernobyl, similar results concerning the 30 km Exclusion
Zone are extracted, whereas lower values of NDVI trends were estimated using the spatial averaging
technique for the other two zones. Considering that the spatially averaged NDVI time series over the
three examined zones make use of more NDVI data over the extent of the study area, whereas results of
the pixel-wise technique are only based on pixels with statistically significant trends, which were found
to amount to ~20% of the study area, it is believed that the assessments using the spatially averaged
NDVI are closer to reality. It is worth mentioning here that although the Urban and Built-up Lands did
not demonstrate statistically significant trends in any of the three zones examined at the pixel level
(Table 2), they provided NDVI greening trends with the spatially averaging technique, however at
slightly higher p-values (Table 3). Both approaches, however, documented a clear difference of the
NDVI trends in the 30 km Exclusion Zone compared to the other two zones examined.

In both approaches, the land cover type with the highest greening trends in the 30 km Exclusion
Zone is the Woody Savannas, followed by Deciduous Broadleaf Forests. Deciduous Broadleaf Forests
demonstrate the highest greening trend in the 60 km zone, followed by Mixed Forests and Woody
Savannas in both approaches. In the 90 km zone, the highest greening pattern is observed in Deciduous
Broadleaf Forests in both approaches, followed by Woody Savannas and Mixed Forests in the pixel-wise
analysis, whereas Mixed Forests showed slightly higher greening trends than Woody Savannas during
the spatially averaged NDVI time series approach. Browning vegetation patterns were detected in
Grasslands and Croplands, with the spatially averaged NDVI time series approach, however those
results were based on very limited areas as indicated in the results presented in Tables 2 and 3.
From Tables 1–3, it can be seen that Woody Savannas is the land cover type occupying the greatest part
of the 30 and 60 km zones and is the second largest part in the 90 km zone, after Croplands (land cover
type with the largest area in the 90 km zone).

Combining analysis of NDVI time series in various land cover types with the results from the
evolution of land cover changes in the three zones, one may conclude that the land cover categories
covering most of the area in the 30 km Exclusion Zone, i.e., Woody Savannas and Mixed Forests,
both gain areas, expanding at the expense of Grasslands decline, and they also demonstrate substantial
greening trends. The same situation can be observed for the 60 km zone, where Woody Savannas
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and Mixed Forests are the dominant land cover types, both expanding and demonstrating increasing
NDVI trends.

Croplands, Woody Savannas, Mixed Forests and Grasslands are the dominant land cover types
in the 90 km zone, with Croplands expanding steadily during the study period, Mixed Forests and
Woody Savannas maintaining their areas and Grasslands losing areas. Grasslands and Croplands in
the 90 km zone express browning vegetation trends, which might be related to human activities in the
area and seem to reduce the overall increasing vegetation productivity in that zone.

In all three examined zones, the overall NDVI trend seems to be controlled by the land cover
categories that gained area. For the 30 km Exclusion Zone, the expansion of Woody Savannas and
Mixed Forests might be attributed to absence of human activities, as afforestation is a fate of abandoned
agricultural areas with the savanna-type vegetation being an intermediate stage of this process.
Prevalence of woody vegetation types may also indicate their resilience to increased radiation levels.
In the 60 km zone, human activities were not totally halted but remained at a low level as indicated by
the low coverage of Urban and Built-up Lands and Cropland areas. The fact that the same two land
cover categories expand also in the 60 km zone supports the conclusion that the greening trends in both
the 30 and 60 km zones can be attributed to a combination of climate, minimized human impact and
prevalence of land cover types resilient to increased radioactivity. The third zone, i.e., the 90 km zone,
is indicative of the combination of climate and increasing human activities, with Croplands but also
Urban and Built-up Lands expanding. This area could be considered as indicative of the vegetation
conditions that would have been present in the 30 km Exclusion Zone if the nuclear accident had
not happened. Although the present work documents land cover changes in the 30 and 60 km zones
around Chernobyl corresponding to a transition to woody vegetation, it cannot provide evidence or
document changes in species composition and dominance over the study period, and this an interesting
topic for further research.

Previous studies on NDVI trends revealed a mean global greening trend of 0.46 × 10−3 per year
from 1982 to 2012 [55], which is close to the ones found with the spatially averaged NDVI time series
in the present work for the 60 km zone and the 90 km zone. The 30 km Exclusion Zone demonstrates a
considerably higher vegetation greening pattern. The temperate continental zones where the study area
belongs are reported [55] to range from 2.08 × 10−3 per year during 1982–1994, followed by a browning
period with annual NDVI trends of −0.39 × 10−3 during 1995–2004 and a greening period with an
annual NDVI trend of 1.352 × 10−3 from 2005 to 2012. It should be noted, however, that the study
of [56] was conducted using the GIMMS NDVI dataset which has a slightly coarser spatial resolution
and covers a different period compared to the MODIS NDVI products. Another analogous work is
that of [57], focusing, however, on trends of the maximum annual NDVI in North West Siberia from
2000 to 2014, using the same MODIS product (MOD13Q1) used herein as well. That work concluded
on various annual NDVImax trends in different biomes of North West Siberia, with approximately 70%
of the Tundra and 82% of the Forest Tundra regions demonstrating NDVImax changes from 3 × 10−3

to 6 × 10−3. In the Northern and Middle Taiga, most areas demonstrate a mixed character of annual
NDVImax trends, ranging from −3 × 10−3 to 3 × 10−3. Analogous results indicating increasing plant
growth in high latitudes were reported in earlier studies [34] and were associated with a lengthening
of the active growing season. In any case, the results presented herein indicate that vegetation in the
affected area of Chernobyl demonstrates a surprising productivity and an expansion of woody land
cover types, i.e., Woody Savannas, and Forest, as a result of land abandonment, which seem to be
resilient to radioactivity. Therefore, results of both approaches presented herein did not indicate any
abnormal behavior of vegetation productivity as far as its phenological properties are concerned.

This study can be considered as complementary to previous works that focused on various animal
and plant species [4,5,9,10,15], highlighting the impacts from the nuclear accident many years after.
A general outcome is the surprising resilience of plants and animals to chronic exposure to radiation.
The results of the present study are in agreement with the findings of [30,31], that both showed an
increase in NDVI values long after the accident, while they highlighted that humanity still has not yet
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reached a full understanding of the consequences of the Chernobyl nuclear accident. An explanation
of the remarkable resilience of plants comes from [58], explaining the various mechanisms of plants
to replace dead cells or tissues easier than animals, irrespective of the source of damage, i.e., due to
attack by an animal or due to radiation. Rewilding has also been demonstrated in both Chernobyl
and Fukushima Exclusion Zones and is, in both cases, related to the absence of human activities in
those areas [10,12], highlighting the dominant role of human activities on the environment. However,
radiation does harm life and may shorten the lives of individual plants and animals. Nevertheless,
if harm is not fatal and resources that support life are plentiful, then life will flourish again [58], and this
argument is supported by the findings of the present work as well.

5. Conclusions

The present work deals with the determination of vegetation dynamics over three zones around the
Chernobyl area, i.e., the 30 km Exclusion Zone, the 60 km zone and the 90 km zone, almost 35 years after
the nuclear disaster caused by the failure of one reactor of the Chernobyl Power Plant. Remotely sensed
MODIS NDVI data for a twenty-year period (2000 to 2020) at a 16-day temporal and 250 m spatial
resolution were analyzed using pixel-wise and spatially averaged NDVI seasonal trend analysis.
Both techniques were applied in the individual land cover types of the three zones. Results of both
analyses indicated greening vegetation trends in all three zones, with the 30 km Exclusion Zone
demonstrating considerably higher greening vegetation dynamics, which can be attributed to a
combination of climate, the absence of human activities and the consequent expansion of woody land
cover types, which seem to be resilient to radioactivity. The results presented herein agree with previous
works demonstrating the rewilding of the Chernobyl Exclusion Zone a few decades after the accident,
indicating a surprising resilience of plants and animals to chronic exposure to radiation. Further,
the primary role of human presence and associated activities on ecosystem dynamics is highlighted.

Data Availability: MOD13Q1 data are available at no cost from the following url: https://e4ftl01.cr.usgs.gov/
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30. Santos, P.P.; Sillero, N.; Boratyński, Z.; Teodoro, A.C. Landscape changes at Chernobyl. In In SPIE Remote
Sensing, Proceedings of the Volume 11149, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI,
Strasbourg, France, 21 October 2019; International Society for Optics and Photonies: Bellihghom, WA, USA,
2019. [CrossRef]

31. Modzelewska, A.; Jarocinska, A.M.; Pochrybniak, P.; Mostowsk, M. The vegetation condition changes near
Chernobyl based on Landsat TM. In Towards Horizon 2020; Lasaponara, R., Masini, N., Biscione, M., Eds.;
EARSeL: Warsaw, Poland, 2013.

32. Sulla-Menashe, D.; Friedl, M. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m
SIN Grid V006 2019, DistriZbuted by NASA EOSDIS Land Processes DAAC. Available online: https:
//doi.org/10.5067/MODIS/MCD12Q1.006 (accessed on 29 July 2020).

33. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with
ERTS. In Third Earth Resources Technology Satellite–1 Symposium; Freden, S.C., Mercanti, E.P., Becker, M., Eds.;
Volume I: Technical Presentations, NASA SP−351; National Aeronautics and Space Agency: Greentbelt, MD,
USA, 1974; pp. 309–317.

34. Myneni, R.B.; Keelingt, C.D.; Tucker, C.J.; Asrar, G. Increased plant growth in the northern high latitudes
from 1981 to 1991. Nature 1997, 386, 698–702. [CrossRef]

35. Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The Interpretation of Spectral Vegetation Indexes.
IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [CrossRef]

36. Ma, X.; Huete, A.; Yu, Q.; Coupe, N.R.; Davies, K.; Broich, M.; Ratana, P.; Beringer, J.; Hutley, L.B.;
Cleverly, J.; et al. Spatial patterns and temporal dynamics in savanna vegetation phenology across the north
australian tropical transect. Remote Sens. Environ. 2013, 139, 97–115. [CrossRef]

37. Mishra, N.B.; Crews, K.A.; Neeti, N.; Meyer, T.; Young, K.R. MODIS derived vegetation greenness trends in
African Savanna: Deconstructing and localizing the role of changing moisture availability, fire regime and
anthropogenic impact. Remote Sens. Environ. 2015, 169, 192–204. [CrossRef]

38. Mishra, N.B.; Mainali, K.P. Greening and browning of the Himalaya: Spatial patterns and the role of climatic
change and human drivers. Sci. Total Environ. 2017. [CrossRef]

39. Mishra, N.B.; Chaudhuri, G. Spatio-temporal analysis of trends in seasonal vegetation productivity across
Uttarakhand, Indian Himalayas, 2000–2014. Appl. Geogr. 2015, 56, 29–41. [CrossRef]

40. Asoka, A.; Mishra, V. Prediction of vegetation anomalies to improve food security and water management in
India. Geophys. Res. Lett. 2015, 42, 5290–5298. [CrossRef]

41. Levin, N. Human factors explain the majority of MODIS-derived trends in vegetation cover in Israel: A densely
populated country in the eastern Mediterranean. Reg. Environ. Chang. 2016, 16, 1197–1211. [CrossRef]

42. Maselli, F. Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear
NDVI data. Remote Sens. Environ. 2004, 89, 423–433. [CrossRef]

43. Verbesselt, J.; Herold, M. Near Real-Time Disturbance Detection Using Satellite Image Time Series:
Drought Detection in Somalia. Remote Sens. Environ. 2012, 123, 98–108. [CrossRef]

44. Xu, G.; Zhang, H.; Chen, B.; Zhang, H.; Innes, J.L.; Wang, G.; Yan, J.; Zheng, Y.; Zhu, Z.; Myneni, R.B.
Changes in vegetation growth dynamics and relations with climate over China’s landmass from 1982 to 2011.
Remote Sens. 2014, 6, 3263–3283. [CrossRef]

45. Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend Change
detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013,
5, 2113–2144. [CrossRef]

46. Huete, A.; Didan, K.; Miura, H.; Rodriguez, E.P.; Gao, X.; Ferreira, L.F. Overview of the radiometric and
biopyhsical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
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