
land

Article

A Discounted Cash Flow and Capital Budgeting
Analysis of Silvopastoral Systems in the Amazonas
Region of Peru

Stephanie Chizmar 1,* , Miguel Castillo 2, Dante Pizarro 3 , Hector Vasquez 4 ,
Wilmer Bernal 4 , Raul Rivera 2 , Erin Sills 1 , Robert Abt 1, Rajan Parajuli 1 and
Frederick Cubbage 1

1 Forestry and Environmental Resources, North Carolina State University, 2800 Faucette Dr., Raleigh,
NC 27695, USA; sills@ncsu.edu (E.S.); bobabt@ncsu.edu (R.A.); rparaju@ncsu.edu (R.P.);
cubbage@ncsu.edu (F.C.)

2 Crop and Soil Sciences, North Carolina State University, 101 Derieux Pl, Raleigh, NC 27695, USA;
mscastil@ncsu.edu (M.C.); rrivera4@ncsu.edu (R.R.)

3 Animal Science Faculty, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
dpizarro@lamolina.edu.pe

4 Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodriguez
de Mendoza de Amazonas, Chachapoyas 01001, Peru; hvasquez@untrm.edu.pe (H.V.);
wilmer.bernal@untrm.edu.pe (W.B.)

* Correspondence: sjchizma@ncsu.edu

Received: 28 August 2020; Accepted: 24 September 2020; Published: 25 September 2020
����������
�������

Abstract: Silvopasture is a type of agroforestry that could deliver ecosystem services and support
local livelihoods by integrating trees into pasture-based livestock systems. This study modeled the
financial returns from silvopastures, planted forests, and conventional cattle-pasture systems in
Amazonas, Peru using capital budgeting techniques. Forests had a lower land expectation value
(USD 845 per hectare) than conventional cattle systems (USD 1275 per hectare) at a 4% discount rate.
“Typical” model silvopastures, based on prior landowner surveys in the Amazonas region, were most
competitive at low discount rates. The four actual silvopastoral systems we visited and examined
had higher returns (4%: USD 1588 to USD 9524 per hectare) than either alternative pure crop or tree
system, more than likely through strategies for generating value-added such as on-site retail stands.
Silvopasture also offers animal health and environmental benefits, and could receive governmental or
market payments to encourage these practices.

Keywords: silvopasture; economics; financial analysis; carbon payment; Peru

1. Introduction

Expanding forest cover remains a global priority to combating trends in deforestation and
global climate change. Countries in Latin America, where the livestock sector generates 58–70%
of overall agricultural emissions, are particularly interested in mitigating climate change through
integrating forest cover into agricultural production systems [1]. Agroforestry operations combine
forest or horticultural species and pasture or cropland to make mixed land-use systems that produce
commercial benefits to landowners [2]. Silvopasture, a branch of agroforestry, is a strategic and managed
agroecosystem in which livestock, forage, and trees or shrubs are integrated to help improve individual
components [3,4]. Silvopastoral systems (SPS) diversify earnings to landowners by generating products
on various harvest schedules, from daily as in the case of milk and cheese to multi-year for forest
products such as fuelwood, posts, and boards [5].
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As such, silvopasture has been identified as a key integrated landscape approach that could
potentially increase returns to landowners by generating timber and non-timber products, while also
improving conditions for forage production and cattle [6]. This most likely occurs when the components
of the system have complementary relationships such that tree and cattle–forage production are mutually
beneficial, which has been found true at low tree densities in the USA [7]. However, this may not be
the case in the absence of established markets and technical knowledge networks. In other words,
without access to knowledge and markets, silvopastoral practices may not achieve the social and
environmental benefits they have been documented to produce [8].

Recently, the Peruvian government defined its Nationally Determined Contributions,
which contemplate reducing 30% of the greenhouse gas emissions projected for the year 2030.
The government recommended considering strategies such as the recovery of degraded soils with SPS
in the Peruvian Amazon. Incorporating SPS in the Peruvian Amazon has the potential to mitigate
1344 metric tons of CO2e through intervention on 102,000 hectares [9]. Peru also committed to restore
3.2 million hectares as part of the Bonn Challenge’s mission to restore 150 million hectares of the
world’s degraded and deforested lands by 2020 [10]. Silvopasture is one strategy aimed at increasing
forest cover in agricultural systems, augmenting a region’s carbon sequestration potential, especially
in deforested and degraded ecosystems [1].

Amazonas, a jurisdiction of Northeastern Peru, has an economically disadvantaged rural
population that depends on agriculture and animal husbandry as primary income sources. Poverty rates
exceed 50% and malnutrition levels are 30% or more in parts of Amazonas [11], suggesting a need for
governmental intervention aimed at improving the livelihoods of the lower income populace. The rural
population of Amazonas, encompassing over half of the total population [12], has opportunities to
improve the welfare of landowners, farmers, and associated laborers. Rural landowners, both onsite
and absentee, may generate additional income flows from timber and non-timber products by
incorporating trees into their agricultural systems. Rural households may also become eligible for
payments for ecosystem services through helping to expand tree cover and thereby provide habitat,
sequester carbon, or provide other benefits.

The main goal of this paper is to evaluate the financial returns of Peruvian production systems,
including silvopasture, typical cattle-pasture operations, and planted tree monocultures, through the
application of discounted cash flow and capital budgeting analyses. The main hypothesis of SPS states
that mixed-use systems can diversify farm income, reduce biophysical and financial risks, and perhaps,
increase total farm returns by providing timber and non-timber products in addition to forage for
livestock production. We postulated that the degree of tree and forage competition determines the
profitability of SPS. In other words, at a modest tree density, trees may complement forage systems;
however, at high tree densities, the production of forage will decline due to competition for resources,
especially light. The collaborative team determined productivity data as well as prices of inputs and
outputs as reported by local silvopasture practitioners and industry experts to model whole-system
cash flows. Finally, we assessed the potential impact of incentive payments on a range of actual and
typical landowner income for both absentee and onsite landowners. The rest of this paper is structured
in the following five sections: (i) a review of the literature on silvopasture, particularly in tropical and
subtropical regions; (ii) the methods we utilized to determine cash flows for multiple land-use systems;
(iii) the results of the discounted cash flow and capital budgeting analyses; (iv) a discussion on the
profitability of different land-uses; and (v) concluding remarks.

2. Literature Review

Loker [13] modeled low-input agroforests to determine their suitability as alternative, sustainable
production systems for small-to-medium farmers in the Amazon Basin, as landowners in the region are
attracted to cattle management for its multiple economic benefits. Landowners in Uruguay recognized
that shelter from silvopasture benefits cattle, fostering increased calving rates [14]. In Argentina,
small-scale farmers perceived cash flow diversification through the sale of livestock and forest products
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as the main advantage of silvopasture [15]. Silvopastures also likely provide better microenvironments,
reducing climatic-induced stress, such that grazing animals are “happier” and gain weight at a faster
rate than when grazing in traditional open pastures [3]. For many species of livestock, deviations in
core body temperature more than 2 to 3 ◦C negatively impact performance, productivity, and fertility,
potentially leading to decreased successful pregnancies [16]. Faster and increased weight gain from
improved microenvironments as well as augmented crop growth may lead to higher profits for
landowners, as well as better animal welfare in Amazonas.

Agroforests potentially sequester more carbon than pastures or field crops growing under similar
ecological conditions [17]. Oliva et al. [18] measured 337.2 tons of carbon stored in Pinus patula
silvopastures with 8- to 10-year-old trees in Amazonas. Dube et al. [19] reported that silvopastures in
Patagonia, Chile, as well as in Minas Gerais, Brazil [20] required less time than a plantation monoculture
to reach similar carbon gains above and below ground. The researchers attributed gains in carbon to
the positive interactions between cattle, tree, and pasture components, including increased tree growth.
Cubbage et al. [21] reviewed global SPS in eight regions, including areas in Argentina, Uruguay, Chile,
and Brazil, and reported that silvopasture is financially competitive with alternative land-use systems
and offers biophysical and financial diversity and resilience, attributes critical with the increased
occurrences of extreme weather events due to climate change.

Payments for ecosystem (environmental) services (PES) compensate landowners for managing
their property to sequester carbon, protect biodiversity, or provide watershed services. Some scientists
have argued that in tropical systems the greatest potential for carbon sequestration is through the
establishment of tree-based systems on degraded pastures [22]. Programs that provide incentives
for forest management on degraded productive lands and supply additional sources of revenue may
aid profitability as well as conservation of land-use systems in Amazonas. Orefice et al. [23] found
that silvopastures in the U.S. North were financially superior to open pasture or thinned forests.
Bruck et al. [24] observed that SPS are less financially profitable than pasture in the southern and
western U.S. The study, however, did not account for any animal welfare or joint output effects.

Silvopastures can also shift forage production for livestock and soil quality, resulting in an
expanded grazing season and livestock diets higher in protein [3,23]. Livestock provides essential
elements such as nitrogen, phosphorus, and potassium through nutrient cycling to fertilize forages and
trees, which may reduce dependence on additional external inputs [25,26]. Pent and Fike [25] suggested
there is a complementary biophysical relationship between forage production for livestock and trees,
assuming a modest tree density. Silvopastoral systems with relatively low tree densities required
reduced weeding, provided increased available nitrogen, improved the microclimate, reduced erosion
control costs, and fostered better animal health such as increased pregnancy success rates [26].

3. Methods

The Molinopampa district, located in the northeastern section of the Chachapoyas Province, in the
southern portion of the Amazonas Region, has an oceanic climate (dry forest lower montane tropical
according to Holdridge’s Life Zone) [27]. Approximately 75% of the population in Molinopampa
make a living in agriculture, ranching, hunting, and silviculture [28]. The Huayabamba Valley, in the
Rodríguez de Mendoza Province, is characterized as having a tropical savanna and warm-humid
climate (moisture forest premontane tropical according to Holdridge’s Life Zone) [27]. Past surveys of
the study area [28–31] found that 61% and 43% of the silvopasture producers in the Molinopampa
district and the Huayabamba Valley, respectively, own farms that are on less than 10 hectares (ha).
Conversely, 10-ha to 30-ha (30-ha+) farms represented 28% and 42% (11% and 16%) of the surveyed
systems in the Molinopampa district and the Huayabamba Valley, respectively. The field sites for this
study, which participated in the past surveys, are located on privately-owned farms, are managed
as part of cooperatives with multiple institutions, and range from 10-ha to 65-ha in size [28–31].
Therefore, our sample farms are among the larger size class ownerships for these similar regions,
but still within a representative range.



Land 2020, 9, 353 4 of 15

Universidad Nacional Agraria La Molina (UNALM), El Porvenir Research Station (INIA),
the Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), and North
Carolina State University (NCSU) have been collaborating with private landowners over the past
five years to better understand the dynamics of applied agroforestry systems [28]. In July 2017,
the collaborative team interviewed three landowners and one land manager well-known locally for
practicing silvopasture and who have established relationships with the local university UNTRM.
We selected these farms since they have established connections to the researchers and are most
likely local leaders in their farm practices. Analyzing examples of successful programs may help to
illuminate cost-effective characteristics and strategies that could be adapted throughout Amazonas.
Cash flow estimations based on the four landowner responses, as well as average costs and benefits
from discussions among co-authors, were predicted for each site in addition to “typical” model systems
representing average farms in the region documented in the previously mentioned surveys [28–31].

The study collaborators gathered production function data for the case studies and typical model
systems, organized in a database, to estimate values from soils, crops, and grazing. We estimated
the associated economic impacts of inputs and outputs over a 25-year time horizon, both to calculate
Net Present Value and Land Expectation Value. We then performed analyses in Microsoft Excel for
Microsoft 365 using discounted cash flows associated with SPS, conventional grazing, and planted
forests. The spreadsheets included necessary measures of productivity, product prices and costs,
and management schedules, among other site-specific information, to calculate the net returns of
annual activities. The operations were modeled as whole land-use regimes due to their complexity
and the available information.

Tools in capital budgeting analysis such as Net Present Value (NPV), Land Expectation Value
(LEV), Annual Equivalent Income (AEI), and Benefit-Cost Ratio (BCR) allow for comparison of land-use
systems. Real discount rates of 4%, 8%, and 12% were used in all financial formulas to represent
a range of the opportunity cost of the next best investment. Discount rates account for the future
value of income that would equate to income earned in the present through representing preferences
for incurring costs and benefits now or in the future, i.e., they capture the opportunity cost of the
investment. Since discount rates are often unknown to landowners, most analyses use the internal rate
of return of the next best option for comparisons, such as a bank investment [32]. The Internal Rate
of Return (IRR) was not relevant and inapplicable for this analysis for ongoing farms since annual
benefits always exceeded costs. We excluded land values from NPV and LEV calculations. As such,
each metric represents use-values, or income-based values, of the land. We then compared these
metrics to the alternative values, market prices for land in the region, to facilitate a discussion on the
financial competitiveness of different land-use systems.

NPV measures the amount of capital that an investment returns at a given discount rate through
summing the total expenditures and subtracting them from total income [33]. Formula (1) demonstrates
how NPVs are calculated in terms of farm and forest costs and revenues.

NPV =
t∑

i=0

(B−C)

(1 + i)t (1)

where B and C represent the annual total benefits and costs, respectively, of the land-use system,
i signifies the interest or discount rate, and t is the year of the cash flow.

Similar to NPV, LEV utilizes expenditures, income, and a discount rate to measure the expected
cash flow of a land-use in perpetuity. LEV has four assumptions to be viable: (1) identical costs and
revenues in all rotations; (2) land-use will be maintained in perpetuity; (3) land requires identical
regeneration costs at the beginning of each rotation; (4) the land value does not enter the calculation.
In other words, landowners must replicate the following activities, including identical costs of inputs,
prices of outputs, and cash flow schedules, into the future: purchase inputs, produce goods and
services, extract products, and use or sell products. LEV allows researchers to compare systems of
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different rotation ages as well as how much an investor is willing to pay for the land at a given discount
rate by assuming land-use will be continued indefinitely [26]. Formula (2) describes the method of
estimating a production system’s periodic and perpetual net returns in the present value [34].

LEV = NPV + NPV
(1+i)T

−1

Or LEV = Vn

[(1+i)n
−1]

(2)

where NPV equates to the net present value of the system, T is the final year of the system’s rotation,
Vn equates to the net future value of the system at n number of years per period, and i again signifies
the interest or discount rate.

AEI expresses NPV or LEV in annual payments equally distributed over the life of the investment
(Formula (3)). AEI allows comparison of long-term timber investments with seasonal returns from
agriculture by expressing the income of each alternative in annual payments [32].

AEI = LEV ∗ i (3)

where LEV represents the system’s land expectation value and i signifies the interest or discount rate.
BCR relates the total discounted benefits to the total discounted costs. The relation describes

present value benefits and costs as a unitless proportion rather than as a difference such as in the case
of NPV. The proportion (Formula (4)) reveals the return landowners receive per dollar invested [26].

BCR =

∑t
i=0 Bp∑t
i=0 Cp

(4)

where Bp and Cp represent the benefits or revenues and costs or expenditures, respectively, in present
value terms.

For price transformations of Peruvian wood products, the co-authors converted from Nuevo Sol
per product to USD per cubic meter of wood product. Derived residual stumpage prices, equating to
50% of the roadside value, were calculated to account for logging and transportation when not given
labor amounts for transport and/or sale. As a result, the income generated by the primary landowner
as well as additional laborers is captured. For this reason, primary landowner labor was not included
in the analysis. In other words, the determined income includes earned income from self-employment
of the primary landowner. However, for farms with more than 15 heads of cattle, average annual
income data were used to proportionately increase income to outside laborers, additional landowners,
and/or land managers, bore as a cost in the modeled scenarios. The average annual income of a
farm laborer in Amazonas at the time of the study was USD 11,111.11 [28–31]. The most common
land-uses in Amazonas, Peru are dual-production systems of cattle and dairy and cultivation of
horticultural and forest products such as coffee, guava, citrus fruits, eucalyptus, and cedar [29,30].
Agroforestry systems in Amazonas are increasingly incorporating multi-strata systems and improved
fallows [29,35,36]. The study collaborators represented this trend through the selection of field sites of
various production complexity.

4. Results

Table 1 summarizes the operations based on actual farms and survey observations. The first three
rows review typical model systems defined by our project cooperators and previously completed
surveys [28–31]. The last four rows describe systems observed in field visits. Both typical and actual
farms included a variety of predominantly exotic cattle breeds including Brown Swiss and Holstein
and planted non-native Eucalypts and pines.
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Table 1. Description of evaluated scenarios in Amazonas, Peru.

Scenario Management
Intensity * Tree Species Tree Growth

(m3ha−1 year−1) Cattle Breeds Number of Cattle
(Lactating Cows)

Typical Model Systems (based on prior surveys)

10-ha Planted
Forest Only Low Pinus patula 5 - 0

(0)
10-ha

Cattle-Pasture
Only

Medium - 0
Brown Swiss,
Simmental,

Holstein

16
(5)

10-ha SPS Medium
Alnus acuminata,

Eucalyptus globulus,
P. patula

5
Brown Swiss,
Simmental,

Holstein

16
(5)

Actual Systems (field sites)

10-ha Cattle +
Trees + Fruit Medium E. globulus 5 Holstein 21

(6)

25-ha Cattle +
Trees + Fruit +

Store
High

P. patula, Cupressus
macrocarpa, E.

globulus, A.
acuminate

5
Holstein,

Simmental,
Brown Swiss

38
(8)

30-ha Cattle +
Trees High E. globulus, A.

acuminate, P. patula 5 Brown Swiss 49
(24)

65-ha Cattle +
Trees +

Restaurant
Medium P. patula, C.

macrocarpa 5 Brown Swiss 38
(11)

* In terms of inputs including labor.

The income from the typical and actual SPS predominately comes from the production of
agricultural and horticultural products. Table 2 separately identifies the present value income
(at a 4% discount rate) from wood products as well as agricultural and horticultural products for the
one SPS scenario based on the past surveys and the four actual systems. Table 3 displays the capital
budgeting results for the typical and actual regimes. Returns for the modeled systems varied from
positive to negative net profits depending on management choices, local markets, and the discount rate.

Table 2. Total present value income by product type (discounted at 4%).

SPS Scenario
Total Income at 4%

Wood Products Ag. and Hort. Products

Typical SPS USD 3369 USD 148,060
10-ha C + T + F USD 2616 USD 322,077

25-ha C + T + F + S USD 4657 USD 715,614
30-ha C + T USD 2616 USD 217,352

65-ha C + T + S USD 2322 USD 67,951

C—Cattle; T—Trees; F—Fruit; S—Store (25-ha farm) or Restaurant (65-ha farm).

Table 3. Net present values (NPV) and land expectation values (LEV) of the evaluated scenarios.

Scenario
NPV (USD/ha) LEV (USD/ha)

4% 8% 12% 4% 8% 12%

Typical Forest 527.87 −210.61 −583.94 844.74 −246.62 −620.44
Typical Cattle-Pasture 796.88 318.64 69.53 1275.25 373.12 73.87

Typical SPS 992.52 321.91 2.52 1588.33 376.96 2.68
10-ha C + T + F 5794.18 4045.62 3040.01 9272.43 4737.36 3230.01

25-ha C + T + F + S 3626.78 1433.91 276.45 5803.93 1679.08 293.73
30-ha C + T 5951.49 1840.67 −261.03 9524.17 2155.39 −277.35

65-ha C + T + S 4603.27 2615.55 1555.65 7366.60 3062.77 1652.88
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For the three regimes modeled based on prior farm owner surveys [28–31], pure timber investments
provided the lowest returns to landowners (LEV: 4% = USD 844.74; 8% = −USD 246.62; 12% = −USD
620.44 per ha). Dual-purpose cattle grazing systems earned about 50% more than the returns of
plantation forests at the lowest discount rate (LEV: 4% = USD 1275.25; 8% = USD 373.12; 12% = USD
73.87 per ha). The “typical” silvopasture scenario based on survey findings generated the highest
landowner profitability of the hypothetical regimes (LEV: 4% = USD 1588.33; 8% = USD 376.96;
12% = USD 2.68 per ha). At a 12% discount rate, however, the wait for timber income was penalized
more. Consequently, the ranking of systems in respect to landowner profitability changed, signaling
conventional cattle–forage regimes to earn more net income than conventional SPS.

The four actual agroforestry systems that we surveyed in Amazonas provided landowners high
returns. Again, it is worth noting that these farms were selected by the project co-investigators,
and probably are local leaders in their farm practices. The 10-ha farm including planted trees for fruit
and timber production and cattle grazing earned relatively high net returns (LEV: 4% = USD 9272.43;
8% = USD 4737.36; 12% = USD 3230.01 per ha). The second smallest farm visited, a 25-ha
system with planted timber and fruit trees, cattle grazing, and a store on-site for sale of final
products, provided acceptable, positive returns at low discount rates (LEV: 4% = USD 5803.93;
8% = USD 1679.08; 12% = USD 293.73 per ha). The second largest agroforest, a management-intensive
30-ha cattle grazing regime with a “living-fence” of planted trees, generated positive returns at low
discount rates but failed to return positive earnings at a 12% discount rate (LEV 4% = USD 9524.17;
8% = USD 2155.39; 12% = −USD 277.35 per ha). The largest property analyzed, a 65-ha farm with
multiple cattle grazing paddocks and tree plantations, produced acceptable incomes at all discount
rates (LEV: 4% = USD 7366.60; 8% = USD 3062.77; 12% = USD 1652.88 per ha).

Figure 1 demonstrates the AEI of the conventional and monoculture regimes. At 4%, the values
of all typical systems in Peru ranged from USD 33.79 to USD 51.01/ha/year. Forest monocultures
experienced negative returns at higher discount rates. Figure 2 shows the AEI values for mixed land-use
regimes. Typical silvopastures experienced positive annual returns at all discount rates. The calculated
annual net revenue of actual systems ranged between USD 134.33 and USD 378.99/ha/year at 8%.
The AEI may be multiplied by the number of acres to estimate the system’s annual income, including
earned income for the self-employed primary landowner. Only the two largest actual operations,
the 30-ha (4% discount rate) and 65-ha systems (all discount rates), earned more than the average
annual income for farmers in Amazonas when accounting for total net system returns. Thus, the two
larger systems were the only scenarios that support sustainable livelihoods for the landowner(s).Land 2020, 9, x FOR PEER REVIEW 8 of 16 
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Figure 2. Annual equivalent income (AEI) of agroforestry systems.

Figure 3 displays the BCRs, a measure of the financial returns received per dollar spent in an
investment, of all systems analyzed in the study. Tree plantations offered profitable returns per dollar
invested at the lowest discount rate, as observed in its BCR, 1.27. At 8% and 12%, the BCR of forest
monocultures was less than 1, signifying a loss per dollar invested (0.87, 0.61), due to the rapid
diminution of future values. Dual-purpose cattle–forage regimes were cost-intensive and generated
approximately USD 1.11 per dollar invested at the lowest discount rate (BCR: 4%= 1.11, 8% = 1.07,
12% = 1.02). The returns per dollar invested in silvopastures included a combination of costs and
benefits from each industry (BCR: 4% = 1.16, 8% = 1.08, 12% = 1.00). The returns per dollar invested in
the 10-ha actual farm increased as the discount rate increased (BCR: 4% = 1.62, 8% = 1.66, 12% = 1.71).
The 25-ha mixed-use farm required high management intensity and generated just over a dollar per
dollar spent at 12% (BCR: 4% = 1.27, 8% = 1.15, 12% = 1.04). The 30-ha silvopasture with an absentee
landowner lost USD 0.02 per dollar invested at the highest discount rate (BCR: 4% = 1.24, 8% = 1.11,
12% = 0.98). The 65-ha silvopastoral system with a restaurant and timber sale on site generated over
USD 2 per dollar invested at all discount rates (BCR: 4% = 2.54, 8% = 2.33, 12% = 2.12).Land 2020, 9, x FOR PEER REVIEW 9 of 16 
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The production systems analyzed required varying degrees of establishment intensity (Table 4).
Of the three model scenarios, pure forest investments demanded the least in establishment inputs
(USD 1130.50/ha). However, due to the longer turn-around time before generating a positive net
income, forest monocultures also were associated with the longest payback period, in non-present value
terms (8 years). While traditional cattle-pasture regimes required higher cost inputs for establishment
(USD 1197.53/ha), they produced positive net returns sooner than planted forests (3 years). Establishing
the typical cattle-pasture operation and the typical SPS required similar costs, differentiated only by the
inputs needed to plant trees in the SPS. Cattle purchases were not included in this metric as they occur
after pasture and trees are established. Establishment costs of hypothetical and actual silvopastures
ranged from USD 623.99 to USD 1183.10 per ha and required 1 to 5 years to pay back, in non-present
value terms.

Table 4. Establishment costs (not discounted) and payback periods for all scenarios.

Scenario Establishment Cost (USD/ha) Payback Period (Years)

Typical Forest USD 1130.50 8
Typical Cattle + Pasture USD 1197.53 3

Typical SPS USD 1203.35 4
10-Ha C + T + F USD 915.56 1

25-Ha C + T + F + S USD 1183.10 1
30-Ha C + T USD 1082.35 5

65-Ha C + T + S USD 623.99 5

Cost-share payments at various rates pay landowners part of the establishment costs necessary to
develop a tree plantation or other conservation practices. These are common in the United States now
and were in Latin America in the past, and increase the net present value exactly by the amount paid
in year 0, as well shorten the payback period needed to generate positive net earnings. An assumed
one-time 50% cost-share payment during the first years of USD 87.61 per hectare increased the LEV of the
typical silvopasture scenario to USD 90.29 per hectare at a 12% discount rate. The cost-share payments
in the initial years increased the NPV or LEV by the amount of the payment, ceteris paribus. Payments
for environmental services (PES), such as carbon sequestration and water quality protection, can help
increase the returns of agroforestry systems and provide landowners an equal choice between land
uses. Mixed systems, both hypothetical and actual, experienced higher returns than the monoculture
alternatives at discount rates of 4% and 8%. At 12%, typical silvopastures earned USD 71.19 per
ha less in present value terms than conventional cattle–forage systems and required an annuity of
USD 12.60 per ha for 10 years to breakeven.

Using a growth rate of 5 m3/ha/year and an approximate biomass volume of 42.7% dry wood
volume [18], we estimated the net carbon flow of each tree-based land-use system. The baseline
comparison to show additional carbon storage was traditional cattle–pasture systems. The derived
aboveground carbon accumulation rate for pure planted forests in Amazonas was 2.56 tons/ha/year
(9.4 metric tons CO2e/ha/year). Typical silvopastures with 15–20% trees store 0.38–0.51 tons of
carbon/ha/year (1.39–1.88 metric tons CO2e/ha/year). In a 25-year rotation, landowners may sequester
34.75–47 metric tons CO2e/ha.

5. Discussion

In Amazonas, Peru, we modeled three representative crop, forest, and silvopasture systems
(SPS) based on previous farm owner surveys, interviewed four landowners or land managers as
empirical case studies, and estimated their financial returns using capital budgeting techniques.
The case study systems included dual-purpose dairy cattle with some forests, and often with on-farm
retail stands. The span of systems analyzed in this study provided a mix of inputs and returns.
The increased profitability of complex agroforestry scenarios to private landowners may have resulted
from the reduced management costs, compared to monoculture systems, and the resulting increased
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system productivity through complementary biophysical characteristics. Some owners also made
and sold cheese, yogurt, and jams at their farms—adding value and a handy outlet for their raw
products. The “typical” model systems identified by the co-authors and based on past surveys [28–31]
were moderately profitable. The actual operations visited demonstrated that with increased system
complexity, and some home stores with added value for the products, returns could increase as well, at
least by the best landowners. With a limited sample of farms, more replications are required to better
determine impacts from returns to scale and added value products.

Planted forests appeared to have the most opportunity to be cost-effective for landowners with
limited capital, generating the highest ratio of returns in proportion to total expenditures, as seen
through the system’s BCR. Low-input land-use methods may be appealing to those interested in
systems with moderate profitability and limited costs. However, tree plantations earned relatively
low returns at all discount rates, compared to cattle or mixed-use systems, required longer payback
periods to cover establishment costs, and had less certain and established markets. PES incentives
such as cost-share payments encourage landowners to invest in land-use systems by reducing initial
costs and increasing income sooner. The calculated cost-share payment necessary to breakeven with
conventional cattle systems was less than the U.S. national average rental payment, USD 133.86 per ha,
offered in the Conservation Reserve Program (CRP) [37]. With PES, the payment amount needs to
be at least the difference in returns between incorporating forest cover through silvopasture and the
conventional more profitable use to provide an equal choice to landowners.

The returns for the 10-ha dairy–fruit SPS were the greatest in our small sample in Amazonas.
However, we did not include on-farm home labor of the primary landowner as a cost, whether active
onsite or absentee. The profits essentially represented the landowner income, so their returns per
hectare were high, but the total area was relatively small. Nevertheless, only the 30-ha and the
65-ha farms earned a greater annual income than the average annual income of farmers in the region.
Generally, systems utilized family labor when possible. As system size increases, the need for additional
labor increases. The 25-ha and 65-ha systems, including a store and restaurant, respectively, did not
earn as high of returns as the 10-ha and 30-ha systems at the lowest discount rate. The 10-ha and
65-ha systems used mostly family labor, while the other two systems employed more outside laborers.
Nonetheless, salaries were deducted from the returns to represent the opportunity cost of all necessary
laborers, both familial and hired, outside of the primary landowner in the analysis.

The varying results suggested that different mixes of production systems along with management
intensities play a role in determining landowner profitability. Both the 10-ha and 65-ha regimes were
associated with relatively low-intensity management, in terms of inputs, including but not limited
to their self-sufficiency in labor. However, the 10-ha farm, both smaller in size and less profitable
per dollar invested, generated higher net returns in present value terms than the 65-ha system at
all discount rates. This smaller farm along with the larger 25-ha farm sold fruit and home-made
cheese, which increased returns. This corroborated that larger investments with more value—added
can increase discounted present values, but they required more technical and managerial time and
skill. The relationship between the resource variables and the capital budgeting results requires more
analysis to determine their marginal impacts on returns per unit of land.

Small landowners often have limited capital and need frequent streams of income, which limits
long-term investments. In addition, all systems other than the two largest actual farms earned less
than the average annual income for farm laborers. Likewise, it took more time to cover establishment
costs in forest systems when compared to cattle and agroforestry systems. Tremblay et al. [38] found
fruit-bearing agroforests generated positive profits after 7 years, reinforcing this study’s estimates.
The difference in returns as well as the turn-around time for landowners to generate positive profits
represent challenges that governmental policies can alleviate in order to encourage investment in
expanding forest cover in agricultural systems [39].

For example, PES such as offsets for forest carbon storage have the potential to increase and
diversify returns as well as make less profitable land uses more attractive. The average price of
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offsets for carbon stored in forests in 2016 was USD 5.10 per ton CO2e [40]. This means that with
favorable carbon markets, silvopasture practitioners in Amazonas may be able to earn USD 177–USD
240/ha per 25-year rotation. Governmental intervention may be necessary through PES programs
such as payments for carbon sequestration to make less profitable land-use systems competitive with
conventional cattle-forage systems [39]. This would be consistent with the ambitions announced by
the Peruvian authorities, in their plans to reduce net carbon emissions in the country. PES may also
supplement annual income to landowners to make their profits comparable to income earned by
workers in the farming industry, thus, ensuring an adequate income to landowners of rural lands.

Moreover, since the cost of land purchase was not considered in the analysis, we were able to
compare LEV values with the average sale price of land to determine if the expected returns from the
systems correlated with market prices for agricultural land. The average price of productive land for
sale in Northern Peru, based on three lots on the market at the time of the study, was quite expensive,
at USD 9618 per hectare [41]. At a 4% discount rate, our typical systems based on prior farm surveys
and expert opinion earned less, but the four actual systems met or exceeded that level. None of the
LEVs were greater than USD 9618 at the 12% discount rate.

Accordingly, using discount rates of 4%, 8%, and 12% provided a range of potential returns
from land-use systems with various opportunity costs. Without the established literature and known
landowner discount rates, using multiple discount rates allowed us to estimate returns with multiple
preferences in mind. For instance, lower discount rates give more weight to long-term returns and less
weight to short-term costs and benefits. Meanwhile, higher discount rates represent higher opportunity
costs of alternative investments and/or involve riskier investments. For the scope of the study, we were
able to see which land-use practices were more sensitive to high discount rates. Forests, which returned
periodic, long-term revenues and required high establishment costs, experienced negative returns at
8% and 12% discount rates. Conventional cattle–forage systems in Amazonas appeared more resilient
to high discount rates with relatively high returns at each discount rate. The lower-input case studies,
the 10-ha and 65-ha regimes, maintained high returns at all discount rates, unlike the input—intensive
25-ha and 30-ha systems.

To our knowledge, no other projects have analyzed the economic returns of SPS compared to
planted trees monocultures and traditional cattle grazing regimes in Amazonas, Peru. Our findings
from Amazonas compare favorably with those of other global SPS research. In the Amazon lowlands
of Ecuador, SPS featuring traditional and improved species of forage earned negative NPVs at 8%,
−USD 356.17 per hectare and −USD 206.58 per hectare, respectively, but higher returns than traditional
cattle ranching [42]. Other studies also highlighted the potential of added value from fruit–tree-based
systems. For example, Tremblay et al. [38] recognized the economic advantages of silvopasture as
a sustainable alternative land-use for small-scale agriculture in the Tapajos region of the Brazilian
Amazon. At a 10% discount rate, the net present values of the agroforests returned USD 17,800 for the
medium-sized orchard and USD 21,844 for the larger orchard. In addition, Hoch et al. [43] estimated
positive NPVs at 3% and 12% discount rates for successful intercropping studies in Brazil, Bolivia,
Peru, and Ecuador as part of a non-governmental agency’s initiative.

Silvopasture systems are posited to provide significant risk reduction benefits because they
produce at least two different commodities, which would have different, uncorrelated market price
cycles given their different product life-cycle time spans [21]. In financial investment portfolio theory,
any two or more uncorrelated investments will lead to larger overall investment returns. There is not
much empirical literature on such financial risk benefits of silvopasture systems, and the complexity of
finding historical returns and distributions and using them to estimate risk was beyond the scope of
this study. We could have varied input costs and output prices for sensitivity or risk analyses, but given
the many different factors of production and the lack of empirical cost distributions for any of our
inputs, varying some arbitrary combination of these would not be supportable for this research.

Frey et al. [15] surveyed small-scale farmers in northeast Argentina, and found they believed
that diversified cash flows, and thus, less risk of single commodity price fluctuations, were significant
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advantages of silvopasture. The mixed-use systems analyzed by Dube et al. [19,20] in Chile and Brazil
showed positive potential for benefits by risk reduction from multiple products and carbon storage
benefits. Similar approaches could be facilitated in Peru with financial assistance. Comparable studies
acknowledged establishment costs to adopt silvopasture as well as increased labor as barriers for
landowners with limited income [38,43,44]. A trade-off exists between the benefits of diverse mutually
compatible species and its increased demand of specialized labor [13]. However, they also recognized the
potential of timber sales to cover upfront and additional management costs [44], in addition to increased
social and conservation benefits that are not always financially captured from silvopastures [38,45].

6. Conclusions

We estimated the financial returns for silvopasture systems in Amazonas, Peru based on previous
farm surveys and representative models and four selected case studies of successful SPS farms based
on local contacts with the co-authors. Pure cattle-pasture systems had larger returns in the synthetic
calculations, but for the four integrated case studies that had pasture, forests, and some processing or
retail parts of the value chain, silvopasture systems all had the greatest returns. However, the markets
for wood are local and informal, so prices and quantity purchased depend on farm labor and individual
negotiations, not established timber markets.

We made the analyses using the best available market prices or the estimated market equivalent
of factor costs and output prices. We did not estimate social welfare or shadow prices for factors of
production or output. Per strict economics jargon, we performed a financial analysis using discounted
cash flows and capital budgeting criteria. We have referred to the research as an economic analysis as
well, using the terms interchangeably per common usage [32]. Purists suggest that comprehensive
economic analyses should include all the social (e.g., shadow prices, social welfare, non-market values)
estimates of goods and services, but we used the most common convention and term of an economic
or financial analysis for market prices, as is applied almost universally.

The sampled landowners captured excellent economic returns through SPS systems and diverse
farm product sales, but they were exceptional opinion and business leaders. Achieving similar success
for silvopasture with smaller typical landowners will require more research into the best practices for
limited income farmers, extension advice, and implementation of good farm management practices as
well. The opportunity cost of alternative investments will determine whether diversifying land-use
through agroforestry will increase landowner returns.

Government support through direct payments could increase the profitability of silvopastures in
order to gain ecosystem service benefits such as carbon storage or improved water quality. Cost-share
payments may make land uses that expand forest cover more desirable to landowners by reducing
establishment costs. Cost-share payments also have the potential of shortening payback periods so
limited income landowners can reach a net positive cash flow sooner. When cost-share payments are
not enough to make silvopasture more profitable, other PES, such as carbon storage, may be employed
to provide a stream of annual benefits over some time period, e.g., the first ten years when revenue
is at its lowest. Payments to landowners for carbon sequestration represent a promising solution
to the low profits of silvopasture regimes at high discount rates. However, with low carbon prices,
the absence of mature markets, and competitive resource relationships, carbon payments may not
be sufficient to make silvopasture competitive with conventional cattle-pasture systems. In these
cases, multiple forms of aid may be necessary to encourage landowners to adopt land-uses such as
agroforestry. Overall, mixed-use systems in Amazonas represent essential models of land-use regimes
which can be altered and/or replicated to produce supportable livelihoods for landowners.
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