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Abstract: Savannahs provide valuable ecosystem services and contribute to continental and global
carbon budgets. In addition, savannahs exhibit multiple land uses, e.g., wildlife conservation,
pastoralism, and crop farming. Despite their importance, the effect of land use on woody aboveground
biomass (AGB) in savannahs is understudied. Furthermore, fences used to reduce human–wildlife
conflicts may affect AGB patterns. We assessed AGB densities and patterns, and the effect of land use
and fences on AGB in a multi-use savannah landscape in southeastern Kenya. AGB was assessed
with field survey and airborne laser scanning (ALS) data, and a land cover map was developed using
Sentinel-2 satellite images in Google Earth Engine. The highest woody AGB was found in riverine
forest in a conservation area and in bushland outside the conservation area. The highest mean AGB
density occurred in the non-conservation area with mixed bushland and cropland (8.9 Mg·ha−1),
while the lowest AGB density (2.6 Mg·ha−1) occurred in overgrazed grassland in the conservation
area. The largest differences in AGB distributions were observed in the fenced boundaries between
the conservation and other land-use types. Our results provide evidence that conservation and fences
can create sharp AGB transitions and lead to reduced AGB stocks, which is a vital role of savannahs
as part of carbon sequestration.

Keywords: savannah; multifunctionality; protected areas; conservation; airborne laser scanning;
aboveground woody biomass

1. Introduction

Savannahs are characterized by scattered tree cover and continuous coverage of grass-dominated
herbaceous plants [1,2]. On the African continent, savannahs and woodlands play a particularly large
role in the carbon cycle, and wildlife and biodiversity conservation, while providing livelihoods for a
huge human population [3]. The area covered by savannahs is roughly three times larger than that
of forests, corresponding to approximately 50% of the total area of the African continent. Savannahs
therefore represent a major carbon stock in Africa despite having a lower carbon density compared
to forests [4–6]. Another significant feature of the African carbon cycle is that emissions caused by
land-use change are greater than fossil fuel emissions [7,8]. A large part of these emissions originates
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from land cover conversion of savannahs and woodlands to croplands while forests still remain
an important sink [7]. Woody vegetation is mainly converted into agricultural land in response to
rapid population growth [9]. In contrast to woody cover loss, widespread woody encroachment has
also been observed in African savannahs [10–13]. Encroaching is particularly severe in the central
interior of Africa in areas with moderate woody cover, e.g., Cameroon, the Central African Republic,
South Sudan, and Uganda [12]. Species with the potential to fix nitrogen, such as Vachelia tortillis and
Senegalia mellifera [11], are typical encroachers in African savannahs.

African savannahs often exhibit multi-use landscapes. They can be used for wildlife-based
activities, pastoralism, subsistence agriculture, forestry, and fuelwood production, and provide other
ecosystem services such as climate change regulation and water reservoirs [14]. Wildlife conservation
in protected areas, such as national parks, national reserves, community conservancies, and wildlife
sanctuaries, promote wildlife-based tourism [15,16], which is a significant source of income for many
countries, e.g., Kenya. Through wildlife management, some savannahs have been transformed into
game ranching areas with high economic growth, albeit at a significant cost to conservation [17]. On the
other hand, in some cases these areas have provided funds for conservation efforts. Furthermore,
savannah ecosystems are suitable for livestock grazing. Therefore, they support both wild and domestic
herbivores and their potential predators [18], considering the nutritional suitability of the plants [19],
and the structure, productivity, phenology, composition, and chemical attributes of the ecosystem.
Uncontrolled domestic herbivore populations in protected areas threaten the conservation of wild
herbivores [20]. In addition, communities in savannah areas and near conservation areas grow crops
for their own use and as cash crops to support their livelihoods. Population growth and land-use
policies support the expansion of agricultural activities [20] at the expense of biodiversity and wildlife
conservation. Although the extraction of timber, fuelwood, and non-timber forest products contributes
to the livelihood options of savannah landscape dwellers, these practices may also have a negative
impact on woody vegetation structure and biodiversity.

Savannahs in Eastern Africa are extremely rich in biodiversity, with high numbers of threatened species
that constitute part of the largest remaining populations of iconic wildlife left on the continent [21,22].
Many countries in this region have designated a significant portion of their terrestrial areas to
biodiversity conservation, amongst them some of the world-famous national parks and reserves
(e.g., Serengeti National Park in Tanzania, and Tsavo National Parks and Maasai Mara National Reserve
in Kenya) [22]. Their management depends on the ownership and purpose of the conservation. A large
portion of these sites are owned and managed by the government for tourism, biodiversity conservation,
education, and research. Recently, private and community owned conservation areas, mainly for
tourism, have increased [23]. The social and economic conditions that support their management are
critical for the maintenance of wildlife within their boundaries [15]. This means that human-induced
drivers have more influence on wildlife abundances than those affecting ecological processes such as
changes in the size of a conservation area [15].

Megaherbivores (e.g., elephants) are often of disproportionate importance in motivating
conservation actions [24]. These animals are sensitive to human impact and are most likely to
survive in conservation areas. However, they impact ecosystem structure [25], shape ecosystem
functions [26], and affect primary productivity and soil nutrient balance [27]. They impact habitats and
the presence of other animals, even small ones such as termites [28,29]. Fences are used as conservation
measures to reduce the impact of large herbivores on vegetation and human habitat [29–32]. Fencing
can protect stands of dense vegetation [31,32] and mitigates human–wildlife conflicts [33]. Fences are
also used to demarcate protected area boundaries. However, fencing can alter ecological processes,
such as dispersal of wildlife and livestock and lead to differences in plant biomass densities in
grazed and non-grazed areas [34]. The role of fencing in threatening biodiversity has been also
stressed [33]. Cost associated with the construction and maintenance of fences and the conflicts
occurring between protected area management and communities around fenced areas are further
drawbacks [35]. Woody biomass in savannah landscapes is highly variable as a result of the various
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factors affecting vegetation structure. However, very little information currently exists on the biomass
variations in African multi-use savannahs.

Remote sensing has a central role in understanding terrestrial carbon dynamics and in the
implementation of national greenhouse gas (GHG) emission inventories and payments for ecosystem
services schemes such as Reducing Emissions from Deforestation and Forest Destruction (REDD+) [36–39].
Remote sensing provides information on the extent and changes of the land-use and land cover (LULC)
types, and on biomass and carbon densities. The former is typically based on LULC classification, and
the latter is derived from aboveground biomass (AGB) maps. AGB maps also serve other purposes,
such as natural resource management [40,41]. Optical satellite images are the most common data
for LULC classification and are increasingly used in cloud computing platforms, particularly Google
Earth Engine (GEE) [42]. On the other hand, airborne light detection and ranging (LiDAR, also known
as airborne laser scanning, ALS) provides the most accurate remote sensing method for mapping
the AGB of forests [43], but savannah, bushland, and cropland AGBs in Africa have remained less
studied [44,45]. Therefore, more research on the feasibility of ALS data on AGB estimation outside
forests in the African savannahs are needed.

In this study, our main objective was to assess the effect of land use and wildlife fences on woody
AGB density and distribution patterns in a multi-use savannah landscape in southeastern Kenya.
In this landscape, fences between conservation areas and other land-use regions are used to reduce
human–wildlife conflict. More specifically, we (1) used ALS and other remote sensing data to map AGB
distribution and land cover in the study area, (2) examined the effect of land use (wildlife conservation,
livestock management, small-holder farming) and land cover types on AGB, and (3) studied the
effect of wildlife fences on AGB patterns in the boundaries of land-use regions. We hypothesized
that land use considerably affects the woody AGB distribution in the studied landscape because it
drives the observed patterns of land cover, and each land cover type has a characteristic AGB density.
Furthermore, fences affect the distributions and effects of wildlife and livestock, and hence, contribute
to the observed woody AGB patterns.

2. Material and Methods

2.1. Study Area

The study area is located in the plains southwest of the Taita Hills (3◦20′ S, 38◦15′ E), in southeastern
Kenya (Figure 1). The area belongs to Taita Taveta County. The county covers an area of 17,071 km2

and has 340,670 inhabitants [46]. Typical lowland land uses include conservation in national parks,
livestock management on ranches, mining, commercial sisal plantations, and dryland small-holder
agriculture [6,46]. Lowland soil type is characterized by very deep, acidic, dark red, sandy clay soil
(Ferralsols). Elevation ranges from 600–1000 meters above sea level (m a.s.l.) in the plains to the
highest peak in the Taita Hills at 2208 m a.s.l. Average daily temperature ranges between 20 ºC and
30 ºC. Mean annual rainfall ranges from 500 mm to 1200 mm from the plains to the hills, and the
rainfall pattern is bimodal with long rains in March–May and short rains in October–December [47,48].
Lowlands are much drier than highlands, e.g., the average yearly rainfall recorded at the Maktau
weather station located within the study area was 483 mm in 2014–2016 [49].

Considerable variation in annual rainfall may also occur. A drought period occurred from 2007
to 2010 according to Voi meteorological station data at 580 m a.s.l., located 40 km east of the study
area. The lowest annual rainfall (241 mm) was recorded in 2008 and the highest (553 mm) in 2009.
The short rains in November–December 2008 resulted in only 35 mm of precipitation. The average
annual precipitation was 563 mm from 2000 to 2018, while rainfall in 2006 and 2011 was 866 mm and
794 mm, respectively. As the Maktau weather station was established in October 2013 [50], we possess
no rainfall data from the area of interest for the drought period, but the drought was evident. It caused
a lack of water and forage for large mammals, such as elephants, which consequently caused a loss of
woody vegetation, especially in conservation areas.



Land 2020, 9, 381 4 of 24

The Tsavo ecosystem, including Tsavo East and West National Parks (NP), cover ca. 62% of Taita
Taveta County. In addition to Tsavo NPs, the Tsavo ecosystem consists of several other protected
areas, namely Taita Hills Wildlife Sanctuary (THWS), Rukinga, and LUMO Community Wildlife
Sanctuary, and gazetted forest patches in the Taita Hills and Kasigau Mountain. Wildlife populations
(e.g., elephants, buffaloes, lions, antelopes, and giraffes) are large in the lowlands of the Tsavo
ecosystem [51,52]. Cattle, elephants, and buffaloes constitute the most important herbivores and have
increased from the late 1970s to date [53]. Wildlife densities may vary significantly during the wet
and dry seasons. For example, 462 elephants were recorded in THWS in November 2013 during the
dry season ground census, while only 17 were sighted during the wet season census in June 2013 [54].
Wildlife congregates in man-made waterholes, the Bura River, and riverine forests of THWS during the
dry season, in search of water and fresh vegetation.

The study area (Figure 1) was defined by the extent of ALS data (see details in Section 2.3). The
landscape includes typical lowland land-use and land cover types within THWS and a small part of
Tsavo West National Park (TWNP) and LUMO Community Wildlife Sanctuary (LUMO). The three
conservation areas are very different in their wildlife and livestock management. Tsavo West National
Park is the largest of the three, covering ca. 9065 km2, while LUMO and THWS are smaller. Although
the conservation areas are managed exclusively for wildlife and wildlife-based tourism, large cattle
herds may be found grazing seasonally within the boundaries. Within LUMO, the western part of
Mramba (West Mramba) is preserved for livestock management, while the eastern part (East Mramba)
is preserved for wildlife but is very often invaded by large cattle herds that may further invade the
western plains of THWS. Cattle typically only graze in the eastern parts of THWS, while livestock
occurs very seldom within TWNP. Mramba ranch holds 3500 heads of cattle and 2000 heads of goats.
The entire Oza area has 3000 goats, 1500 cattle, and 130 camels, but numbers are smaller in our study
site [55] and the number of livestock fluctuates between seasons and years.

Agriculture is practiced on single farms in West Mramba and in the eastern parts of THWS. Outside
the conservation areas, the landscape consists of grazing land and dryland agriculture, for which the
term ‘matrix’ is used here (Figure 1). The most common crops include cassava, maize, and legumes.
Common woody species in the Acacia-Commiphora bushlands and thickets (Figure 2) include Vachellia
tortillis, Commiphora baluensis, Vachellia xanthophloea, Albizia antihelmintica, Commiphora schimperi, Maerua
angolensis, Carres tomentosa, Commiphora trothe, Senegalia mellifera, Acacia brevispica, Acacia elata, Balanites
aegyptica, Boscia coriacea, Newtonia hildebrantii, Delonix elata, and Grewia villosa. The landscape is divided
by the road from Voi to Taveta. A 33 km long electric wildlife fence constructed in 1999 separates the
matrix and conservation areas (Figure 1).
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Figure 1. (A) Location and topography of the study area with land-use regions, fences, and buffers. 
Land-use regions: Taita Hills Wildlife Sanctuary (THWS), LUMO Community Wildlife Sanctuary 
(West Mramba and East Mramba), Tsavo West National Park (TWNP), and other land use (matrix). 
Numbers refer to buffers. (B) False color composite of Sentinel-2 satellite image showing positions of 
the field plots for woody aboveground biomass (AGB) estimation. 

Figure 1. (A) Location and topography of the study area with land-use regions, fences, and buffers.
Land-use regions: Taita Hills Wildlife Sanctuary (THWS), LUMO Community Wildlife Sanctuary (West
Mramba and East Mramba), Tsavo West National Park (TWNP), and other land use (matrix). Numbers
refer to buffers. (B) False color composite of Sentinel-2 satellite image showing positions of the field
plots for woody aboveground biomass (AGB) estimation.

2.2. Field Data

The field data were collected between 15 and 22 August 2018 to estimate the AGB of woody plants
(trees and shrubs). The sample plots were selected subjectively to cover variation in land-use and land
cover type based on high resolution satellite imagery in Google Earth, and tree cover and tree height
based on ALS data (Figure 1). In total, 49 sample plots were surveyed. The field plots were positioned
using a Trimble GeoXH GNSS receiver with differential correction.

The sample plot design consisted of circular plots of different sizes. The main plot was 0.1 ha in
size (radius 17.84 m) and was used for inventorying all the trees with a diameter at breast height (DBH,
1.3 m height from the ground) of more than 5 cm. Height (H) for the highest, median, and shortest
tree were also measured at each plot using a hypsometer (Suunto). Tree species was identified for
all of these trees. Furthermore, four “subplots” of 0.01 ha (radius 5.64 m) located within the main
plot were used for inventorying shrubs with DBHs of 1–5 cm (see [56] for subplot locations), and four
“micro plots” of 0.001 ha (radius 1.78 m) in the central points of the subplots for measuring shrubs with
DBHs < 1 cm. Shrub measurements included count, DBH, basal diameter (BD), crown diameter (CD),
and height for a median-sized shrub. The dominant woody species of each plot was also recorded.
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Figure 2. Land-use and land cover types in the study area. (A) Riverine forest characterized by
Vachellia xanthophloea trees along the Bura River in THWS (J. Heiskanen, 27.8.2018). (B) Partly grazed
Acacia-Commiphora bushland characterized by Vachellia tortillis and Commiphora baluensis in the matrix
in Maktau (P. Pellikka 26.2.2019). (C) Grassland in the THWS conservation area with a Vachelia tortillis
tree (P. Pellikka, 29.9.2018). (D) A maize (Zea mays) field next to Maktau weather station with Taita
Hills in the background (P. Pellikka, 5.1.2020). (E) Degraded grassland in the livestock management
area of West Mramba in LUMO (P. Pellikka, 16.8.2018).

Aboveground biomass of trees with DBH > 5 cm (AGBtrees) was computed using pan-tropical
biomass model [57] due to the absence of local, species-specific allometric equations. The model
(Equation (1)) is based on DBH (cm), H (m), and wood-specific gravity (ρ, g/m3). Wood densities were
obtained from a species-specific list in the BIOMASS package [58] in the R software environment [59].

AGBtrees = 0.0673×
(
ρDBH2H

)0.976
(1)

Aboveground shrub biomass (AGBshrubs) was calculated using the equation in Conti et al. [60].
The model is based on BD (cm), CD (m), and H (cm) (Equation (2)). As BD, we used diameter at
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the 10 cm height (D10), which was calculated from the ground-level diameter using equation [61],
as recommended in [60].

AGBshrubs = exp(−2.281 + 1.525 ln(BD) + 0.831 ln(CD) + 0.523 ln(H)) (2)

Finally, we normalized AGB values per hectare and calculated the plot-level AGB as a sum of the
tree and shrub AGB. Hereafter, by AGB, we refer to this aboveground biomass of woody plants unless
specified otherwise.

2.3. Airborne Laser Scanning Data (ALS) and Biomass Mapping

Airborne laser scanning data were used to generate a reference canopy height model and to
predict a high-resolution wall-to-wall AGB map for the study area. The scanning was conducted in
late March 2014 and covered an area of 433 km2. The sensor was a Leica ALS60 and a maximum of
four returns per pulse were recorded. The pulse density was 1.04 pulses/m2.

The data vendor (Ramani Geosystems, Kenya) pre-processed the ALS data, including filtering of
the ground returns using Terrascan software (Terrasolid Oy, Finland). The data were delivered
as georeferenced point clouds in the UTM/WGS84 coordinate system with ellipsoidal heights.
The ground-classified returns were used for generating digital elevation models (DEM) at a 1-m
cell size. The ALS point cloud elevations were normalized to height from the ground levels using DEM.
Furthermore, buildings, power lines, and outliers (high points) were filtered using Terrascan, LAStools
(Rapidlasso GmbH), and manual editing.

A 3.5-m height threshold provided the best model between ALS metrics and field biomass and
was used to separate understory and ground returns from the canopy returns. Height metrics were
calculated separately using first and last returns and canopy cover metrics using all returns (single, first,
and last) (Table A1). The variables included all the variables available in the FUSION software [62]
and ones used in our earlier study [63]. Square root transformation was applied to AGB, as it was
found to improve the linear relationship between AGB and explanatory variables. The “regsubset”
function in the “leaps” package [64] was used to fit multiple linear regression models between the ALS
metrics calculated from the ALS point density clipped over the field plot and the AGB calculated from
that field plot. The leave-one-out cross-validation root mean square error (RMSE) and the coefficient of
determination (R2) were used to select the best AGB model. The predictions were back-transformed
(squared), and the square of the residual standard error was added to the predicted values to avoid
back-transformation bias [45,65]. For AGB prediction at wall-to-wall level, spatial grids of ALS metrics
were generated at a spatial resolution of 30 m × 30 m. Mean densities of AGB in each land-use and
land cover class was calculated from the AGB map.

2.4. Satellite Imagery and Land Cover Mapping

We collected Sentinel-2 images (top of atmosphere reflectance) with cloud cover less than 20% in
the images during the dry seasons [short dry season (January 1 to February 28) and long dry season
(July 1 to September 30)] in 2017 and 2018, and pre-processed them in the GEE platform. In total,
103 Sentinel-2 images (bands with a resolution of 10 m and 20 m only) were used to calculate the
median dry season image. Median dry season images were calculated for all bands in the blue to the
shortwave infrared spectral range based on all available cloud-free pixels (Figure 1B). In addition,
a normalized difference vegetation index (NDVI) [66], an enhanced vegetation index (EVI) [67],
EVI2 [68], two variants of normalized difference infrared index (NDII-1 and NDII-2) [69], and an
optimized soil-adjusted vegetation index (OSAVI) [70] were calculated from the median image.

Additionally, land cover classification was performed in the GEE platform. In addition to median
dry season Sentinel-2 composite and vegetation indices, input data included an ALS-based canopy
height model (CHM). The land cover in the landscape was classified into four land cover types (cropland,
grassland, forest and bushland) according to the Land Degradation Surveillance Framework [71].
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Cropland is cultivated land with annual or perennial crops, while grassland contains grasses and other
herbs with less than 10% woody cover. Forest in our classification is made up of a continuous stand of
trees with partly interlocking crowns, typically along the riverbeds. Bushland is made up of mixed
trees and shrubs with a canopy cover of 40% or more, while thickets are closed stands of bushes and
climbers usually between 2 m and 7 m tall and shrubland are open or closed stands up to 3 m tall.
For this study, thickets and shrubland were incorporated into bushland because we had few field plots
for those classes and the classes were similar in reflectance and vegetation characteristics.

In the first step, training data were collected through visual interpretation using ArcGIS 10.3
for the four land cover classes. The pixels for training the classifier were selected based on image
interpretation and CHM. Classification and regression trees (CART) [72] were observed to obtain the
highest overall accuracy among the classifiers in GEE and was thus selected for the classification.
The reference data set for accuracy assessment included the 49 points surveyed in 2018 in the field,
which were not used as training points in the classification. Finally, manual editing was performed in
ArcGIS to address some of the apparent misclassification in the land cover map.

2.5. Wildlife and Livestock Data

Elephant, buffalo, and cattle data were taken from the Tsavo–Mkomazi large mammal census of
2014 to be comparable with the 2014 ALS data used. The wildlife census is conducted by the Kenya
Wildlife Service (KWS) every three years to establish the status of key species in the Tsavo ecosystem.
The census is carried out from fixed-wing aircrafts and the data collection procedure is described in
detail in [73]. The animal spatial distribution and densities were further compared with AGB in the
studied landscape (Figure 3).

2.6. Statistical Analyses of AGB Data

The plot-level AGB values were used for computing descriptive statistics (range, mean, median,
and standard deviation) for the field data. The Kruskal–Wallis test was conducted to study whether
differences in AGB were statistically significant between the land-use regions and land cover classes.
Furthermore, median and mean values of the AGB per class were illustrated with a box plot for the
different land-use regions and land cover classes. We also estimated the percentage area covered by
each land cover in the respective land-use region. Finally, 500-m wide buffers were set in 11 segments
of land-use region boundaries to assess local AGB differences (Figure 1A). The buffers were categorized
into fenced and non-fenced segments to determine the effect of the fence on AGB. Pixel values were
studied separately for two sides of the boundary by calculating the percentage of zero AGB pixels.
Furthermore, medians of the non-zero AGB values were studied using the Wilcoxon test. All analyses
were performed in the R statistical environment [74].

3. Results

3.1. Aboveground Biomass Estimates and Map

Woody AGB estimates based on the field plot measurements are summarized in Table 1.
The maximum plot-level values are nearly 365 megagrams per hectare (Mg/ha) and were observed in
the riverine forest. The plots with the lowest AGB had very little woody biomass and were located in
the grassland areas.



Land 2020, 9, 381 9 of 24

Table 1. Summary of the aboveground biomass (AGB) values based on the field data according to the
diameter at breast height (DBH) class (n = 49). AGB was estimated based on diameter at ground level
for shrubs with a DBH < 1 cm. SD = standard deviation, IQR = interquartile range.

DBH Class
AGB (Mg/ha)

Mean Min Max SD IQR Median

DBH > 5 cm 42.15 0.28 364.04 85.41 20.94 7.91
DBH 1–5 cm 3.69 0.00 19.46 4.98 4.03 2.07
DBH < 1 cm 0.52 0.00 2.56 0.60 0.49 0.35

Total 38.02 0.00 364.54 78.27 21.56 10.04

The final modeling results for mapping AGB using ALS data are shown in Figure 3. The model
was based on two variables: CC.all (percentage of all returns above 3.5 m; p < 0.001) and Elev.min.fr
(minimum elevation of the first returns above 3.5 m; p < 0.001). The model performed well in terms
of model fit (R2 = 0.88) although RMSE based on leave-one-out cross-validation was relatively large
(26 Mg/ha, 75.6% of the mean AGB). However, the model did not show any signs of systematic over- or
under-estimation (Figure 3).
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Figure 3. Airborne laser scanning- (ALS)-predicted vs. field-observed AGB based on leave-one-
out cross-validation.

The AGB map shows predicted biomass density patterns at 30 m × 30 m resolution (Figure 4).
The mean AGB in the study area was 5.9 Mg/ha. The Riverine forests in the southern and southeastern
parts of the landscape within THWS had the largest AGB densities. We also observed relatively large
AGB densities outside the protected areas towards the foothills of the Taita Hills, in the northeastern
part of the landscape. Aboveground biomass spatial variations were also relatively large in the matrix
and in LUMO Oza. On the other hand, the lowest AGB values were found in the nearly treeless
grassland of THWS, LUMO East Mramba, LUMO West Mramba, and TWNP.

Wildlife (elephant and buffalos) and livestock (cattle) were highly evident in the conservation
areas based on the 2014 KWS wildlife census. Elephants were present in LUMO Mramba East and
THWS, and were absent in the matrix (Figure 4, Table 2). Cattle were found in all the land-use regions,
except in the small portion of TWNP captured during the ALS campaign (Figure 4). Their density
was highest in LUMO East Mramba (11.43 animals/km2), a portion of the landscape secured for
livestock grazing and was second highest in the matrix (4.40 animals/km2), where agriculture is the
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most common land use. Buffalos were found in the conservation areas, showing the highest number
per unit area in THWS (Table 2). We categorized the animals into three herd sizes, in which the number
of animals per herd differed per animal species (Figure 4). We saw no elephants or buffaloes in the
matrix during the 2014 wildlife census. Furthermore, no animals were visible in LUMO Oza.
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Figure 4. Biomass map showing the boundaries of the land-use regions: Taita Hills Wildlife Sanctuary
(THWS), LUMO Community Wildlife Sanctuary (LUMO East Mramba, LUMO West Mramba,
and LUMO Oza), Tsavo West National Park (TWNP), and other land use (matrix), and animal
counts for elephants, buffalos, and cattle in 2014.

Table 2. Animal counts (animals) and densities (animals/km2) per land-use region during the 2014
wildlife census by Kenya Wildlife Service. Land-use regions: Taita Hills Wildlife Sanctuary (THWS),
LUMO Community Wildlife Sanctuary (LUMO East Mramba and LUMO West Mramba), Tsavo West
National Park (TWNP), and other land use (matrix).

Animal

Land-Use Region (area)

TWNP
(48.92 km2)

LUMO East
Mramba

(47.24 km2)

LUMO West
Mramba

(33.92 km2)

THWS
(101.50 km2)

Matrix
(141.63 km2)

Elephant 5 (0.10) 137 (2.90) 0 (0) 237 (2.33) 0 (0)
Cattle 0 (0) 540 (11.43) 20 (0.59) 100 (0.99) 623 (4.40)

Buffalo 2 (0.04) 7 (0.15) 0 (0) 802 (7.90) 0 (0)

3.2. Land Cover Classification

The overall land cover classification accuracy was 88.78%. The producer’s and user’s accuracy
are shown in Table A2. The land cover map shows the distribution of the land cover classes in the
landscape (Figure 5). Bushland and cropland dominate the matrix in northern and northeastern
parts of the landscape, while grassland that is representative of the savannah biome dominates the
southern and southeastern parts (THWS, LUMO Mramba, TWNP). LUMO Oza is almost completely
bushland as there is less agriculture and livestock management. Forest is the land cover type with the
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smallest area, located mostly in THWS along the Bura River. THWS also has relatively large patches
of bushland in its eastern parts bordering the matrix. Cropland is also present in the eastern part of
THWS, while it is not observed in the other conservation areas. The THWS wardens consider it a form
of informal encroachment.
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3.3. Effect of Land Cover and Land Use on Aboveground Biomass

Aboveground biomass values for the land cover types are shown in Figure 6 and Table 3. The forest
had the highest mean AGB (75.5 Mg/ha) followed by bushland (9.0 Mg/ha) and cropland (5.8 Mg/ha).
Grassland had clearly the lowest mean AGB, as it is mostly treeless (mean 1.8 Mg/ha, median 0 Mg/ha).
However, bushland, cropland, and grassland also had very high AGBs at certain locations (maximum
values in Table 3). These areas correspond to “forest-like” bushland with trees and large shrubs.
The highest values in the cropland were found in the fallowed fields and patches of bush and in the
tree-covered areas next to the fields. In addition, certain farmers practice agroforestry, meaning that
they grow trees for fruit and timber production and for providing shade for crops. Furthermore,
the grasslands also have scattered large trees, e.g., in Figure 2C. We observed significant AGB differences
among the land cover types (p < 0.001) according to the Kruskal–Wallis mean rank test. Furthermore,
the Dunn test indicated a significant difference (p < 0.05) between all the land cover types (Figure 6).

When comparing the land-use regions, the mean AGB values in descending order were 8.9 Mg/ha
in the matrix 8.8 Mg/ha in LUMO Oza, 4.8 Mg/ha in THWS, 3.8 Mg/ha in TWNP, 2.6 Mg/ha in LUMO
West Mramba, and 2.4 Mg/ha in LUMO East Mramba (Table 3). According to the Kruskal–Wallis test,
the AGB differences among land-use regions were significant (p < 0.001). These differences are mainly
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explained by dissimilarities in the land cover class distributions (Figure 7). The matrix has very little
grassland with low AGB, but a large fraction of bushland with a relatively high AGB. The area also has
some forest and cropland with high maximum values, which increase the mean AGB. LUMO Oza also
mainly consists of higher AGB bushland, while lower AGB regions have larger fractions of grassland.
This includes both the West Mramba grazing area and various protected areas. We conducted pairwise
comparisons between the classes using the Dunn test, which indicates a significant difference (p < 0.05)
between all the classes (Figure 7).
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Figure 6. Aboveground biomass (AGB) distribution for the land cover types based on the AGB
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on each box plot represents the means and the whiskers represent confidence intervals.
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Table 3. Aboveground biomass (AGB) statistics for land-use regions and land cover types based on
AGB and land cover maps. IQR = interquartile range. Land-use regions: Taita Hills Wildlife Sanctuary
(THWS), LUMO Community Wildlife Sanctuary (LUMO East Mramba, LUMO West Mramba, and
LUMO Oza), Tsavo West National Park (TWNP), and other land use (matrix).

Land-Use Region Land Cover
AGB (Mg/ha)

Mean Min Max SD IQR Median

LUMO Oza
Bushland 8.8 0.0 82.3 7.9 6.3 7.3
Grassland 3.9 0.0 20.1 4.4 6.6 5.2

All 8.8 0.0 82.3 7.9 6.2 7.2

LUMO East Mramba
Bushland 5.9 0.0 106.2 7.6 8.7 5.3
Grassland 2.0 0.0 50.9 3.8 4.7 0.0

All 2.4 0.0 106.2 4.6 5.1 0.0

LUMO West Mramba
Bushland 5.4 0.0 104.4 6.3 8.1 5.3
Grassland 2.6 0.0 55.6 4.2 5.3 0.0

All 2.6 0.0 104.4 4.4 5.4 0.0

THWS

Forest 77.4 0.0 353.0 79.0 92.5 49.0
Bushland 8.1 0 159.3 11.9 10.1 5.5
Grassland 1.4 0 237.3 4.2 0 0
Cropland 3.0 0.0 100.3 7.0 5.1 0.0

All 4.8 0.0 353.0 18.6 5.1 0.0

TWNP
Bushland 8.8 0 71.8 8.3 12.2 7.1
Grassland 1.7 0 100.9 3.4 0 0

All 3.8 0.0 100.9 6.3 6.2 0.0

Matrix

Forest 66.0 0.0 346.7 73.8 99.3 35.0
Bushland 9.9 0.0 353 13.3 6.6 6.9
Grassland 2.2 0.0 54.5 4.0 5.1 0.0
Cropland 6.0 0.0 241.3 9.4 8.1 5.2

All 8.9 0.0 353 13.5 10.5 6.3

All Land cover

Forest 75.5 0.0 353.0 78.3 94.2 47.8
Bushland 9.2 0 353 11.9 11.2 6.7
Grassland 1.8 0 237.3 4 0 0
Cropland 5.8 0.0 241.3 9.3 7.9 5.1

All 5.9 0.0 353.0 13.1 7.6 0.0

3.4. Effect of Fences on Aboveground Biomass

Lastly, we compared AGB values in the fenced and non-fenced boundaries of the land-use regions
(see Figure 1A for buffer numbers). Table 4 reports the fraction of zero AGB pixels for two sides of the
buffer and the Wilcoxon test results for the non-zero AGB values.

The largest differences in the percentage of zero AGB occurred in the fenced boundaries (buffers 3,
5, 7 and 8). Most of the non-fenced boundaries (buffers 1, 2, 4, 6 and 11) showed only small differences.
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However, a greater difference was observed in the non-fenced buffer 9, which corresponds to the
boundary between bushland part of THWS and the cropland-dominated matrix. Buffer 10 showed
relatively small difference in the presence of zero AGB although there is a fence. This boundary is
between THWS and the matrix in the eastern part of the study area.

The medians of the non-zero AGB values differed most substantially in the fenced buffers 7, 8 and
10 (all differences highly significant according to the Wilcoxon test) (Table 4). Although percentage zero
AGB was substantially higher in LUMO West and East Mramba than in the matrix in the fenced buffers
3 and 5, median AGB did not differ significantly (P > 0.05). However, smaller but highly significant
differences were also observed in the non-fenced buffers 1, 6 and 9. Buffer 1 is located in the non-fenced
boundary between TWNP and LUMO West Mramba, where bushland in the northern part of TWNP
has a relatively high AGB compared to grassland-dominated West Mramba. Buffer 6 corresponds to
the boundary between two conservation areas, LUMO East Mramba and THWS.

Table 4. Percentage of zero woody aboveground biomass (AGB) and median AGB for non-zero AGB
pixels. P value refers to the Wilcoxon test results made for the non-zero AGB values. Numbers in the
end of land-use region names refer to the numbers of buffers in Figure 1A.

Side 1 Side 2 Fence
Percentage Zero AGB Median for Non-Zero AGB

Side 1 Side 2 Side 1 Side 2 P Value

TWNP_1 LUMO West Mramba_1 No 57.6 52.9 7.1 6.6 <0.001
LUMO Oza_2 Matrix_2 No 20.7 17.0 8.2 8.2 >0.05

LUMO West Mramba_3 Matrix_3 Yes 84.3 44.1 6.5 6.4 >0.05
LUMO East Mramba_4 LUMO West Mramba_4 No 63.2 58.2 6.7 6.8 >0.05

Matrix_5 LUMO East Mramba_5 Yes 32.6 62.6 7.2 7.2 >0.05
LUMO East Mramba_6 THWS_6 No 85.9 84.9 6.5 6.9 <0.001

THWS_7 Matrix_7 Yes 75.2 22.0 6.9 8.8 <0.001
THWS1_8 THWS2_8 Yes 5.3 72.0 12.6 8.0 <0.001
Matrix_9 THWS_9 No 31.0 10.6 9.1 10.0 <0.001

Matrix_10 THWS_10 Yes 56.2 61.9 6.7 9.7 <0.001
THWS_11 Matrix_11 No 69.9 56.4 6.6 6.8 >0.05

4. Discussion

4.1. Remote Sensing—Based Biomass and Land Cover Maps

We used field data and ALS metrics to create a wall-to-wall high-resolution AGB map. The model
fit and accuracy were similar [75,76] or compared favorably with previous studies in temperate and
tropical forests [65,77–79]. Our model was based on two predictors: minimum elevation of the first
returns above 3.5 m and percentage of all returns above 3.5 m. These variables characterize canopy
height and cover, both of which are related to AGB. Similar combinations of height and cover variables
have also been used in previous studies in sub-Saharan Africa [78,80,81]. Field-measured AGB included
both shrubs and trees. According to the field data, shrubs (DBH 1–5 cm) can make an important
contribution to woody AGB. However, as a height threshold of 3.5 m was used to separate canopy and
ground returns, woody vegetation less than 3.5 m in height does not affect the ALS variables. Therefore,
areas where shrubs are less than 3.5 m in height appear as zero AGB in the map. We selected the height
threshold from the tested values, as it provided the most accurate predictions. Further research should
be conducted to map AGB variations in the smallest shrubs and grasses.

We used Sentinel-2 satellite images and the CART algorithm in the GEE platform for creating
the LULC map. We achieved a good overall accuracy of 88.78% when using dry season composites.
Previous studies have shown that the dry season is best suited for separating variations in woody
AGB [82,83]. One topic for further research would include classifying various grassland types within
the study area.

Spatially explicit AGB and LULC maps offer additional knowledge of AGB variations across the
savannah landscapes compared to spatially limited field inventories. In this study, maps demonstrated



Land 2020, 9, 381 15 of 24

the link between LULC and AGB, and sharp AGB gradients in certain boundaries of the land-use
regions. Furthermore, maps enable geospatial analyses of the AGB patterns, e.g., together with wildlife
and livestock inventories, and can inform land management interventions [45]. In our study, maps
showed that grassland concentrated in the wildlife conservation areas, where AGB was reduced due to
the browsing effect on trees [83]. As there are fewer large mammals outside the conservation areas,
their negative impact on woody vegetation is less in these areas. Therefore, wildlife and livestock
frequency in the multi-use landscape contributes to the low biomass densities in the region.

4.2. Effect of Land Cover and Land Use on Aboveground Biomass

Our results reveal a significant difference (P < 0.05) in woody AGB among the land cover and
land-use classes in the studied landscape. In general, AGB is concentrated in areas with larger tree
densities. According to the field data, shrubs and smaller trees can also have a considerable effect on
woody AGB density. We observed the highest AGB densities in the forest along the Bura River Valley
and towards the foothills of the Taita Hills, while grassland had the lowest AGB densities. As the forest
class only occupies a small area, other land cover classes contributed more to the total AGB stock at
the landscape level. This emphasizes that a greater amount of AGB is stored in open savannah and
bushland than in the forest. Bushland occupies more than half of the total area, and therefore contributes
the most to the total AGB stock. The contribution of cropland to the total AGB in the landscape
is due to agroforestry (i.e., trees growing on cropland). The mean AGB densities in the landscape
were low compared to montane forest, exotic plantation, and woodland in the higher altitudes of the
Taita Hills [65,84]. Furthermore, biomass in the bushland was comparable to the leaf biomass of sisal
(Agave sisalana) in a commercially owned plantation established in the savannah landscape in Taita
Taveta [85]. Low precipitation [39,86], small-scale farming by resource-poor farmers [87], low CO2

concentrations in arid and semiarid regions [88], and disturbance from fire and herbivores [89,90] are
among factors responsible for the generally low AGB in the savannah landscape.

We categorized the multi-use savannah landscape into conservation (TWNP, THWS, and LUMO)
and non-conservation areas (matrix) based on land use. Furthermore, the conservation types were
categorized based on ownership and management. The TWNP, LUMO, and THWS are government,
community, and privately owned and managed, respectively. The AGB differences between land-use
regions are driven by the land cover differences. We observed the highest woody AGB densities
in non-conservation areas (matrix), which are mainly bushland and cropland, while LUMO West
Mramba and LUMO East Mramba, community owned and managed wildlife sanctuaries that are
mainly grassland, showed the lowest mean AGB densities. THWS and TWNP had similar mean
AGB densities, while LUMO Oza had a much higher AGB compared to grassland-dominated regions
because of its larger fraction of bushland.

Our results support the hypothesis that there is a link between the land use (conservation and
non-conservation) and dominant land cover type, which affect the observed AGB patterns. Presence
of wildlife is important for grassland to remain sparsely wooded, and hence, wildlife conservation
contributes to open grassland with relatively low woody AGB. Furthermore, ranches for livestock
contribute to the low AGB. THWS and LUMO West Mramba serve as a migratory corridor for elephants
moving between Tsavo West and Tsavo East NPs in search of food and water [51]. Contrary to
the February 2011 elephant census [73], the elephant density in the region increased from less than
0.5 elephants/km2 in 2011 to > 2 elephants/km2 in February 2014. This considerable increase in
elephant population contributes to low AGB densities in the region. Habitat improvements through
water supplementation in the protected areas also attract wildlife and further create pressure on the
vegetation. Waterholes attract large congregations of herbivores particularly during the dry season [73].
Williams et al. [91] have also suggested the presence of surface water acts as a determinant of the
distribution of water-dependent wildlife species. The wildlife and livestock census data also showed
that private (THWS) and government (TWNP) owned conservation areas had more wildlife (elephants
and buffalos) while the community owned conservation areas attract more livestock. This could be
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associated with the management strategies employed by the respective agencies. Therefore, policies
and management strategies geared towards woody vegetation protection should be introduced into
wildlife conservation management plan in order to reduce AGB decline in conservation areas.

Recent studies in the same region show that conversion of bushland to treeless cropland [92]
increases land surface temperatures and decreases evapotranspiration, and low tree canopy cover
areas cause higher land surface temperatures and higher temperatures in general [93]. Together with
increasing proportion of agricultural areas, conservation areas have a negative contribution to the
local climate, and furthermore, to the regional climate. Furthermore, bushland protection is vital for
the conservation of flora and fauna, and for habitat conservation [91,94]. Furthermore, high AGB
bushland supports, for example, the mitigation of wildfire, poor water quality, soil erosion, soil PH,
air temperature and other ecosystem services of importance to the ecology, climate and wildlife [91,92,95].
Restoration of degraded areas by fencing, enrichment planting of woody plants and translocation of
wildlife (browsers) to high biomass areas, agroforestry, and sustainable environmental regulation are
some ways to mitigate these effects. Therefore, the trade-offs between the wildlife conservation and
benefits of woody vegetation should be considered carefully in the conservation area management and
land-use planning.

Although not addressed in this study, in addition to land use, natural factors, such as soil type,
ground water table level, and rainfall, may contribute to land cover and AGB patterns. The soil type is
typically red laterite, but parts of the landscape are characterized by sedimentary carbonites, which are
drier and less fertile soils, thus introducing sparser woody vegetation. The water table level is high,
especially along the Bura River Valley, enabling better tree growth. Furthermore, rainfall and mist
emergence in topographically higher areas, such as Maktau Hill in LUMO Oza, may increase tree
cover and height. Further studies should aim to clarify the roles of land use and natural factors on
land cover and AGB in the study area.

4.3. Effect of Wildlife Fences on Biomass Distribution and Density

Fencing conservation areas is primarily done to prevent wildlife from intruding into
surrounding communities and farmlands, in other words, to reduce human–wildlife conflicts [96–99].
Fences additionally help minimize wildlife poaching and the illegal extraction of other vital resources
from protected areas [33] and hinder the transmission of vector-borne diseases between livestock and
wildlife, as production animals and wildlife are kept separate. In Kenya, 60% of all protected areas are
fully or partially fenced [35].

The ecosystem in the Taita Hills lowlands faces challenges, including livestock incursion, poaching,
drought, land-use change, human–wildlife conflict, unprescribed fires, invasive species, and vegetation
damage by elephants [100]. Electric and non-electric fences have therefore been constructed on the
borders of the protected areas to minimize some of these challenges. The fence from Maktau to
Bura Village was built in 1999 [33]. It restricts the movement of wildlife from conservation areas and
hinders unauthorized access to the areas [99]. Fences also protect degraded habitats and support forest
regeneration trials. Furthermore, fences around farms restrict wildlife and livestock from entering
the farms.

According to our analysis of the AGB variation in the boundaries of the land-use regions (buffers),
the largest differences in the percentage of zero AGB and median AGB occurred in the fenced boundaries.
In the buffers 3, 5 and 7, which correspond to the boundary between the conservation areas (LUMO
West and East Mramba, THWS) and the matrix, the percentage of zero AGB was considerably higher in
the conservation area sides of the fence. The zero AGB pixels refer to pixels without any woody AGB,
which may indicate large pressure from herbivores on woody vegetation. This is supported by the
high density of wildlife close to the fence in LUMO East Mramba and THWS (Figure 4). In the buffer
7, matrix side also had higher median AGB but buffers 3 and 5 did not show significant difference
in median AGB. The latter suggest that although woody vegetation is considerably less in LUMO
West and East Mramba sides of the buffers, woody vegetation in both sides has similar character and
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median AGB. Buffer 8 matches the fenced boundary in the northern part of THWS and it is associated
with a sharp transition from grassland to relatively dense bushland. This explains both the larger
fraction of zero AGB pixels and the lower median AGB in the grassland side. Furthermore, buffer 10 is
located in the fenced boundary between THWS and the matrix. THWS side of this boundary had
slightly higher percentage of zero AGB than matrix side, similar to other conservation areas but the
difference was smaller. However, THWS side of the buffer had significantly higher median AGB.
This can be explained by the presence of riverine forest in that side of the boundary with greater AGB.
Furthermore, the matrix in this area lies on a flood plain dominated by cropland interspersed with
bushland in contrast to grassland in the THWS side, which may explain this difference.

Among the non-fenced boundaries, buffer 9 had the most apparent difference between the two
sides of the boundary. This buffer corresponds to the northern boundary of THWS with rapid change
from bushland to cropland-dominated area within the matrix. Matrix-side had clearly more zero
AGB pixels corresponding to cropland and lower median AGB. Although not fenced, this boundary
follows a road, which makes it clearly visible. Furthermore, the fence south of the area protects it from
herbivores in THWS. In addition, statistically significant differences in median AGB were observed in
the non-fenced buffers 1 and 6. In the boundary between TWNP and LUMO West Mramba (buffer 1),
bushland in the northern part of TWNP has a relatively high AGB compared with grassland-dominated
West Mramba, which explains higher median AGB in the TWNP side. Buffer 6 corresponds to the
boundary between two LUMO East Mramba and THWS. Slightly higher AGB in the THWS side could
relate to higher grazing pressure in LUMO East Mramba. However, differences in these two unfenced
boundaries are very small in comparison to the fenced boundaries with obvious differences.

Our results support our hypothesis that fences play a role in the distribution of wildlife and
livestock, and woody AGB patterns in the landscape. This creates sharp land cover transitions to the
fenced boundaries of the land-use regions. The conservation and grassland sides of the buffers 5, 7 and
8 experience high pressure from wildlife and cattle while pressure is particularly low in the matrix
sides of buffers 7 and 8 with fewer cattle (Figure 4). In buffers 3 and 10, the difference in herbivore
density between the conservation areas and the matrix were not as evident at the time of counting.
However, free ranging wildlife are constantly moving based on resource conditions.

In general, fencing can increase the wildlife population in the conservation areas and enhance
biodiversity conservation [101–103]. However, an increased abundance of (mega)herbivores [104]
reduce biomass densities due to tree mortality caused by browsing. The browsers suppress woody
plant recruitment in the grassland and have a long-term impact on their growth and mortality
rates [105]. This is particularly true for non-selective feeders, such as elephants, who debark trees and
thus suppress recruitment and vegetation generation. According to Ogutu et al. [52], the landscape
experienced a moderate growth in elephant density between 1977 and 2016. Similar pressure
on woody plants was observed during 1970–1973, when the elephant population was large [55].
The problem is further aggravated by the fence, which restricts wildlife dispersal, and hence, reduces
the ecosystem’s resilience [98]. Thus, fencing combined with heavy browsing may reduce the biomass
in conservation areas.

5. Conclusions

Taita Hills lowland savannah landscape, similar to other typical African savannah biomes, exhibits
multi-use functionality, which results in heterogeneous land cover. We combined field data with
ALS metrics to predict a woody AGB map in the study area and created a land cover map using
Google Earth Engine. AGB densities in the region were comparatively low and influenced by wildlife
conservation. The highest AGB densities were observed in the forest class (riverine forest) in THWS
in the conservation area. Greater AGB densities were also found in the bushland in the matrix,
LUMO Oza, and southern parts of THWS. The western parts of the landscape dominated by grassland
and influenced by wildlife conservation and livestock grazing had a lower woody AGB density.
Wildlife and livestock densities in the conservation area are high compared to the matrix. Bushland
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and cropland dominate the matrix, which support the livelihood of community members through
farming and other livelihood options (fuelwood, etc.). The electric fence restricts the movement of
wildlife, creating grassland within protected areas and contributing to the low densities of woody AGB.
In addition to human–wildlife conflict mitigation, fencing also influences the spatial distribution and
density of woody AGB in a multi-use savannah landscape. Further investigating the effect of wildlife
and livestock fencing on land cover and biomass (including grass biomass) in multi-use savannah
landscapes at various spatial and temporal scales is important. Furthermore, our results need to be
scaled up and contributions of livestock management and conservation areas to climate change require
investigation. The impact of wildlife conservation on land cover change, and plant species diversity
and composition also deserve further investigation.
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Appendix A

Table A1. Summary of airborne laser scanning metrics computed using Fusion [62,63].

Predictor Description

H.p01, H.p05, H.p10, H.p20, H.p25, H.p30, H.p40, H.p50,
H.p60, H.p70, H.p75, H.p80, H.p90, H.p95, H.p99 1st, 5th, 10th . . . and 99th percentile of return height > 3.5 m

H.L1, H.L2, H.L3, H.L4 L-moments 1–4 of return height > 3.5 m
H.L.cv L-moments coefficient of variation of return height > 3.5 m
H.L.skewness L-moments skewness of return height > 3.5 m
H.L.kurtosis L-moments kurtosis of return height > 3.5 m
H.max Maximum of return height > 3.5 m
H.mean Mean of return height > 3.5 m
H.min Minimum of return height > 3.5 m
H.mode Mode of return height > 3.5 m
H.cv Coefficient of variation of return height > 3.5 m
H.v Variance of return height > 3.5 m
H.stdev Standard deviation of return height > 3,5 m
H.skewness Skewness of return height > 3.5 m
H.kurtosis Kurtosis of return height > 3.5 m
H.IQ 75th percentile minus 25th percentile for cell
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Table A1. Cont.

Predictor Description

CC.first First returns > 3.5 m/Total first returns * 100
CC.all All returns > 3.5 m/Total all returns * 100
CC.all.first All returns > 3.5 m/Total first returns * 100
CC.first.mean First returns above mean/Total first returns * 100
CC.all.mean All returns above mean/Total all returns * 100
CC.all.mean.first All returns above mean/Total first returns * 100
CC.first.mode First returns above mode/Total first returns * 100
CC.all.mode All returns above mode/Total all returns * 100
CC.all.mode.first All returns above mode/Total first returns * 100

All height variables (beginning with ‘H’) were calculated separately using first and last pulse returns, which are
indicated by the prefix ‘FR_’ or ‘LR_’, respectively. All canopy variables (beginning with “CC”) were calculated
using all returns only.

Table A2. Errors of omission and commission per class in the land cover classification.

Forest Bushland Grassland Cropland Row Total Producer’s Accuracy

Forest 47 5 0 0 52 95.91
Bushland 1 59 4 2 66 76.62
Grassland 0 6 100 3 109 92.59
Cropland 1 7 4 55 67 91.66

Column total 49 77 108 60 294
User’s accuracy 90.38 89.39 91.74 82.08
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