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Abstract: Urbanization is a rapid global trend, leading to consequences such as urban heat islands 

and local flooding. Imminent climate change is predicted to intensify these consequences, forcing 

cities to rethink common infrastructure practices. One popular method of adaptation is green 

infrastructure implementation, which has been found to reduce local temperatures and alleviate 

excess runoff when installed effectively. As cities continue to change and adapt, land use/landcover 

modeling becomes an important tool for city officials in planning future land usage. This study uses 

a combination of cellular automata, machine learning, and Markov chain analysis to predict high 

resolution land use/landcover changes in Philadelphia, PA, USA for the year 2036. The 2036 

landcover model assumes full implementation of Philadelphia’s green infrastructure program and 

past temporal trends of urbanization. The methodology used to create the 2036 model was validated 

by creating an intermediate prediction of a 2015 landcover that was then compared to an existing 

2015 landcover. The accuracy of the validation was determined using Kappa statistics and 

disagreement scores. The 2036 model successfully met Philadelphia’s green infrastructure goals. A 

variety of landscape metrics demonstrated an overall decrease in fragmentation throughout the 

landscape due to increases in urban landcover.  

Keywords: landcover change; green infrastructure; spatial modeling; TerrSet; policy; GEOMOD; 

Land Change Modeler; nature-based solutions  

 

1. Introduction 

On a global scale, urbanization is predicted to continually harm important ecosystem services 

far into the future [1], causing continuous challenges for governments, policymakers, and urban 

planners in resource reallocation [2]. Many communities are combating the consequences of 

urbanization through policies focused on nature-based solutions (NBS). NBS policies encourage 

actions that help societies address a variety of environmental, social, and economic challenges in 

sustainable ways [3], using the science–policy–practice interface [4]. Green infrastructure (GI) is a 

common example of NBS. The concept of GI describes the interdependence of land conservation and 

land development, and refers to a contiguous, interconnected green network consisting of a range of 

natural environments [5]. Green infrastructure can enhance ecosystem function in fewer, larger areas 

compared to numerous, small patches [5], but connectivity cannot be achieved by solely enlarging 

the total area of GI.  

Modeling potential urban scenarios and solutions has emerged as a useful tool to explore 

uncertain futures in complex urban systems and to further understand the impacts from land 

use/landcover changes (LULCCs). Although scenarios usually lack quantified probabilities [6,7], they 

instead function as alternative narratives that present important possibilities about the future [6–8]. 

Using satellite images from the past and present via remote sensing techniques [9,10], researchers can 
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calculate patterns of urbanization, apply drivers of change, and extrapolate LULCC trends into the 

future. To assess the best course of action, different land use policies can be applied to models by 

adding constraints and/or incentives.  

To evaluate the consequences of urbanization and the validity of possible NBS, social and 

environmental scientists are increasingly using highly detailed LULCC models [11,12]. Landcover 

models have been used to address general questions of landcover change and urbanization around 

the world [2,9,10,13–19,20–27,]; however, only one other study models LULCCs under GI policies 

[28]. To predict precise landcover transitions and to answer specific questions of policy, future 

LULCCs need to be modeled at finer scales. Urban modeling studies are conducted at a variety of 

resolutions depending on the satellite imagery available. Most landcover models are created at a 30 

m resolution using Landsat imagery [2,9,13,15–18,27]; yet, small landcover features, like GI, require 

modeling at a much higher resolution, as GI projects can be smaller than 30 m. Similarly, urban 

models have been created at different levels of detail with varying numbers of landcover classes. 

Some studies present a broad overview of urbanization with only two landcover classes [10,19,21–

27], usually “urban” and “nature” or “nonurban.” Other studies present more realistic models with 

seven to ten landcover classes representing many of the features in the urban system [13,15,16,18], 

such as buildings, roads, trees, and grass. A specific landcover class, such as GI, must be modeled 

with a larger number of landcover classes, as to accurately represent the landscape and the specific 

variables that effect GI’s location.  

A variety of different LULCC modeling tools exists today, all allowing for the prediction of 

socio-environmental changes in a study area over time and projecting these changes into the future 

in a way that it relates to measured land change [29]. Modeling LULCCs involves historical estimates 

of landcover combined with biophysical and socioeconomic information to create estimates of future 

change [30]. Selecting the method to model LULCC is an important first step, based on a study’s 

purpose and available data [27]. This study uses a hybrid modeling approach, utilizing two different 

tools to model future GI growth and continued urbanization. 

One common method in land change prediction is cellular automata. Cellular automata (CA) 

models are based on the interaction of several components: the grid space can be a one, two, or 

multidimensional space; and the “cell” or the “automaton” is a discrete variable that represents the 

structural units of the grid [28]. The “cell state” describes the characteristics of the cell which are 

subject to change [28]. The change occurs according to specified transition rules, which are 

mathematical expressions that govern changes of the cell state [28]. Cellular automata methods have 

been widely used in various modeling tools, such as SLEUTH [31], the CA-Markov module in TerrSet 

[32], and GEOMOD [33]. GEOMOD was chosen in this study to model future growth in GI, as 

GEOMOD allows the user to define the quantity of change over time.  

Machine learning is a newer approach that is gaining popularity in LULCC studies. Machine 

learning describes the automated procedures with which the knowledge can be acquired [34]. This 

study utilizes the machine learning process of the multilayer perceptron (MLP) neural network in the 

Land Change Modeler (LCM) tool in TerrSet 18.3 [32]. The MLP uses a back-propagation learning 

algorithm, one of the most widely used neural network models [35], to calculate transition potentials 

over time. The transition potential models are then combined in a Markov chain process to determine 

the overall quantities of change over time [35]. LULCC models created in the LCM have been found 

to be more accurate than LULCC models created in other tools, such as SLEUTH and FUTURES [27]. 

The LCM was used to model continued urbanization in this study.  

Using detailed landcover models at a 1 m resolution, this study aims to model GI policies in 

Philadelphia, Pennsylvania, USA, and the resulting LULCCs from new GI and continued 

urbanization for the year 2036. A hybridization of GEOMOD and the LCM was used to model future 

changes in GI and urbanization, respectively. The model is driven by patterns of historical change, 

conservation and development constraints, the physical landscape, and distance variables. The model 

is validated using Kappa statistics and disagreement scores, and the landcovers are compared using 

a variety of spatial metrics. 

2. Study Area 
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The city of Philadelphia, Pennsylvania, USA is located towards the eastern coast of the United 

States at 39.95° N, 75.17° W. The city experiences all four seasons with well-distributed precipitation 

throughout the year. The city is highly urbanized with an average population density of 4491 people 

per km2 [36], and a number of universities, parks, and vacant lots for green space. Despite stated 

efforts to enhance and increase green space in the city [37], from 2008 to 2015, the city increased its 

urban areas by 11%, while its natural areas decreased by approximately 15% (Table 1). 

Table 1. Land use/landcover changes (LULCCs) in Philadelphia from 2008 to 2015 in km2. Nature 

includes tree canopy, grass, and bare soil. Urban includes roads, other paved surfaces, and buildings. 

 Area 2008 (km2) Area 2015 (km2) Difference (km2) Percent Change 

Nature 155.60 132.71 −22.89 −14.71% 

Urban 191.32 212.63 21.31 11.14% 

 

In 2009, the Philadelphia Water Department (PWD) initiated their latest plan to reduce combined 

sewer overflow events, Green City, Clean Waters (GCCW), to meet the regulations of the Pennsylvania 

Department of Environmental Protection and comply with the federal Clean Water Act [38]. GCCW 

involves the use of GI as a way to alleviate the amount of runoff that flows into storm drains and, 

eventually, into the Schuylkill and Delaware Rivers and their tributaries. PWD measures the 

program’s success using the concept of greened acres (GAs), or enough GI to manage one inch of 

stormwater from one acre of drainage area; approximately 27,158 gallons (103 cubic meters) [39]. 

Greened acres are calculated with the following formula (Equation 1): 

GA = IC • Wd, (1) 

where IC is the impervious cover transformed into GI in acres. This quantity can include the area of 

the stormwater management feature itself, as well as the area that drains to it. Wd is the depth of 

water over the impervious surface that can be physically infiltrated into the ground in inches [39]. 

This program is the first in the United States that prioritizes GI over traditional grey 

infrastructure to moderate stormwater runoff. Construction of GCCW projects officially began in 

2011 and will continue to be implemented until 2036; however, some GI was built before 2011. GI 

projects are funded through credits to private developers, grants, and public works projects. In an 

effort to create more GAs, GCCW puts forth eight different best management practices to reduce the 

amount of impermeable surfaces within the city: 1) Green Streets, 2) Green Schools, 3) Green Public 

Facilities, 4) Green Parking, 5) Green Open Space, 6) Green Industry, Business, Commerce, and 

Institutions, 7) Green Alleys, Driveways, and Walkways, and 8) Green Homes [38]. PWD implements 

a variety of GI practices throughout the city, including downspout planters, green roofs, rain barrels, 

tree trenches, bump-outs, stormwater planters, pervious pavement, wetlands, and rain gardens [38]. 

By the year 2036, GCCW will have concluded with at least 9564 GAs, reducing stormwater pollution 

by 85% from its 2009 levels [38]. 

3. Materials and Methods  

3.1. Data and Preprocessing  

To create and validate future landcover distribution, at least three past and current landcover 

datasets are required. We acquired a 2008 Philadelphia landcover dataset [40], and generated 

landcover datasets for 2010 and 2015 (Table 2). City boundaries were set using city limits spatial data 

from the City of Philadelphia [41]. In 2011, the University of Vermont Spatial Laboratory created a 1 

m resolution 2008 landcover of Philadelphia for the city government [37]. This landcover is accepted 

and highly used by the city government. The 2008 landcover was created using object-based image 

analysis techniques (OBIA) to extract landcover information from a 2008 orthophotography and 2008 

LiDAR LAS data [40]. Ancillary data sets were stacked on top of the OBIA data, which included 

shapefiles of building footprints, roads and railroads, and hydrography provided by the City of 
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Philadelphia [40]. For the purpose of this study, 2008 GI spatial data [42] was stacked onto the 2008 

landcover (Figure 1).  

To capture the impact of Philadelphia’s GI polices, 1 m resolution 2010 and 2015 landcovers of 

Philadelphia were created by the Kremer lab at Villanova University. Both of the 2010 and 2015 

landcovers were created using a supervised classification on 1 m aerial imagery from the United 

States’ National Agriculture Imagery Program (NAIP) for 2010 and 2015 [43,44], respectively, in ESRI 

ArcGIS 10.5 [45]. Similar to the 2008 landcover, ancillary data sources were stacked on top of each 

supervised classification, which included shapefiles of building footprints, roads, impervious 

surfaces, railroads, and hydrography (Table 2). After the landcovers were checked for accuracy, GI 

spatial data provided by City of Philadelphia [42] were stacked into each landcover (Figure 1). 

Overall, eight landcover categories were used: tree canopy, grass/shrubs, bare soil, water, buildings, 

roads/railroads, other paved surfaces, and green infrastructure.  

Table 2. Datasets used in the study to develop the future projection of Philadelphia in 2036. 

Name Type Created by 
Spatial 

Resolution 
Reference 

Landcover 2008 Raster 
University of Vermont Spatial 

Analysis Laboratory 
1 m [37] 

Landcover 2010 Raster Author 1 m -- 

Landcover 2015 Raster Author 1 m -- 

NAIP 2010 & 2015 
Aerial 

Imagery 

United States  

Department of Agriculture 
1m [43,44] 

Philadelphia GI Shapefile 
Philadelphia Water  

Department 
1 m* [42] 

2015 Building 

Footprint 
Shapefile City of Philadelphia 1 m* [46] 

2004 & 2015 

Impervious Surfaces 
Shapefile City of Philadelphia 1 m* [47,48] 

2004 Railroads Shapefile City of Philadelphia 1 m* [49] 

Hydrology Shapefile 
Philadelphia Water  

Department 
1 m* [50] 

City Limits Shapefile City of Philadelphia -- [41] 

08, 10, & 15 DEM DEM City of Philadelphia 1 m [51–53] 

08, 10, & 15 Slope Raster Author 1 m -- 

Distance to roads & 

rivers 
Raster Author 1 m -- 

Evidence Likelihood Raster Author 1 m -- 

* Shapefiles converted to a raster at 1 m resolution. 
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Figure 1. Landcovers of Philadelphia in 2008 [40] and 2015 featuring green infrastructure. 

 

Although it was not ideal to use three different landcovers created with two different processes, 

the OBIA technique used for the 2008 landcover was not replicable within the scope of this project, 

in part due to over 30,700 manual edits it took to create the landcover [40]; however, the 2010 and 

2015 landcovers created with the supervised classification achieved similar results and accuracy 

(Table 3). The 2010 and 2015 landcover datasets were validated using the accuracy assessment suite 

in ArcGIS 10.5 [45]. The Accuracy Assessment suite uses ground truthing points and a confusion 

matrix analysis to calculate user’s accuracy, producer’s accuracy, overall accuracy, and Kappa 

coefficient scores. Kappa coefficient is a measure of the proportional improvement by the classifier 

over a purely random assignment to classes [20]. The user’s accuracy measures the proportion of each 

landcover class that is correct, whereas the producer’s accuracy measures the proportion of the land 

base that is correctly classified [20]. The classified images were assessed for accuracy based on a 

stratified sample of 105 reference points for each time period, which were visually evaluated using 

the NAIP imagery. The overall accuracies of the 2010 and 2015 classifications were, respectively, 

found to be 80% and 90.5%, with Kappa coefficients of 0.767 and 0.889 (Table 3). 

Additional datasets used in this study are listed in Table 2. Yearly slope datasets were derived 

from their respective digital elevation models (DEM) using the slope tool in TerrSet 18.3 [32]. Distance 

from roads and rivers were calculated using the Euclidean distance tool in ArcGIS 10.5. All of the 

data was projected into the UTM 18N projection. 
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Table 3. Accuracy scores of the 2010 and 2015 supervised classifications of Philadelphia. 

Year Accuracy* 
Tree 

Canopy 

Grass/ 

Shrubs 

Bare 

Soil 
Water Buildings 

Roads/ 

Railroads 

Paved 

Surfaces 

Overall 

Accuracy 
Kappa 

2010 
U Acc. 100% 80.0% 66.7% 86.7% 66.7% 73.3% 86.7% 

80% 0.767 
P Acc. 75% 66.7% 83.3% 100% 83.3% 100% 68.4% 

2015 
U Acc. 93.3% 93.3% 93.3% 100% 80.0% 93.3% 80.0% 

90.5% 0.889 
P Acc. 87.5% 87.5% 77.8% 100% 100% 100% 85.7% 

* U Acc.= User’s Accuracy; P Acc.= Producer’s Accuracy 

 

3.2. LULCC Model and Validation 

The 2036 LULCC model was created using the Land Change Modeler (LCM) in TerrSet 18.3 [32]. 

The LCM was used to model continued urbanization based on spatial patterns from 2008 to 2015; 

specifically, landcover transitions to buildings, roads/railroads, and other paved surfaces. The LCM 

procedure involves change analysis, determining drivers of change, applying rules and restrictions, 

Markov chain-based transition predictions, and validation of the model (Figure 2). 

 

Figure 2. Processes involved in the Land Change Modeler (LCM) to create and validate the 2036 

LULCC of Philadelphia. 

LULC 2015
LULC 2008

(University of Vermont 

Spatial Laboratory, 2011)

LULC 2010

2010 NAIP 
Imagery Spatial Drivers: slope, 

elevation, distance, 
Evidence Likelihood

Change Analysis

Test & Selection of 
driver variables
Test & Selection of 

driver variables
Transition Sub-
model structure

Multi-Layer Perception
(Neural Network Training)

Suitability Map

Transition Potential

2015 Prediction 
Map

Validate with LULC 
2015

Validation 
Successful

Failed 
Validation

Change Allocation
(Cellular Automata Analysis)

Change Prediction

LULC 2036

2015 NAIP 
Imagery

Supervised Classification in ArcGIS +
City of Philadelphia Spatial Data
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3.2.1 Change Analysis 

The landcover maps of Philadelphia in 2008 and 2015 (Figure 1) were analyzed for patterns of 

change, and exact quantities of transition between different landcover classes were calculated. Only 

transitions representing continued urbanization (i.e., change from trees, grass, and/or soil to 

buildings, roads/railroads, and/or other paved surfaces) were analyzed, as they were the transitions 

of interest.  

3.2.2. Drivers of Change 

Driver variables in this analysis included DEMs, slope, distance to existing roads and rivers, and 

evidence likelihood rasters. Distance to roads and distance to rivers were set as dynamic factors to be 

recalculated over time because as roadways and rivers change over time, so do the distances to these 

features. Elevation and slope have been documented to influence the location of urban growth 

[2,17,54]. Evidence likelihood rasters were created for each LULCC that occurred. The evidence 

likelihood tool in the LCM transforms categorical variables, such as change from one landcover class 

to another, into numerical values so that they can be used in the modeling procedure [35]. 

Urban transitions were grouped into respective submodels by what they transitioned into and 

then used to compute transition potentials. A transition submodel consists of a group of transitions 

that share the same underlying driver variables [10], and so they can be modeled at once. The 

modeling of transition potentials is necessary for determining spatial change [55]. The output of this 

step generates a series of transition potential maps that each correspond to a landcover transition 

based on the previous change analysis [55]. The transition maps consider the suitability of pixels that 

have transformed into urban pixels based on a number of driving factors used for modeling processes 

of historical change.  

The transition potentials are created using a multilayer perceptron (MLP) neural network, which 

allows for transition submodels to be modeled at once [55]. The MLP neural network is a feedforward 

neural network in which data flows in one direction from an input layer to an output layer through 

a number of hidden layers in between, as set by the user [56]. A small number of hidden layers were 

used in this study, which expressed the common underlying themes in the variables [35] and resulted 

in higher accuracy levels. The computing elements (nodes) are grouped into layers, and each node 

receives an input signal from other nodes. After processing the signals locally through a transfer 

function, it outputs a transformed signal to other nodes for the final result [57]. Each signal feeding 

into a node in a subsequent layer has the original input multiplied by a weight with a threshold 

added, and is then passed through an activation function [57] that, in this study, was non-linear. The 

weights are determined in the automatic training process before the network can be used for 

prediction purposes, aiming at changing the weights as to minimize the error between the observed 

and the predicted outcomes [57]. Due to the non-linearity of the data, a sigmoid factor of 0.5 was 

applied to the weighted sum of inputs before the signal passed to the next layer. 

3.2.3. Rules and Restrictions 

Rules and restrictions were also applied to the model. A Boolean layer expressing areas of 

conservation and restricted development were added to the model so that urbanization would not 

occur in areas under conservation and the local Philadelphia airports. This spatial layer includes local 

urban parks, federal and state conservation areas, and the two airports in Philadelphia.  

3.2.4. Transition Predictions Using Markov Chain Analysis 

In the final change prediction, the LCM uses the change rates calculated in the change analysis 

step, as well as the transition potential maps to predict a future scenario for 2036. This step is 

responsible for determining the quantity of change to urban landcover in each transition using 

Markov chain analysis [55]. The Markovian process is a method in which a predicted system can be 

estimated by finding its previous state and the probability of conversion from one state to another 

[18]. By utilizing the 2008 and 2015 landcover maps, the Markov chain analysis determines, precisely, 
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how much land would be anticipated to transition from 2015 to 2036, on the basis of projection of the 

transition potentials. A hard prediction was created in this study which yielded a projected map of 

2036, where each pixel is assigned one landcover class—the class that it has been calculated to most 

likely become. 

3.2.5. Validation 

Validation was used to ascertain the quality of the predicted 2036 map. In order to validate the 

methods used to create the 2036 landcover map, the methods were replicated to create a predicted 

map of 2015 and then validated against the actual 2015 map. The 2008 and 2010 landcovers were used 

to predict changes in 2015. The validation module in TerrSet was used to statistically assess the 

quality of the 2015 predicted map against the 2015 reference map. The Kappa variation techniques 

were used in the validate module as the statistical validation procedure. Three variations of Kappa 

were calculated: Kappa for no information, Kappa for location, and Kappa standard. The Kappa for 

no information (Kno) signifies overall accuracy obtained in the simulation run, while Kappa for 

location (Klocation) measures agreement level in a location [58]. Considering the difficulty in 

interpretation encountered with the Kappa for correctly assigned proportion against the proportion 

of incorrectly assigned by change (Kstandard) [59], the Kstandard was not used in this study; however, Klocation 

was useful for the validation in the absence of Kstandard [60]. 

However, Pontius and Millones (2011) have presented that Kappa scores can be useless, 

misleading, and/or flawed for practical applications in GIS and remote sensing [60]. Instead, Pontius 

has developed other summary parameters calculated in TerrSet’s validate module, two of which are 

presented in this study: disagreement at the grid cell level and disagreement due to quantity. 

Disagreement at the grid cell level is defined as the amount of disagreement associated with the fact 

that the comparison map fails to specify perfectly the correct locations of categories at grid cells 

within strata [35]. Disagreement due to quantity is defined as the amount of disagreement associated 

with the fact that the comparison map fails to specify perfectly the correct quantity of each category 

according to the reference map [35]. 

3.3. Modeling Green Infrastructure  

In order to assess the future implementation of GI, a cellular automata optimization approach 

was utilized. The GEOMOD module in TerrSet was used to assess the landcover change between GI 

and a “non-GI” category, which combined all other landcover categories (Figure 3). For the purpose 

of this analysis, the 2008 and 2015 landcovers were reclassified to GI and “non-GI,” as GEOMOD 

only allows for the transition from “state one” to “state two.” Green infrastructure was modeled 

separately from all other LULCC in GEOMOD because GEOMOD allows the user to specify the 

forecasted quantity of change. Philadelphia’s GI plan indicates the amount of future GI by 2036, 

broken down by watershed [39], which was incorporated into the model. Future scenarios of GI are 

identified using driver variables, suitability maps, and calculating the amount of change in each 

Philadelphia watershed. Currently, there are no spatial plans for the future distribution of GI, as the 

city develops GI projects as they are needed with target quantities each year, and so it is challenging 

to evaluate the accuracy of this GI model, and it is just one possible scenario out of many possible 

scenarios. 
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Figure 3. Process to create and validate the 2036 GI prediction using GEOMOD model based on 

Philadelphia’s GI plans outlined in Green City, Clean Waters [38]. 

3.3.1. Drivers of Change 

GEOMOD uses an optimization algorithm that allocates cells to the most suitable locations based 

on the user-provided site suitability data [27]. Similar to the LCM analysis, DEM, slope, distance, and 

evidence likelihood rasters were used in GEOMOD as the site suitability data. The suitability image 

is created by computing a weighted sum of all the driver images for each grid cell [33]. 
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parameter only allows for one directionality of change to occur. Specifically, in this study, all other 
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watersheds in Philadelphia. The percent of GAs of the total 837 GAs was calculated for each 

watershed in 2016 (Equation 2). This percentage was assumed to remain the same for 2036 

predictions. Using GIS and the GI shapefiles provided by PWD [42], a ratio of physical acres of GI to 

GAs was then calculated for each watershed (Equation 3). Predicted physical acres of GI in 2036 were 

then calculated using the ratio for each watershed (Equation 4 and Equation 5).  

������,��

���
= ��%, per watershed, (2) 

  

Physical acres GI/GA= GIratio, per watershed in 2016, (3) 

  

9564 ��� • ��% = ������, per watershed, (4) 

  

������ • ������� = �ℎ������ ����� �� �� �� 2036, per watershed, (5) 

where GA2016, WS is the GA in 2016 for each watershed, 837 is the total amount of GAs in 2016 [39], 

GA% is the percentage of GA per watershed, GIratio is the ratio of physical acres of GI to GAs, and 

9564 GAs is the target amount of GAs in 2036 according to GI policies [39].  

Three smaller watersheds were not counted towards PWD’s GAs goal. To account for the growth 

of GI in each of the smaller watersheds over time, the rate of change for each region was calculated 

and then extrapolated to 2036. The calculations for each watershed are displayed in Table 4.  

Table 4. Resulting calculations for the increase in GI by 2036 (1 acre = 4046.86 m2). 

 2016  2036 

Main Watersheds GAs* % GA Acres of GI† Ratio- GI Acres:GAs GAs Acres of GI 

Darby-Cobb 36 4.3% 7.571 0.210 411.355 86.515 

Delaware Direct 334 39.9% 123.701 0.370 3816.459 1413.467 

Schuylkill River 306 36.6% 130.426 0.426 3496.516 1490.314 

Tacony- Frankford 162 19.4% 41.374 0.255 1851.097 472.755 

Total  837 100% 303.071 0.362 9564.000* 3463.051 

Smaller Watersheds     Rate of change (acres/yr) †    

Pennypack Creek   33.396 1.411   53.710 

Poquessing Creek   18.881 0.787   30.536 

Wissahickon Creek     22.846 0.931   35.202 

* Data from Green City, Clean Waters—Evaluation and Adaptation Plan [45].  

† Data calculated using GIS and the PWD GI polygons [48]. 

 

3.3.4. Validation 

The GI predictions were validated using the same approach as the LCM validation process. An 

intermediate GI prediction of 2015 was created in GEOMOD based on the 2008 landcover using the 

aforementioned methods. Again, the validate module in TerrSet was used to statistically assess the 

2015 GI prediction against the 2015 GI reference image using Kappa statistics and disagreement 

scores.   
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3.4. Final 2036 LULC 

The results of the GI-specific 2036 prediction were integrated into the 2036 predicted 

urbanization dataset. The end result is a predicted landcover dataset that includes the spatial 

distribution of predicted GI locations and continued intra-urbanization (Figure 4). 

3.5. Landscape Metrics 

To understand the changes in the connectivity of green space and urban areas, each landcover 

was recategorized into two classes: green space (tree canopy, grass/shrubs, bare soil, and GI) and 

urban (buildings, roads/railroads, and other paved surfaces). To quantify the changes in the 

landscape over time, landscape metrics were calculated using Patch Analyst 5.0 [61], which integrates 

the spatial metrics found in FRAGSTATS [62] into ArcGIS. The number of patches, mean patch size, 

largest patch index (LPI), and patch cohesion index (PCI) were calculated at the class level. Patch 

cohesion index (PCI) and Shannon’s diversity index (SHDI) were calculated for each landcover at the 

landscape level. FRAGSTATS 4.2 [62] was used to calculate the LPI and PCI for each landcover. Due 

to restrictions in FRAGSTATS 4.2, the landcover datasets had to be resampled to a 5 m resolution. A 

description of each metric can be found in Table 5.  

Table 5. Description of spatial metrics. 

Metric Description Unit Range 

Largest Patch Index (LPI) 

The area of the largest patch of the 

corresponding patch type divided by 

total area of the measured class. 

% 
0 < LPI ≤ 

100 

Mean Patch Size (MPS) Average patch size. m2 
MPS > 0, 

no limit 

Number of Patches (NP) Number of patches in the landscape. N/A 
NP ≥ 0, 

no limit 

Patch Cohesion Index 

(PCI) 

The physical connectedness of the 

corresponding patch type. PCI 

approaches 0 as the proportion of the 

landscape comprised of the focal class 

decreases and becomes increasingly 

subdivided and less physically 

connected, and vice versa.  

Dimensionless  
0 < PCI < 

100 

Shannon’s Diversity 

Index (SHDI) 

Relationship between the number of 

classes, the total number of patches, and 

the relative abundance of patches in 

each class. It has a value of 0 when no 

diversity is present and increases as the 

landscape becomes more fragmented. 

Dimensionless 

SHDI ≥ 0, 

without 

limit 
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4. Results 

4.1. Validation Results 

The Klocation score (Table 6) was used for assessing accuracy, as it is difficult to interpret the Kappa 

for correctly assigned proportion against the proportion of incorrectly assigned by change (Kstandard) 

[59]. The LULCC prediction created with the LCM received a Klocation score of 78% (Table 6). The GI 

prediction created with GEOMOD received a Klocation score of almost 100% (Table 6). Most of the cells 

in the landcovers used in the GEOMOD analysis were the “non-GI” class, contributing to the high 

accuracy of the GI prediction. Additionally, in both the urbanization and the GI predictions, the 

disagreement scores represent very little disagreement between the models and their respective 

reference maps (Table 6).  

Table 6. The Kappa scores and disagreement scores used to validate the predicted 2015 landcover 

against the reference 2015 landcover, and the 2015 GI against the reference 2015 GI. 

 2015 LULC 2015 GI 

Kno 80.1% 99.8% 

Klocation 78.3% 99.7% 

Kstandard 69.4% 99.7% 

Disagree Grid Cell 1.11 × 10−1 1.30 × 10−3 

Disagree Quantity 6.58 × 10−2 0.00 
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4.2. Landcover Changes 

 

Figure 4. The predicted landcover of Philadelphia in 2036 under green infrastructure policies. 
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The final 2036 landcover is featured in Figure 4. Overall, buildings are predicted to exhibit the 

largest net increase, followed by roads/railroads by 2036 (Figure 5). Grass/shrubs are predicted to 

exhibit the largest net decrease, followed by other paved surfaces by 2036 (Figure 5).  

  

Figure 5. Net change for each land use category from 2008 to 2036. 

The model was able to successfully meet Philadelphia’s GI goal of at least 9564 GAs by 2036. The 

2036 prediction allocated enough GI for 9945 GAs in 2036. The new GI is predicted to mostly replace 

other paved surfaces, followed by grass/shrubs (Figure 7). A large portion of the new GI is predicted 

to be located in the middle and south Philadelphia (Figure 6). 

Figure 6. Map of the increase in GI from 2008 to 2036 broken down by category. The middle and southern 

portions of Philadelphia are highlighted (“Other to GI” includes buildings and roads/railroads transitioning to 

GI). 
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Figure 7. Contributions to the increase in GI by area (km2) from 2008 to 2036. 

Buildings demonstrate a large net increase of almost 73 km2 (Figure 5). A small reduction in 

buildings is due to new GI (Figure 7). Similar to increases in GI, most of the gains in building area are 

predicted to result from a loss in other paved surfaces, followed by grass/shrubs and tree canopy 

(Figure 8 right). It is forecasted that the new buildings will be well distributed throughout the city, 

with some concentration in south Philadelphia (Figure 8 left).  

 

  

Figure 8. Changes in buildings from 2008 to 2036. Left: Map of change in buildings. Right: 

Contributions to increases in buildings. 
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Table 7. Spatial metrics of the Philadelphia landscape, urban areas, and green space: Shannon’s 

diversity index (SHDI), number of patches (NP), mean patch size (MPS), largest patch index (LPI), 

and patch cohesion index (PCI). 

 SHDI NP MPS LPI PCI 

2008      
Landscape 1.736    99.947 

Green Space  265,562 585.994 2.039 99.246 

Urban   168,661 1135.090 18.383 99.985 

2015  
    

Landscape 1.820    99.945 

Green Space  2,373,040 55.795 0.612 97.803 

Urban   514,426 19.739 20.051 99.986 

2036  
    

Landscape 1.709    99.957 

Green Space  1,452,070 56.819 0.433 95.223 

Urban   324,990 802.67 24.537 99.992 

 

SHDI is forecasted to reach its lowest levels of fragmentation throughout the entire landscape 

by 2036. The number of patches decreased in both categories from 2015. Mean patch size increased 

for both classes from 2015. However, the largest patch index decreased for green space over time but 

increased for urban areas. The patch cohesion index decreased over time for green space, increased 

slightly over time for urban areas, and increased to its highest levels for the entire Philadelphia 

landscape (Table 7). 

5. Discussion 

5.1. Data Resolution 

This research aimed to model fine-scale, multiclass prediction of intra-urban landcover change 

under GI policies. This study is unique in that it utilized one-meter resolution aerial imagery from 

the United States’ NAIP to create the base landcover datasets. Most LULCC modeling uses Landsat 

data at a 30 m resolution or larger; however, GI can easily be less than 30 m in size and so higher 

resolution data is needed to map and model GI.  

Remote sensing techniques and the availability of free to low cost satellite imagery and their 

temporal frequency has greatly enhanced the monitoring of urban growth and land use dynamics 

around the world [9]. As technology continues to improve, the resolution of satellite images will also 

be enhanced. Developing and testing LULCC models with fine-scale data, as we do here, allows for 

more detailed models of the dynamics of change within urban environments. Advanced models can 

aid policymakers and planners in analyzing the effects of smaller landscape features, such as GI.  

5.2. Green Infrastructure 

This study spatially modeled the increase of GI in Philadelphia under the city’s GI program for 

the year 2036. Many studies model future urban growth in areas around the world; however, we 

found only one other study that also modeled LULCC under GI policies [28]. Contrasting to Mitsova 

et al. (2011), Philadelphia’s 2036 model predicts an overall increase in cohesion throughout the entire 

landscape under GI policies (Table 6), which can be attributed to the decreased number of patches 

from 2015. Green space patches decreased by 920,970 patches from 2015 to 2036, with the mean patch 

size also increasing slightly (Table 6).  

Although the number of patches decreased and mean patch size increased, the patch cohesion 

metric for green space still decreased over time (Table 6). GI serves as a nature-based solution to 

stormwater management in Philadelphia; nevertheless, to maximize the potential of GI’s ecosystem 
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services, additional attention is needed regarding the type of GI implemented and to increase its 

overall connectivity with other green spaces. GI and green spaces enhance ecosystem function in 

fewer, larger areas compared to numerous, small patches [5], but connectivity cannot be achieved by 

solely enlarging the total area of GI. 

The model predicts that the new GI to be added by 2036 will be fairly well dispersed throughout 

the city, with the middle of the city and the southern portion of Philadelphia gaining some of the 

largest increases (Figure 6 top). A majority of the new GI will replace other paved surfaces (Figure 6), 

which includes urban features such as parking lots, alleys, and sidewalks. Replacing a majority of 

other paved surfaces with GI is a plausible prediction, as many of the GI strategies that the city 

currently uses does replace paved surfaces. These GI strategies include trenches, bump-outs, planters, 

and pervious pavement [63]. A small portion of the expected GI is predicted to replace tree canopy, 

which is unlikely as the cities would probably not cut down trees for GI development. This prediction 

could be possible if tree trenches are added to these areas, so the tree could be preserved but, also, 

the trench underneath it would collect water for later use. 

This study only used geophysical driver variables, whereas, in reality, other socioeconomic 

drivers have an additional influence on the spatial distribution of GI projects. To improve the GI 

model, GI experts at the City of Philadelphia should be consulted to identify other variables and 

constraints that may influence GI location.  

5.3. Urbanization Land Use/ Landcover Changes 

Unlike the results presented by Mitsova et al. (2011), where urban growth is forecasted to stall, 

urban areas in Philadelphia are still predicted to increase, even under GI policy. Continued 

urbanization in the form of new buildings can be seen in south Philadelphia around the Delaware 

and Schuylkill rivers (Figure 8). Philadelphia’s population is newly re-growing, as it has increased 

steadily over the past seven years, and is predicted to continue to grow [64], driven by urban 

regeneration and new employment opportunities in the city. By 2036, urban spaces are predicted to 

decrease by 189,436 patches across Philadelphia, but the mean patch size and largest patch index still 

increase from the 2015 measurements (Table 6), indicating further urban development in areas that 

are already urbanized. Specifically, buildings will experience the largest growth of the urban classes 

(Figure 5). With the addition of new urban areas throughout the city, the patch cohesion index for 

urban spaces continues to increase by 2036. 

Road/railroad area also increases in 2036, approximately doubling from the 2008 area (Figure 5). 

New roads and railroads will be needed to meet the transportation needs of the new buildings, 

residents, and businesses. Other paved surfaces, such as sidewalks and parking lots, decrease in area 

over time as they are lost to new GI and buildings (Figure 5). 

The amount of urban growth forecasted by the model should be analyzed further. The Delaware 

Valley Regional Planning Commission predicts that the population of Philadelphia will increase by 

only 6.37% from 2015 to 2035 [65]. Under this population growth, the model most likely overestimates 

urban growth, as buildings are projected to have a net increase of almost 25%, and roads/railroads to 

have a net increase of approximately 23%. The demand for new buildings with only a 6.73% increase 

in population will not meet the rate projected by the model. Many socioeconomic factors affect urban 

and population growth rates, and they should be added to future versions of this model to accurately 

assess urban land change. 

5.4. Future Research 

There is little research on landcover changes in Philadelphia [66], and only one study that applies 

GI policies to LULCC using similar methods [28]. This study aims to fill those gaps, as Philadelphia 

is a complex urban system and one of the few cities in the United States that prioritizes GI over 

traditional grey infrastructure. As the city continues to develop green infrastructure, it may act as a 

model for other cities in need of implementing nature-based solutions.  

The methodology and the resulting landcover models used in this study can serve as a base for 

further exploration into how GI will function in the future. As a result of urban expansion, cities 
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around the world are finding alterations of energy budgets with modifications to climatic, 

hydrologic, and biogeochemical cycles, and habitat fragmentation leading to a reduction in 

biodiversity [67]. In Philadelphia, GI can serve as a solution to these problems. The degree to which 

GI can resolve these issues can be assessed by using future landcover models with predicted GI 

distribution as the basis of ecosystem service analyses. Additionally, further analysis of GI 

distribution based on socioeconomic equity should be studied in the future, but it was beyond the 

scope of this paper. This is integral to assessing future risk and vulnerability to environmental 

phenomena, such as climate change [17].  

6. Conclusions 

This study finds that LULCCs from GI policies can successfully be modeled in a heterogeneous 

intra-urban environment using fine-scale data. As Philadelphia continues to grow, GI will be 

implemented throughout the city to meet its GI program goals. Philadelphia city planners should 

consider GI cohesion to expand the many ecosystem services that GI contributes to the city.  

Additionally, this study highlights the usefulness of LULCC modeling as a method for planning 

for the future. Availability of data and imagery will only improve in resolution and temporality in 

the future, allowing for more accurate landcover models that can capture smaller features, such as 

GI. As policymakers and city planners begin to plan for increased populations and the aggravated 

consequences of climate change, nature-based solutions will receive greater implementation as they 

allow for inexpensive and creative methods for city adaptation. 
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