
land

Article

Land-Use and Land-Cover (LULC) Change Detection
in Wami River Basin, Tanzania

Sekela Twisa 1,2,* and Manfred F. Buchroithner 2

1 Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES),
United Nations University, Ammonstrasse 74, 01067 Dresden, Germany

2 Institute for Cartography, Technische Universität Dresden, 01062 Dresden, Germany
* Correspondence: twisa@unu.edu; Tel.: +49-351-8921-9370

Received: 21 August 2019; Accepted: 4 September 2019; Published: 8 September 2019
����������
�������

Abstract: Anthropogenic activities have substantially changed natural landscapes, especially in
regions which are extremely affected by population growth and climate change such as East African
countries. Understanding the patterns of land-use and land-cover (LULC) change is important for
efficient environmental management, including effective water management practice. Using remote
sensing techniques and geographic information systems (GIS), this study focused on changes in
LULC patterns of the upstream and downstream Wami River Basin over 16 years. Multitemporal
satellite imagery of the Landsat series was used to map LULC changes and was divided into three
stages (2000–2006, 2006–2011, and 2011–2016). The results for the change-detection analysis and
the change matrix table from 2000 to 2016 show the extent of LULC changes occurring in different
LULC classes, while most of the grassland, bushland, and woodland were intensively changed to
cultivated land both upstream and downstream. These changes indicate that the increase of cultivated
land was the result of population growth, especially downstream, while the primary socioeconomic
activity remains agriculture both upstream and downstream. In general, net gain and net loss were
observed downstream, which indicate that it was more affected compared to upstream. Hence,
proper management of the basin, including land use planning, is required to avoid resources-use
conflict between upstream and downstream users.

Keywords: LULC; remote sensing; geographical information system; change detection;
upstream; downstream

1. Introduction

Land-use and land-cover (LULC) change has become a fundamental and essential component
in current strategies for monitoring environmental changes and managing natural resources [1,2].
Increasing anthropogenic activities around the biosphere are causing large-scale alterations of the Earth’s
land surface, which affect the effectiveness of global systems [3]. LULC and its resources have been used
for the social, material, cultural, and spiritual needs of humans, while, in the process, humans have
caused significant changes [4]. The rapid changes of LULC, particularly in developing countries [5,6],
have resulted in the reduction of different vital resources including water, soil, and vegetation [7–9].
Furthermore, the actions leading to LULC changes have a local cause. However, because of their speed,
extension, and intensity, they have numerous and critical global implications [10], particularly on
natural resources. The increasing change is alarming and can significantly impact the local, regional,
national, and worldwide environment [11,12].

Researchers, policymakers, and planners utilize LULC information to determine changes in
natural resources, including evaluating growth patterns [13]. A better understanding of land dynamics
requires the detection of LULC change [14]. Empirical studies by researchers from diverse disciplines
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proved that changes in LULC are key to various applications such as hydrology, agriculture, forest,
environment, geology, and ecology [15,16]. Studies on LULC change detection have always attracted the
attention of scientists [12,17,18]. Many researchers argue that LULC change could result in ecosystem
imbalance and impacts on the environment caused by humans and their role in climate change [9,19–22].
Furthermore, their findings yield arguments that focus on interventions, which require evidence on
the impacts and rates of LULC change and the distribution of these changes in time and space as
a fundamental factor in present strategies for environmental monitoring of changes and managing
natural resources [23].

Several studies have proven the effectiveness of space-borne imagery to monitor LULC
changes [24–26], specifically in Africa. In 2010, El Gammal et al. [27] used numerous Landsat
images of different periods (1972, 1982, 1987, 2000, 2003, and 2008) to analyze the changes of the
shores of Lake Nasser, Egypt, and the river volume. In 2011, Mahmoud et al. [28] tested a field-based
approach for classifying land cover using TerraSAR-X imagery. Akinyemi [29] used Landsat images
from different years (1987, 2003, and 2016) to study LULC change in the central Albertine Rift in
northwestern Rwanda. Cheruto et al. [9] assessed LULC changes using geographic information systems
(GIS) and remote sensing techniques in Makueni County, Kenya. The LULC classification is perhaps
among the most well-known applications of geospatial application [28,30].

Remote sensing (RS) and GIS have long been recognized as essential and powerful tools in
determining LULC changes at different spatial scales [31]. Several change detection techniques and
image analyses have been used to extract evidence from remotely sensed data [32,33]. GIS, on the other
hand, integrate information derived from RS to develop a clear understanding of LULC modeling [34].
RS and GIS have proved to be very useful for the detection of LULC patterns [32,35–38]. Moreover,
the combined use of satellite RS and GIS has proved to be a robust and cost-effective method for
monitoring LULC changes [39–45]. With the development of RS and GIS techniques, LULC mapping
has become a detailed and useful way to advance the choice of areas for different uses [1,14,46].

In developing countries, the resource bases, such as land, forest, and water, are declining
significantly. However, information regarding the rate of reduction is often lacking [47]. Accurate LULC
change information is necessary to understand the leading causes and the environmental costs of such
changes. Moreover, analyzing the driving forces causing LULC change is essential to understanding
the current changes to forecast future alterations. A study of LULC changing aspects and its driving
forces in space and time provided the basis for the sustainability of natural resource systems because it
was used to reflect the state of the watershed. Regardless of the increasing concerns about the impacts
of LULC change on global changes of the environment and sustainable development [48], research on
LULC change in Tanzania is minimal. In the Wami River Basin, the magnitude and dynamics of
these changes have not been broadly studied. Little is known about the spatiotemporal extents of
LULC change, and no information has been evaluated over time to improve land use planning in the
basin. Moreover, to understand the aspects of changes in the human environment across space and
time, numerous studies are required [49]. To address this, the integrated approach of RS and GIS
data was used for monitoring the LULC change [50] in the Wami River Basin, both upstream and
downstream. The outcome of this study is expected to be highly useful to planners, resource managers,
and policymakers for sustainable use of resources in the basin.

2. Materials and Methods

2.1. Study Area

The Wami River Basin (Figure 1) is located between 5–7◦ S and 36–39◦ E. It covers the semi-arid
areas in central Tanzania through the humid inland swamps in east-central Tanzania to the Indian
Ocean and spans an area of 41,167 km2. The relief of the Wami River Basin ranges from 2 m to 2370 m
above sea level. The average rainfall in the basin ranges from 550 mm to 1000 mm per annum. There are
two rainfall regions in the basin [51]:
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• The unimodal rainfall region covers the western and southwestern parts (one wet period
November-December-January-February-March-April (NDJFMA)) and

• The bimodal rainfall region includes the eastern and northeastern part of the basin (two wet
periods, October-November-December (OND), and March-April-May (MAM)).
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Figure 1. The study area of Wami River Basin.

The population of Wami/Ruvu Basin can be estimated to be 9.9 million based on the 2012 national
population census. According to the inventory survey conducted within a project carried out by the
Japan International Cooperation Agency (JICA, Tokyo, Japan) [52], the total population in Wami/Ruvu
Basin in 2035 is forecasted to amount to 12.58 million, of which 7.39 million (59%) and 5.20 million
(41%) are urban and rural populations, respectively.

2.2. Data Acquisitions and Preparation

Landsat imagery was used to determine LULC change, while dates were selected based on data
quality, data availability, and the dry season (Table 1). Four Landsat imageries were acquired for the years
2000, 2006/2007, 2011, and 2016 from the USGS Global Visualization Viewer (https://glovis.usgs.gov)
using Path/Row 168/64, 168/65 for Kinyasungwe Sub-catchment, and 167/64 and 166/64 for Wami
Sub-catchment (Table 1). These data were used for the generation of LULC maps fed into on a GIS.
The software packages, ERDAS Imagine 2011, Arc GIS 10.3, and QGIS 2.18 were employed at various
stages of analysis. All the images have the same spatial resolution (30 m), but data were sensed by
different sensors and satellites at different times of the year. Hence, each scene was radiometrically
corrected by changing the raw digital numbers (DNs) into the top of atmosphere (TOA) reflectance
values to correct for varying sun angles and changes in surface reflectance. After mosaicking the
Landsat scenes by date, the resulting four images were clipped to the study area.

https://glovis.usgs.gov
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Table 1. Detailed data on Landsat images used in the study.

Year Satellite Sensor Path/Row Resolution (m) Acquisition Date Cloud Cover

2000

Landsat 5 TM 166/64 30 8 July 2000 17% (not in the study area)
Landsat 7 ETM 167/64 30 7 July 2000 5%
Landsat 7 ETM 167/65 30 7 July 2000 2%
Landsat 7 ETM 168/64 30 16 September 2000 0%
Landsat 7 ETM 168/65 30 16 September 2000 7%

2006/2007

Landsat 7 ETM 166/64 30 23 February 2006 5%
Landsat 5 TM 167/64 30 24 January 2007 2%
Landsat 5 TM 167/65 30 24 January 2007 5%
Landsat 7 ETM 168/64 30 17 September 2006 0%
Landsat 7 ETM 168/65 30 17 September 2006 3%

2011

Landsat 5 TM 166/64 30 7 July 2011 10% (not in the study area)
Landsat 7 ETM 167/64 30 26 October 2011 4%
Landsat 7 ETM 167/65 30 6 July 2011 1%
Landsat 7 ETM 168/64 30 11 June 2011 11% (not in the study area)
Landsat 7 ETM 168/65 30 5 July 2011 5%

2016

Landsat 8 OLI 166/64 30 4 July 2016 10% (not in the study area)
Landsat 8 OLI 167/64 30 24 May 2016 6%
Landsat 8 OLI 167/65 30 24 May 2016 4%
Landsat 8 OLI 168/64 30 16 June 2016 0%
Landsat 8 OLI 168/65 30 16 June 2016 1%

2.3. Classification and Change Detection

A hybrid classification technique was adopted to digitally categorize each Landsat image, since
this technique has been shown to perform better in the case of spectral variability of individual
cover types [53]. Several studies have suggested that hybrid classification produces superior results
compared to unsupervised or supervised classification alone [54,55]. All the images were studied
by assigning per-pixel signatures and differentiating the catchment into 10 classes by the specific
DN of different landscape elements. The delineated classes were bushland, woodland, swamp,
cultivated land, settlement area, grassland, water, forest, open land, and airfield (Table 2). For each
of the predetermined LULC types, training samples were selected by delimiting polygons around
representative sites. A suitable spectral signature is the one that ensures that there is “minimal
confusion” among the land covers to be mapped [56]. A total of 60 spectral signatures for the
respective LULC types derived from the satellite imagery were recorded using the pixels enclosed by
these polygons.

Table 2. Land-use and land-cover (LULC) classification scheme.

Class Descriptions

Bushland Mainly comprised of plants that are multi-stemmed from a single root base.

Woodland An assemblage of trees with canopy ranging from 20% to 80% but which may,
or rare occasions, is closed entirely.

Swamp The low-lying, uncultivated ground where water collects; a bog or marsh.

Cultivated land Crop fields and fallow lands.

Settlement area Residential, commercial, industry, transportation, roads, mixed urban.

Grassland Mainly composed of grass.

Forest The continuous stand of trees, many of which may attain a height of 50 m including
natural forest, mangrove and plantation forest.

Water River, open water, lakes, ponds and reservoirs.

Open land The land area of exposed soil and barren area influenced by a human.

Airfield Area of the plot set aside for the take-off, landing and maintenance of aircraft.
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Afterward, the maximum likelihood classification (MCL) algorithm was used for the supervised
classification of the images. This is the type of image classification that is mainly controlled by the
analyst by selecting the pixels that are representative of the identified classes [57]. The results of the
available higher resolution images and the hybrid classification comparison results revealed some
degree of misclassification. Post-classification refinement was used to improve classification accuracy
for the simplicity and efficiency of the method [58], which resulted in a cross-tabulation (transition)
matrix. The LULC change-transition matrix was computed using the overlay procedure in ArcGIS to
quantify the area converted from a particular LULC class to another LULC category during the study
period. Later, visual interpretation was used to address the mixed pixels problem. Visual analysis
reference data and local knowledge significantly enhanced the results obtained using the supervised
algorithm. For the enhancement of classification accuracy and the quality of the LULC maps produced,
the visual interpretation was critical. This approach was repeated for all incorrectly classified pixels,
as determined from topographic maps and high-resolution satellite images.

Accuracy assessment is essential for individual classification if the classification data is to be
useful in change detection [59]. Normally, classification accuracy is carried out by comparison of
two datasets: One based on reference information, referred to as “ground truth”, and the other being
the result of the analysis of remotely sensed data [60]. For the accuracy assessment of LULC maps
extracted from satellite images, the stratified random method for each of four LULC maps was used
to represent the different LULC class of the study area. The accuracy was assessed using 60 pixels
per category and was based on visual interpretation and ground truth data. A cross-tabulation was
executed between the class values and the ground truth and presented the results as an error matrix.
Moreover, the non-parametric Kappa test was performed to measure the extent of the classification
accuracy to account for diagonal elements and elements in the confusion matrix [61].

3. Results

3.1. Accuracy Assessment

Overall, LULC classification levels for the four dates ranged from 91% to 97%, with Kappa indices
of agreement ranging from 0.88 to 0.95. Accuracies per individual LULC class (i.e., user accuracy
(UA) and producer accuracy (PA)) are shown in Tables 3 and 4. These values of Kappa for the four
classification results are satisfactory for the study area because they satisfy the minimum 85% accuracy,
as stipulated by Anderson’s [62] classification scheme. These results provide a major platform for the
subsequent analysis of LULC changes.

Table 3. Accuracy assessment of the LULC classification at Kinyasungwe Sub-catchment.

2000 2006 2011 2016

LULC PA UA PA UA PA UA PA UA

Bushland 99.53 95.33 100 93.26 99.10 93.41 99.28 76.56
Woodland 98.87 98.94 99.85 96.35 100 96.62 98.15 91.89

Swamp 90.33 93.61 86.06 90.42 92.29 90.39 77.54 81.21
Cultivated land 70.02 95.41 54.82 97.01 76.30 97.40 76.32 96.42
Settlement area 77.87 100 84.62 100 90.39 100 50.45 100

Grassland 97.61 98.54 100 95.63 98.71 95.96 98.31 78.65
Water 70.15 95.67 91.17 98.56 41.72 100 32.95 95.01
Forest 100 87.10 100 93.88 100 93.87 100 50.97

Open land 100 100 100 100 100 100 100 100

Overall 97.81 96.93 97.26 91.69

Kappa 0.90 0.88 0.93 0.95
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Table 4. Accuracy assessment of the LULC classification at Wami Sub-catchment.

2000 2006 2011 2016

LULC PA UA PA UA PA UA PA UA

Bushland 100 80.25 100 84.71 100 80.65 100 72.87
Woodland 93.89 92.61 97.50 96.93 86.95 93.80 85.84 89.74

Swamp 95.49 90.21 99.37 95.26 97.16 89.91 96.13 8126
Cultivated land 97.07 93.91 100 97.51 95.36 97.78 94.72 81.59
Settlement area 100 77.87 100 87.60 100 64.68 100 60.73

Grassland 74.42 85.81 79.78 100 63.24 99.65 71.44 97.49
Water 70.01 100 68.22 100 34.92 100.22 11.82 100.
Forest 100 100 100 100 100 100 100 100

Open land 85.68 89.74 81.38 86.37 79.96 89.34 76.93 90.65

Overall 97.33 97.67 94.92 91.25

Kappa 0.88 0.89 0.79 0.76

3.2. Upstream Sub-Catchment (Kinyasungwe)

Tables 5 and 6, along with Figure 2, summarize the trend of LULC change from 2000 to 2016
based on 10 classes extracted from Kinyasungwe Sub-catchment with a proportionate coverage area
for each. Moreover, the spatial representation of LULC types from 2010 to 2016 is shown in Figure 3
Initially, when the study began in the year 2000, the pattern of LULC as the percentage of the total area
studied was dominated by bushland, covering 33.67% of the total studied area, followed by woodland
(30.2%), grassland (22.12%), cultivated land (8.4%), swamp (4.24%), forest (0.68%), settlement area
(0.49%), water (0.18%), open land (0.01%), and airfield (0.01%). Furthermore, trend changes were
observed for all LULC in years 2006, 2011, and 2016, except for water, open land, and airfield. In 2016,
when the study ended, the observed LULC pattern was dominated by woodland at 28.07% followed
by bushland at 25.77%, cultivated land at 22.45%, grassland at 17.69%, swamp at 4.5%, settlement
area at 1.01%, and forest at 0.34% (Table 5). Furthermore, in Table 6, the pattern of LULC during the
studied period (2000–2016) indicates the general decrease of natural areas, including bushland (7.9%),
woodland (2.13%), forest (0.34%), and water (0.03%). The swamp area (0.26%) was the only natural
area which increased in size. The land uses supporting the population growth and economic activities
increased as indicated by settlements (0.52%) and cultivated land (14.05%).

Table 5. Results of the LULC classification for 2000, 2006, 2011, and 2016 images showing the area of
each category and category percentages (Kinyasungwe Sub-catchment).

Year 2000 2006 2011 2016

LULC (Area) Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Bushland 5643.63 33.67 4940.49 29.47 4646.94 27.72 4320.24 25.77
Woodland 5062.27 30.2 4934.55 29.44 4770.86 28.46 4705.63 28.07

Swamp 710.45 4.24 796.38 4.75 775.95 4.63 754.23 4.50
Cultivated land 1408.16 8.4 2621.27 15.64 3210.88 19.16 3763.79 22.45
Settlement area 82.43 0.49 97.77 0.58 108.34 0.65 169.11 1.01

Grassland 3708.05 22.12 3279.77 19.57 3168.52 18.9 2965.09 17.69
Water 30.36 0.18 20.53 0.12 13.88 0.08 24.96 0.15
Forest 114.58 0.68 69.18 0.41 64.58 0.39 56.89 0.34

Open land 1.35 0.01 1.35 0.01 1.35 0.01 1.35 0.01
Airfield 0.39 0.01 0.39 0.001 0.39 0.001 0.39 0.01

Total 16,762 100 16,762 100 16,762 100 16,762 100
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Table 6. Results of the LULC classification for 2000, 2006, 2011, and 2016 images showing the area
changed and percentage at Kinyasungwe Sub-catchment.

Year 2000–2006 2006–2011 2011–2016 2000–2016

LULC Change Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Bushland −703.14 −4.2 −293.55 −1.75 −326.7 −1.95 −1323.39 −7.9
Woodland −127.72 −0.76 −163.69 −0.98 −65.23 −0.39 −356.64 −2.13

Swamp +85.93 +0.51 −20.43 −0.12 −21.72 −0.13 43.78 0.26
Cultivated land +1213.11 +7.24 +589.61 +3.52 +552.91 +3.29 2355.63 14.05
Settlement area +15.34 +0.09 +10.57 +0.07 +60.77 +0.36 86.68 0.52

Grassland −428.28 −2.55 −111.25 +0.67 −203.43 −1.21 −742.96 −4.43
Water −9.83 −0.06 −6.65 −0.04 +11.08 +0.07 −5.4 −0.03
Forest −45.4 −0.27 −4.6 −0.02 −7.69 −0.05 −57.69 −0.34
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Figure 2. LULC change graph for 2000, 2006, 2011, and 2016 at Kinyasungwe Sub-catchment.

Table 7 indicates the areas changed with their corresponding percentages based on the change
matrix cross-tabulation from 2000 to 2016. In the table, the LULC class is compared to another in terms
of total area LULC class. During the study duration, no changes of settlement area were observed,
as 100% remained intact, followed by cultivated land at 96%, woodland at 91%, swamp at 81%,
grassland at 78%, bushland at 76%, forest at 50%, and water at 32%. Therefore, the highest conversion
was experienced in the water area, as almost 65% of the total area was converted to swamp and the
rest was converted to cultivated land (2%) and woodland (1%). Most of the forest was converted to
woodland (42%) and grassland (5%). Although the cultivated land did not change much, almost 23%
was gained from bushland (1298.03 km2) followed by grassland (667.45 km2), woodland (404.98 km2),
swamp (42.63), forest (1.15 km2), and water (0.60 km2). Between 2000 and 2016, swamp and forest
were mainly converted to grassland, while water and grassland were converted to swamp, respectively.
Relatively greater modifications took place from forest and swamp to woodland.
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Table 7. Transition matrix showing LULC change in Kinyasungwe Sub-catchment between 2000–2016.

LULC Unit BL WL SWP CL SA GL WT FR

BL
(km2) 4289.16 0 56.43 1298.03 0 0 0 0

% 76 0 1 23 0 0 0 0

WL
(km2) 0 4606.67 50.63 404.98 0 0 0 0

% 0 91 1 8 0 0 0 0

SWP
(km2) 7.10 28.42 575.46 42.63 0 49.73 7.10 0

% 1 4 81 6 0 7 1 0

CL
(km2) 14.08 0 14.08 1351.83 28.16 0 0 0

% 1 0 1 96 2 0 0 0

SA
(km2) 0 0 0 0 82.43 0 0 0

% 0 0 0 0 100 0 0 0

GL
(km2) 0 0 74.16 667.45 37.08 2892.28 0 0

% 0 0 2 18 1 78 0 0

WT
(km2) 0 0.30 19.73 0.60 0 0 9.72 0

% 0 1 65 2 0 0 32 0

FR
(km2) 2.29 48.12 0 1.15 0 5.73 0 57.29

% 2 42 0 1 0 5 0 50

BL—Bushland, WL—Woodland, SP—Swamp, CL—Cultivated land, SA—Settlement area, GL—Grassland,
WT—Water, FR—Forest. Note: The bold numbers on the diagonal represent unchanged LULC proportions
from 2000 to 2016 and their corresponding percentages, while the others are the areas changed from one class
to another.
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3.3. Downstream Sub-Catchment (Wami)

Tables 8 and 9, together with Figure 4, summarize the trend of LULC change from 2000 to 2016
based on nine classes extracted from Wami Sub-catchment with a proportionate coverage area for
each. The spatial representation of LULC types from 2010 to 2016 is shown in Figure 5. Initially,
when the study began in the year 2000, the pattern of LULC as a percentage of the total area studied
was dominated by woodland (61.86%), followed by bushland (16.21%), cultivated land (8.17%),
forest (7.21%), grassland (4.31%), swamp (1.99%), water (0.16%), settlement area (0.05%), and open
land (0.01%). The trend changes were observed for all land uses in the years 2006, 2011, and 2016,
except for woodland, swamp, grassland, forest, and open land. In 2016, when the study ended,
the observed LULC pattern as a percentage of the total area studied was dominated by woodland
(52.10%), followed by cultivated land (25.36%), bushland (11.69%), forest (4.36%), grassland (3.69%),
swamp (2.09%), settlement area (0.48%), water (0.18%), and open land (0.01%) (Table 8). During the
study period (2000–2016), woodland decreased from 61.86% to 52.10%, bushland from 16.21% to
11.69%, grassland from 4.31% to 3.69%, and forest from 7.21% to 4.36%. However, these alteration
changes did not occur equally for all land uses. The cultivated land experienced a significant increase
from 8.17% to 25.36%, as well as in settlements from 0.05% to 0.48%, swamp from 1.99% to 2.09%,
and water from 0.16% to 0.18% (Table 8). The results reveal that the highest net gain was in cultivated
land (17.19%), followed by settlement area (0.43%), swamp (0.1%), and water (0.02%), while net loss
was in woodland (9.76%), bushland (4.52%), forest (2.85%), and grassland (0.62%) (Table 9).

Table 8. Results of the LULC classification for 2000, 2006, 2011, and 2016 images showing the area of
each category and category percentages (Wami Sub-catchment).

Year 2000 2006 2011 2016

LULC Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Bushland 2336.81 16.21 1970.88 13.67 1870.67 12.98 1685.75 11.69
Woodland 8917.01 61.86 8621.68 59.81 8208.92 56.94 7511.02 52.10

Swamp 287.36 1.99 285.53 1.98 310.24 2.15 301.23 2.09
Cultivated land 1178.31 8.17 1989.03 13.8 2679.33 18.59 3655.96 25.36

Settlement area 7.71 0.05 11.28 0.08 22.73 0.16 68.86 0.48
Grassland 621.12 4.31 604.55 4.19 632.79 4.39 532.34 3.69

Water 22 0.16 23.34 0.17 24.74 0.17 26.05 0.18
Forest 1038.78 7.21 902.8 6.26 660.14 4.58 627.88 4.36

Open land 6.32 0.04 6.32 0.04 6.32 0.04 6.32 0.01

Total 14,415 100 14,415 100 14,415 100 14,415 100

Table 9. Results of the LULC classification for 2000, 2006, 2011, and 2016 images showing the area
changed and percentage at Wami Sub-catchment.

Year 2000–2006 2006–2011 2011–2016 2000–2016

LULC Change Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Bushland −365.93 −2.54 −100 −0.69 −184.92 −1.29 −651.06 −4.52
Woodland −295.33 −2.05 −412.76 −2.87 −697.90 −4.84 −1405.99 −9.76

Swamp −1.83 −0.01 +24.71 +0.17 −9.01 −0.06 +13.87 +0.1
Cultivated land +810.72 +5.63 +690.30 +4.79 +977.09 +6.77 +2477.65 +17.19
Settlement area +3.57 +0.03 +11.45 +0.08 +46.13 +0.33 +61.15 +0.43

Grassland −16.57 −0.12 +28.24 +0.20 −100.45 −0.70 −88.78 −0.62
Water +1.34 +0.01 +1.40 +0.01 +1.31 +0.01 +4.05 +0.02
Forest −135.98 −0.95 −242.66 −1.68 −32.26 −0.22 −410.9 −2.85
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Table 10 shows the cross-tabulation change matrix for the changed areas and their corresponding
percentages from one LULC class to another in comparison with the total area of each LULC class from
2000 to 2016. During the study period, 100% of settlement area remained unchanged, followed by
cultivated land (97%), water (90%), swamp (89%), woodland (82%), grassland (81%), bushland (72%),
and forest (60%). This indicates that forest experienced the highest conversion, with almost 26%
of its total area converted to woodland and the rest to cultivated land (11%) and grassland (3%).
The majority of bushland was converted to cultivated land (27%) and swamp (1%), while most of the
grassland was converted to cultivated land (18%) and swamp (1%). Although the cultivated land did
not change much, the largest share was gained from woodland 1605.06 km2) followed by bushland
(630.94 km2), forest (114.27 km2), grassland (111.80 km2), and swamp (28.74 km2). Between 2000
and 2016, cultivated land was converted to swamp, while water was converted to swamp and
bushland respectively.
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Table 10. Transition matrix showing LULC change in Wami Sub-catchment between 2000–2016.

LULC Unit BL WL SWP CL SA GL WT FR

BL
(km2) 1682.50 0 0 630.94 23.37 0 0 0

% 72 0 0 27 1 0 0 0

WL
(km2) 0 7311.95 0 1605.06 0 0 0 0

% 0 82 0 18 0 0 0 0

SWP
(km2) 0 2.87 255.75 28.74 0 0 0 0

% 0 1 89 10 0 0 0 0

CL
(km2) 0 0 0 1142.96 35.35 0 0 0

% 0 0 0 97 3 0 0 0

SA
(km2) 0 0 0 0 7.71 0 0 0

% 0 0 0 0 100 0 0 0

GL
(km2) 0 0 6.21 111.80 0 503.11 0 0

% 0 0 1 18 0 81 0 0

WT
(km2) 0.44 0.44 1.32 0 0 0 19.8 0

% 2 2 6 0 0 0 90 0

FR
(km2) 0 270.08 0 114.27 0 31.16 0 623.27

% 0 26 0 11 0 3 0 60

BL–Bushland, WL–Woodland, SWP–Swamp, CL–Cultivated land, SA–Settlement area, GL–Grassland, WT–Water,
FR–Forest. Note: Bold numbers on the diagonal represent unchanged LULC proportions from 2000 to 2016 and
their corresponding percentages, while others are the areas changed from one class to another.

4. Discussion

The LULC changes in both sub-catchments have already been presented. The results for the
study duration (2000–2016) on different classes of LULC indicate that most of the grassland, bushland,
and woodland was intensively converted to cultivated land both upstream and downstream. The land
use changes showed a marked impact of increase in population in the study area. The farmlands and
grasslands were converted to settlements in Kinyasungwe Sub-catchment (upstream), while in Wami
Sub-catchment (downstream), an increase in settlements resulted from conversion of the bushland and
cultivated lands. The land use pattern observed agrees with other catchment areas in Tanzania, such as
in Malagarasi, in which it was found that settlement and cultivation expansion were imminent [63].

The increasing trend of LULC change in the sub-catchments highlights the universal influence of
economic forces in motivating principals for the anthropogenic alteration of land [64–66]. However,
there is a variation in the pattern of LULC change of the different land use types. Furthermore,
according to the findings, the decrease in bushland, woodland, swamp, and grassland was the
consequence of the extension of cultivated land. This change of other LULC into cultivated land was
supported by the change matrix tables, which show that from 2000 to 2016, 23% of bushland, 8% of
woodland, 6% of the swamp, 18% of grassland, 2% of water, and 1% of the forest was converted
into cultivated land upstream. However, the change matrix table for downstream shows that from
2000 to 2016, 27% of bushland, 18% of woodland, 9% of the swamp, 18% of grassland, and 11% of
the forest converted into cultivated land, which implies there is a high demand of food production
in the area. With the population growth experienced in 16 years, land demand for agriculture and
settlement has increased. Therefore, the pressure on land resulted in the land use pattern observed [9].
The pressure and conversion of the natural areas has also been observed, especially woodland, bushland,
and grassland upstream and natural forest downstream.

According to The International Union for Conservation of Nature (IUCN), Tanvir et al.,
and Butt et al. [64–66], the primary accelerator of forest decline in the catchment area is human
activities. Findings from Wasige et al. [67] further corroborate these results, noting that the forest
clearing occurring every year is mainly due to agriculture. A change in water area was also witnessed,
decreasing both upstream by 68% and downstream by 10%. The increased change of water bodies into
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swamp areas implies water shortage upstream. In general, the upstream was more affected by the
reduction of land cover compared to downstream due to a significant increase in cultivated land to
meet the high demand of food due to population increase, especially in Dar es Salaam City, resulting in
a high demand of land for food production to fulfil necessities of life [68]. However, uncontrolled
LULC change in the upstream sub-catchment can result in a reduction of the natural resources in the
downstream sub-catchment, including water availability [68–70]. These downstream environmental
degradations due to upstream influence are a significant cause of upstream–downstream conflicts [69].

5. Conclusions

A low-cost change analysis based on remote sensing imagery from different sensors made it
possible to quantify and map the changing pattern in LULC in the Wami River Basin with emphasis
on upstream and downstream changes. With a time-series of maps, change analysis can reveal
the overall development of land distribution, including the detection of sites of different types of
changes. Analyzing and mapping the trends of LULC changes within the Kinyasungwe and Wami
Sub-catchments provides a basis for strategic planning, managing, and protection decision-making.
However, the use of very high-resolution multispectral satellite imagery may offer more details of
changes in the area. Based on the LULC analyses of Landsat data for the years 2000, 2006, 2011, and 2016,
it was found that the LULC change trends varied significantly during the periods mentioned above.
The results showed that in the period 2000–2016, most LULC were converted to cultivated land upstream
(bushland 23%, grassland 18%, woodland 8%, swamp 6%, water 2%, and forest 1%) and downstream
(bushland 27%, grassland 18% woodland 18%, forest 11%, and swamp 10%). This indicates that the
expansion of cultivated land was the result of population growth, especially downstream, while the
primary socioeconomic activity remains agriculture both upstream and downstream. In general,
net gain and net loss were observed downstream, which indicates that it was more affected compared
to upstream. Hence, proper management of the basin, including land-use planning, is required to
avoid resource-use conflicts between upstream and downstream users.
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