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Abstract: The natural salt meadows of Tilopozo in the hyperarid, Atacama Desert of northern Chile,
which are located at approximately 2800 m above sea level, are under pressure from industrial activity,
and cultivation and grazing by local communities. In this research, the land surface covered by salt
meadow vegetation was estimated from normalized difference vegetation indices (NDVI) derived
from Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+) and Operational Land
Imager (OLI) data from 1985 to 2016. The vegetated area of the Tilopozo salt meadows decreased by
34 ha over the 32-year period studied. Multiple regression models of the area covered by vegetation
and climate data and groundwater depths were derived on an annual basis, as well as for both
the dry and wet seasons and had R2 values of 83.0%, 72.8% and 92.4% respectively between the
vegetated areas modeled and those estimated from remotely sensed data. These models are potentially
useful tools for studies into the conservation of the Tilopozo salt meadows, as they provide relevant
information on the state of vegetation and enable changes in vegetation in response to fluctuations in
climate parameters and groundwater depths to be predicted.

Keywords: high altitude wetlands of the Andes (HAWA); land surface changes prediction models;
conservation wetlands; model for vegetation cover estimation; Atacama Desert

1. Introduction

The importance of wetlands is greater in places where water resources are scarce, e.g., the arid
and semi-arid ecosystems of South America [1,2]. In the Altiplano regions of South America, there are
wetlands at high altitudes, which are located at the maximum altitude for vegetation growth and at
less than the zero isotherms [1]. In these locations, natural salt meadows can be found [1,3]. These salt
meadows are characterized by stagnant and saline waters [4], and have a water table that is either
at the ground surface or a few meters below this. For example, the depth of the water table in the
Tilopozo salt meadows is found between 0 and 3.65 m, with an average depth if 1.82 m [5,6].

The salt meadows of Tilopozo are located to the south of the Salar de Atacama, Chile [7], and the
presence of the ecosystem depends on the discharge of the flow from the Monturaqui-Negrillar-Tilopozo
aquifer (MNT-aquifer), which has an extension of 60 km [8]. Since 1986, water has been extracted from
the MNT-aquifer for industrial purposes (metallic and non-metallic mining), and this has an established
monitoring plan through a water monitoring network for the conservation of this wetland [9].

A series of studies have been undertaken to model the influences of different factors on changes
in vegetation cover [10]. Among them, Hyandye et al. [11] determined that variations in precipitation,
slope aspect, road network density generate changes in land use. Los et al. [12] and Hyandye et al. [11]
highlighted that the analysis of satellite images and statistical models together constitutes a powerful
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combination to evaluate and model change processes and their underlying causes. Another study was
carried out by Chahouki and Chahouki [13], who used a digital elevation model (DEM) and statistical
tools to generate a predictive map of rangelands in an arid context, obtaining a projection of vegetation
distributions according to species, which was based on soil variables estimated from a DEM.

In the context of this research, the normalized difference vegetation index (NDVI) has been used
to detect vegetation cover in wetlands and determine the extent of wetland areas [14]. Various studies
have been developed in arid and hyper-arid zones, in which correlations between vegetation cover
and rainfall have been obtained, with results that allow vegetation cover to be predicted and that
have applications for the conservation or management of pastures and wetlands [15,16]. In this sense,
Mwita et al. [17] mapped small wetlands using NDVI. Dong et al. [18] developed a wetland map based
on the use of NDVI using Landsat images. Recently, Qu et al. [19] analyzed trends in NDVI between
1982 and 2011 for wetlands in China. They were able to correlate them with climatic conditions and
indicators of human activity and developed a multiple regression model that determined the response
of vegetation to climatic factors. In the context of this research, NDVI has been used to detect vegetation
cover in wetlands and determine the extent of wetland areas [14]. Different authors have highlighted
that NDVI is one of the most important indexes for evaluating the state of vegetation, because it is
correlated with photosynthesis and primary production [20–22].

Today, there are many methods for monitoring the state of conservation of the wetlands through
remote sensing [5,23]. Remote sensing allows evaluation of land use changes and variations
in vegetation cover [5,20,23,24] and changes in the wetland ecosystems because of hydrological
variations [23,25]. Multitemporal analysis of satellite images is usually used to identify and estimate the
changes in the surface of the cover with vegetation [5,23]. Vegetation and land use change in wetland
areas may also be due to abrupt changes produced by floods, fires, or human interventions [20,26].
Studies, such as those of Li et al. [20], have evaluated the dynamics and loss of marshes and meadows
vegetation in wetland due to hydrological variations using NDVI data derived from Landsat Thematic
Mapper (TM), Enhanced Thematic Mapper (ETM+) and Operational Land Imager (OLI) sensors,
and generated accuracies up to 91%.

Consequently, the present study sought to determine changes in vegetation cover of the slat
meadows of Tilopozo between 1985 and 2016, using the NDVI index estimated from Landsat TM and
OLI images, and to design predictive models, for the surface covered with vegetation, on the basis of
meteorological information and data from a groundwater monitoring network.

2. Methodology

2.1. Study Area

The study area corresponded to the salt meadows of Tilopozo, located to the south of the Salar de
Atacama, San Pedro de Atacama, Antofagasta Region, Chile (23◦46′42”S; 68◦14′39”W; 2800 m above
sea level; Figure 1).

The salt meadows of Tilopozo are characterized by hydrohumedal and hygrohumedal structures
that are influenced by the spatial distribution of confined and unconfined groundwater. Its feeding
was freatogenic of discharge, given its dependence on the waters coming from the discharge of
the MNT-aquifer [27,28]. This leads to phreatically influenced azonal vegetation, with transitional
hygrophilic species, such as Distichlis spicata, Lycium humile and Tessaria absinthioides, as well as
strict hygrophilic species, such as Baccharis juncea, Juncus balticus and Schoenoplectus americanus
(S. americanus) [29,30], which are all perennials. Differences in soil moisture and groundwater levels
lead to surface variations, mainly in transitional hygrophilic species. The wetland contracted and
expanded according to variations in annual rainfall during the time period analyzed; it was noted to
expand in wet years (e.g., during the year with the highest wet season rainfall, 2002) and contract in
dry years (e.g., 1991, Figures 2 and 3).
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Figure 1. Position of the salt meadows zones of Tilopozo associates to three upwelling of water (1–3),
located to the south of the Salar de Atacama.

In meteorological terms, the salt meadows of Tilopozo experience high thermal oscillations and
low levels of precipitation, with extreme events in the wet season [31]. Based on records from 1975 to
2016 of the Peine meteorological station of the General Directorate of Water (DGA), average monthly
precipitation was 1.67 ± 1.65 mm, most of which occurred January and March, with a maximum
of 14.57 ± 16.43 mm [31]. The lowest monthly precipitation totals (0.00 ± 0.00 mm) occur between
September and November. Meanwhile, the historical average annual temperature was 16.51 ± 3.31 ◦C.
The coldest month is July, with a minimum of −0.72 ± 1.63 ◦C, while the warmest is December, with a
maximum of 31.82 ± 1.64 ◦C (Figure 3). The monthly average evapotranspiration was 163.63 mm, with
minimum values in the winter months of June and July, and summer peaks in December and January.

2.2. Vegetation Cover in the Tilopozo Salt Meadows between 1985 and 2016

The surface covered by vegetation in the salt meadows of Tilopozo was estimated using two Landsat
TM or OLI images per year (dry season—September, and wet season—March), for the period 1985–2016.
Images with less cloud cover were selected to avoid errors in the estimate (Table 1), then radiometric [32]
and atmospheric [33] corrections were conducted. The salt meadows of Tilopozo were easily recognized
using the normalized differential vegetation index (NDVI). The threshold value of NDVI for the vegetation
was determined as 0.13 [21,34,35]. The use of this NDVI threshold is supported by research in other
hyper-arid areas in Chile [36,37], and was complemented by visual analysis of true colour composites.
This allowed the surfaces covered by vegetation to be identified for the wet and dry season images,
and for the ‘annual images’, i.e., the averages of the wet and dry season images.
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Figure 2. Maximum and minimum extent of vegetation cover in the Tilopozo salt meadows in the
period studied.

Figure 3. Average monthly precipitation (mm), evapotranspiration (mm) and temperature (◦C) for the
period 1975–2016 for Peine meteorological station.



Land 2019, 8, 20 5 of 17

Table 1. Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) images used in the research.

ID Date Discharge Name Cloud Sensor ID Date Discharge Name Cloud Sensor

1 30 March 1985 LT52330761985089AAA03 10% L5 TM 31 08 April 2000 LT52330762000099CUB00 12% L5 TM
2 05 August 1985 LT52330761985217XXX04 0% L5 TM 32 23 September 2000 LT52330762000259CUB02 18% L5 TM
3 02 April 1986 LT52330761986092AAA08 0% L5 TM 33 10 March 2001 LT52330762001069COA00 35% L5 TM
4 09 September 1986 LT52330761986252AAA03 0% L5 TM 34 18 September 2001 LT52330762001261CUB00 19% L5 TM
5 04 March 1987 LT52330761987063AAA07 0% L5 TM 35 29 March 2002 LT52330762002088COA00 0% L5 TM
6 30 October 1987 LT52330761987303CUB00 1% L5 TM 36 08 September 2003 LT52330762003251CUB00 31% L5 TM
7 06 March 1988 LT52330761988066CUB00 0% L5 TM 37 18 March 2004 LT52330762004078CUB00 0% L5 TM
8 30 September 1988 LT52330761988274CUB00 0% L5 TM 38 26 September 2004 LT52330762004254CUB00 9% L5 TM
9 25 March 1989 LT52330761989084CUB00 35% L5 TM 39 05 March 2005 LT52330762005064COA00 7% L5 TM
10 17 September 1989 LT52330761989260CUB00 18% L5 TM 40 29 September 2005 LT52330762005272CUB00 29% L5 TM
11 28 March 1990 LT52330761990087CUB00 23% L5 TM 41 08 March 2006 LT52330762006067CUB02 0% L5 TM
12 20 September 1990 LT52330761990263CUB00 20% L5 TM 42 16 September 2006 LT52330762006259COA00 20% L5 TM
13 15 March 1991 LT52330761991074CUB00 18% L5 TM 43 11 March 2007 LT52330762007070CUB00 5% L5 TM
14 23 September 1991 LT52330761991266CUB00 18% L5 TM 44 19 September 2007 LT52330762007262CUB00 19% L5 TM
15 01 March 1992 LT52330761992061CUB00 0% L5 TM 45 13 March 2008 LT52330762008073CUB00 10% L5 TM
16 09 September 1992 LT52330761992253CUB00 8% L5 TM 46 21 September 2008 LT52330762008265CUB00 15% L5 TM
17 20 March 1993 LT52330761993079CUB00 29% L5 TM 47 16 March 2009 LT52330762009075COA02 1% L5 TM
18 28 September 1993 LT52330761993271CUB00 30% L5 TM 48 24 September 2009 LT52330762009267COA02 14% L5 TM
19 03 February 1994 LT52330761994034CUB00 28% L5 TM 49 19 March 2010 LT52330762010078CUB00 6% L5 TM
20 17 October 1994 LT52330761994290CUB00 19% L5 TM 50 11 September 2010 LT52330762010254CUB00 18% L5 TM
21 26 March 1995 LT52330761995085CUB00 16% L5 TM 51 22 March 2011 LT52330762011081CUB00 7% L5 TM
22 18 September 1995 LT52330761995261CUB00 26% L5 TM 52 30 September 2011 LT52330762011273CUB00 11% L5 TM
23 28 March 1996 LT52330761996088CUB00 19% L5 TM 53 12 April 2013 LC82330762013102LGN01 8% L8 OLI
24 20 September 1996 LT52330761996264CUB02 20% L5 TM 54 19 September 2013 LC82330762013262LGN00 5% L8 OLI
25 11 February 1997 LT52330761997042CUB00 30% L5 TM 55 14 March 2014 LC82330762014073LGN00 2% L8 OLI
26 07 September 1997 LT52330761997250CUB01 19% L5 TM 56 22 September 2014 LC82330762014265LGN00 3% L8 OLI
27 03 April 1998 LT52330761998093COA00 19% L5 TM 57 17 March 2015 LC82330762015076LGN00 3% L8 OLI
28 10 September 1998 LT52330761998253COA02 18% L5 TM 58 25 September 2015 LC82330762015268LGN00 3% L8 OLI
29 06 April 1999 LT52330761999096CUB00 0% L5 TM 59 19 March 2016 LC82330762016079LGN00 2% L8 OLI
30 29 September 1999 LT52330761999272COA02 9% L5 TM 60 11 September 2016 LC82330762016255LGN00 2% L8 OLI
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2.3. Predictive Modelling of Vegetated Surfaces

2.3.1. Meteorological Information and Water Table Depths

The precipitation and temperature data for the salt meadows of Tilopozo were obtained from
historical records (1975–2016) for the Piene meteorological station of the DGA, located 12 km from
the study area (23◦41′03”S, 68◦03′29”W, 2460 m above the mean sea level). Any missing data
were calculated using an estimate of the average of the corresponding months [38]. The potential
evapotranspiration was calculated using the minimum, maximum and average monthly temperatures
from 1975–2016, as well as the monthly solar radiation for the same period, following the proposals by
Hargreaves et al. [39] and Samani [40] for hyper-arid zones. Subsequently, the dry and wet seasons
were determined by identifying the trimesters with least and most precipitation, respectively [38].

The information on the groundwater level in the salt meadows of Tilopozo was obtained from the
water monitoring network of the Early Warning Plan of the MNT-aquifer [9], which has 30 piezometers
and observation wells installed in the surroundings of the salt meadows of Tilopozo to control or
prevent the negative effects that could result from over-exercising rights to use water from the aquifer
which has been granted for the development of industrial activity. Information on cutting-edge
piezometers and observation wells are available from 2000, when the monitoring scheme for the salt
meadows of Tilopozo began [9].

2.3.2. Construction of Models to Predict Surface Vegetation Cover

The first step in constructing the models consisted of performing covariance and correlation
tests on average precipitation, average evapotranspiration and water table depths from piezometers.
Data from the observation wells of the water monitoring network were used, along with vegetation
cover data for the salt meadows, to determine the best covariance and correlation values and to
define statistically significant relationships between the variables [41]. The procedure was performed
separately for the annual model, and the dry (September to November) and wet (January to March)
season models (Figure 4).

Figure 4. Two-step procedure for the selection of valid variables for the construction of multiple
regression models, such as predictors of surface covered with vegetation in the salt meadows of
Tilopozo, for annual, dry season and wet season data.
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The second step was to select and process the variables that showed a high covariance and
correlation with vegetation cover using a multiple regression model. The models were iterated by
intercalating variables in different positions, after which the best-fit models were selected based on the
following criteria:

(i) models that had the best R2 and R2-adjusted values;
(ii) models that had high statistical significance; and
(iii) models that had the greatest number of statistically significant variables.

Statistical significance was evaluated using the Fisher’s F-test, with a confidence interval of 95%
(Figure 4). Three prediction models of vegetation cover were constructed:

(i) an annual prediction model;
(ii) a prediction model for the dry period; and
(iii) a prediction model for the wet period.

Models were calibrated for the period 2000–2016. The models were run using rainfall,
evapotranspiration and water table depth data. Variations between the estimated (from satellite
images) and modeled surface vegetation cover were observed.

Models predicting vegetation cover for the salt meadows were validated by comparing the area
estimates from satellite images with those obtained from the models. With that information a trend
line was adjusted, and the coefficient of determination was obtained.

3. Results

3.1. Vegetation Cover in the Tilopozo Salt Meadows between 1985 and 2016

The average decrease in water table depths in the well and piezometers were 8 cm between
1985 and 2016. The average annual rate of decrease for all wells (TP) and piezometers (TPZ) was
−0.013 cm year, ranging from −0.8 cm year at piezometer TPZ2 to −0.0004 cm year at piezometer
TPZ10 (Table 2). The surface vegetation cover, determined from satellite images, in the salt meadows of
Tilopozo showed oscillating behavior, as a function of time. On average, 100.43 ha was covered with
vegetation, with a maximum area of 166.05 ha in March 1995, during the wet season, and a minimum
of 60.48 ha in September, during the dry season of 2009 (Figure 5). A 34 ha decrease in the satellite
image-derived estimates of the vegetated area of the Tilopozo salt meadows was recorded between
1985 and 2016. The differences in the greatest and lowest areal extents of vegetation were higher for
the dry periods (44 ha) than for the wet periods (24 ha) (Figure 5). The rates of vegetation loss differed
markedly before and after 2002. From 1985 to 2002 there was a net increase of 15 ha, equating to 0.88 ha
year. During this time, the maximum area of vegetation was 166 ha in March 1995, and the lowest area
was 62 ha in September 1992 (Figure 6a). Meanwhile, from 2003 to 2016, the decrease in the vegetated
area was lower (−0.54 ha/year); the net decrease was 6 ha (Figure 6b).

Table 2. Average annual water table depths in piezometers (TPZ) and observation wells (TP) used
for the construction of a model for the prediction of the surface covered with vegetation in the salt
meadows of Tilopozo, during the period, 2000–2016.

Year

Phreatic Level of Observation Points (Meters above Sea Level)
(Piezometers = TPZ; Wells = TP)

TPZ2A TPZ2B TPZ2C TPZ3 TPZ4 TPZ8 TPZ12 TP2

2000 −1.53 −1.08 −0.99 −1.21 −0.96 −0.65 −0.84 −3.78
2001 −1.44 −1.04 −0.91 −1.15 −0.88 −0.61 −0.8 −3.79
2002 −1.52 −1.13 −0.99 −1.23 −0.94 −0.66 −0.85 −3.80
2004 −1.53 −1.17 −1.02 −1.22 −0.91 −0.66 −0.85 −3.84
2005 −1.51 −1.16 −1.00 −1.21 −0.93 −0.64 −0.82 −3.84
2006 −1.58 −1.19 −1.04 −1.24 −0.99 −0.65 −0.85 −3.86
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Table 2. Cont.

Year

Phreatic Level of Observation Points (Meters above Sea Level)
(Piezometers = TPZ; Wells = TP)

TPZ2A TPZ2B TPZ2C TPZ3 TPZ4 TPZ8 TPZ12 TP2

2007 −1.58 −1.20 −1.07 −1.26 −0.98 −0.67 −0.86 −3.9
2008 −1.55 −1.16 −1.00 −1.23 −0.95 −0.64 −0.84 −3.93
2009 −1.54 −1.18 −1.03 −1.21 −0.96 −0.63 −0.84 −3.90
2010 −1.57 −1.20 −1.06 −1.25 −1.04 −0.66 −0.87 −3.92
2011 −1.58 −1.21 −1.08 −1.25 −1.05 −0.67 −0.88 −3.92
2013 −1.55 −1.18 −1.05 −1.21 −0.97 −0.64 −0.85 −3.94
2014 −1.55 −1.24 −1.08 −1.24 −1.00 −0.68 −0.89 −3.96
2015 −1.52 −1.19 −1.05 −1.21 −0.92 −0.68 −0.87 −3.96
2016 −1.61 −1.26 −1.12 −1.28 −0.97 −0.71 −0.93 −4.00

Figure 5. Evolution of the area of vegetation cover of the Tilopozo wetlands (from Landsat TM and
OLI-derived normalized differential vegetation index (NDVI) data) for March and September between
1985 and 2016.

3.2. Prediction Models of the Vegetation-Covered Surface

The prediction model for the vegetation-covered surface used water table depth records from
eight piezometers and observation wells (Table 2). This is less than the total number of piezometers
and observation wells in the monitoring network, because some of them were rejected because of
known errors [30].
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Figure 6. Trends in vegetated areas of the Tilopozo salt meadows 1985–2002 (a) and 2003–2016 (b).

3.2.1. Prediction Model of Wet Period Vegetation Cover

The prediction model of the land surface covered with vegetation for the wet period, from January
to March, was formed using the trimester averages of precipitation, evapotranspiration and the water
table levels from piezometers (TPZ2A, TPZ2B, TPZ3, TPZ4, TPZ8 and TPZ12), and the observation well
TP2. Ninety-seven iterations were performed to determine the best fit to Equation (1).

Cow = 456 + 1.35 Pp− 0.816 ETp + 266 TPZ2A + 103 TPZ2B − 687 TPZ3

+176 TPZ4 + 1160 TPZ8 − 970 TPZ12 + 113 TP2,
(1)

where Cow is the surface covered with vegetation in the wet period (ha); Pp is the precipitation for
the wet period (mm); ETp is the potential evapotranspiration for the wet period (mm); TPZ2A, TPZ2B,
TPZ3, TPZ4, TPZ8 and TPZ12 are the water table levels for the wet period (m); and TP2 is the water
table depth for observation well for the wet period (m).

In this model, six (of 10) variables showed statistical significance (the constant, Pp, TPZ3, TPZ4,
TPZ8, and TPZ12). The model, in its entirety, was statistically significant (p < 0.05), in addition to
showing strong correlations for the estimated values with vegetated areas mapped from satellite
images and modeled data (R2 = 97.10% and R2 (adj.) = 91.90%).
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3.2.2. Prediction Model of Dry Period Vegetation Cover

The equivalent prediction model for the dry period of July–September used trimester averages of
precipitation, evapotranspiration and the water table levels from piezometers, TPZ2B, TPZ4. TPZ8,
and TPZ12. Ninety-six iterations were performed to determine the best fit to Equation (2).

Cod = 38 + 6.23 Pp + 1.69 ETp + 277 TPZ2B − 64.30 TPZ4 − 464 TPZ8 − 970 TPZ12 (1)

where Cod is the surface covered with vegetation in the dry period (ha); Pp is the precipitation for the dry
period (mm); ETp is the potential evapotranspiration for the dry period (mm); and TPZ2B, TPZ4, TPZ8

and TPZ12 are the water table levels for the dry period (m). In this model, three (out of seven) variables
showed statistical significance (Pp and to piezometers readings from TPZ2B). The model, in its entirety,
was statistically significant (p < 0.05), in addition to showing strong correlations for the estimates of
vegetated areas mapped from satellite images and the modeled data (R2 = 81.60% and R2 (adj.) = 67.90%).

3.2.3. Prediction Model of Annual Vegetation Cover

The annual prediction model of the surface covered with vegetation used average annual
precipitation and evapotranspiration, and depths to the water table from the TPZ2C piezometer and the
observation well TP2. Ninety-nine iterations were performed to determine the best fit to Equation (3).

Coy = −683 + 5.25 Pp + 0.33 ETp− 63.60 TPZ2c + 184 TP2, (3)

where Coy is the surface covered with vegetation for the annual period (ha); Pp is the annual precipitation
for the period (mm); ETp is the potential evapotranspiration for the annual period (mm); TPZ2c is
the piezometers for the annual period (m); and the level for the observation well TP2 for the wet
period (m). In this model, three (out of five) variables showed statistical significance (the constant, Pp,
and TP2). The model, in its entirety, was statistically significant (p < 0.05). The correlations between
the estimated values for vegetated area mapped from the satellite images and the modeled data were
high (R2 = 82.20% and R2 (adj.) = 75.10%).

Differences between estimated vegetated area from the annual model and the values obtained
from satellite images were minimal, and were less variable than the dry and wet period models.
Extreme precipitation events, such as those registered in 2002 and 2015, produced differences in the
estimates of the vegetated area mapped from satellite images and modeled values. However, the trends
shown in Figure 7 were similar.

Figure 7. Modeled vegetation areas (annual model) and those estimated from satellite images for the
Tilopozo salt meadows, 2000–2016.
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3.2.4. Model Validation

The estimates of vegetated areas from satellite imagery were compared to outputs from the
predictive models Equations (1)–(3). For the wet period, the average difference between the vegetated
area estimates and the modeled data was 0.91 ± 4.91 ha. The greatest differences were observed in
2004 and 2009, where strong oscillations in the surface covered with vegetation were observed.

Figure 8. Model validations based on modeled and observed data for the wet period model (a),
dry period model (b), and the annual model (c).
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The correlation between the vegetation area estimates and the modeled data was R2 = 92.40%
(Figure 8a). The model for the dry period had an average difference of 0.09 ± 5.11 ha between the
vegetated areas estimates from satellite images and modeled data, although the differences in each
year were greater than in the wet period model. The correlation coefficient between the two estimates
was R2 = 72.80% (Figure 8b). The average difference between vegetated areas mapped from satellite
images and the modeled data was 0.18 ± 6.89 ha. The major differences between the estimated and
modeled data occurred when extreme variations in the surface covered with vegetation were observed.
These were the result of extreme climate events, and show a correlation of R2 = 83.04%.

4. Discussion

The differences observed in the changes in water table depths can be explained by the structure of
the aquifer and the soils of the salt meadows, which were described as having different permeabilities,
which facilitates or hinders the movement of water [42]. Furthermore, Vyacheslav et al. [43] observed
that the well and the piezometers upstream of the salt meadows of Tilopozo presented greater water
table depths due to the cone of depression produced by the extraction of waters in the upper part of
the MNT-aquifer.

After ten years of pumping in the upper part of the MNT-aquifer, there was a decrease in the
water table in the Tilopozo’s salt meadows [44,45]. This in turn generated a change in the observed
vegetal coverage rates.

Thes differences in decreases in the water table (due to variations as the permeability and fissures
in the soil) imply an increase in the aeration zone and a decrease in the saturated zone. This affects the
soil moisture availability of the highest points in the salt meadows, limiting the soil moisture available
for the transitional hygrophytes. The specific responses of these species will depend on adaptive
strategies and root systems [46–48]. Consequently, lowering of the water table is reflected in the loss of
surface areas covered with vegetation.

The surface covered with vegetation in the salt meadows of Tilopozo between 1985 and 2002
showed both intra- and inter-annual oscillations (Figure 5a). This behavior could be due to the
fact that the analysis of the vegetation using NDVI can be influenced by the phenological stage of
the species present in the study area, which may modify the estimation of the surface covered with
vegetation [20,26]. Concerning the species in the salt meadows of Tilopozo, little information is available
on their spectral behavior according to their phenological stage. One of the most important and
extensive plants in the salt meadows of Tilopozo is S. americanus. However, Langley and Megonigal [49]
indicated that determining the phenological stage of S. americanus using NDVI is very complex, because
the biomass is brown, and this generates very low NDVI values, which can be interpreted as bare soil.
In addition, as S. americanus plants increase in height, their leaf areas decrease, which impacts NDVI in
a counterintuitive manner, because higher biomass leads to lower NDVI values [50].

NDVI has been used widely to estimate vegetation biomass, but its use has limitations in arid
lands [51]. For example, vegetation is not always green, and therefore, it is difficult to detect using
NDVI [51,52]. Vegetation can also be confused with soil [53], since darker soils can have higher NDVI
than vegetation [54]. Qu et al. [19] developed a multiple regression model that determined the response
of vegetation to climatic factors, and complex relationships that indicated lags between the occurrence
of a meteorological event, and the observable effects on the NDVI in areas with greater precipitation
were obtained. Meanwhile, du Plessis [16] pointed out that statistical relationships between vegetation
cover and precipitation in arid-zone grasslands are deficient because there are factors that determine
vegetation behavior that cannot be measured from satellite imagery such as slope, soil moisture and
water table depth. Sorrell et al. [55] also identified water table depth as a factor that determines
hygrophyte species cover.

Wetlands with small areal extents have been appropriately delimited through the use of
NDVI [16,17,36,37,56]. These studies have been confirmed by Dong et al. [18], who developed a
wetland map-based in NDVI and obtained accuracies between 83–87%.
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In arid-zone wetlands in Spain, Domíngez-Biesiegel et al. [35] used an NDVI value of 0.20 for the
determination of vegetation. Moreover, Pan et al. [21] evaluated Chinese wetlands using an NDVI
threshold of 0.13, the same value used in this investigation.

Other authors working in similar situations highlighted that the NDVI offers the best estimates of
percentage plant cover and can be used in a wide range of vegetation densities on arid and semi-arid
zone meadows [19,56,57]. Purevdorj et al. [57] highlighted that SAVI is a better indicator of vegetation
cover at low densities than NDVI. However, it is necessary to have soil correction factors to calculate
SAVI, which restricts its application [56,58].

The vegetation in the salt meadows is likely to reduce the NDVI values of Tilopozo, and can be
impacted by various activities, such as the extraction of water in the upper part of the aquifer [9],
cultivation and grazing [24], and even the uncontrolled burning of the vegetation present in the salt
meadows. Burning is not formally recorded, but was observed by the authors during field campaigns
(Figure 9).

The impact of climatic variables on vegetation cover in the salt meadows of Tilopozo was less than
the human actions listed above, and this may be due to the fact that it is hygrophilous, azonal vegetation,
which is not dependent on climatic conditions, but rather depends primarily on the availability of
water coming from aquifers, or other hydrological characteristics of the study area, such as streamflow
in rainy periods [7,59]. A high dependence of vegetation on water table depths was observed in all
prediction models; see Equations (1)–(3). This inference is supported by high correlation coefficients
between vegetation cover and water table depths recorded in the water monitoring network.

Figure 9. Schoenoplectus americanus meadows at Tliopozo that were damaged by an intentional fire in
November 2017; authors’ photograph.

These characteristics are valid for multiple regression models with different objectives [13,60,61].
The statistical performance of the models developed in this research for the wet, dry and annual periods
was corroborated by obtaining the best R2 and R2-adjusted values and their statistical significance.
Consequently, the predictive models were well balanced and very close to the estimated values
(Figure 6), with the average differences between modeled and satellite image-derived vegetation area
estimates not exceeding 1 ha in any of the 90 surfaces investigated for the salt meadows of Tilopozo.
The behavior of the prediction models was affected by the occurrence of abrupt increases and decreases
ing vegetation cover. These variations are probably due to extreme weather events, such as the 40.5 mm
of precipitation recorded in 24 h in 2002, which can be compared to the mean annual precipitation of 20
mm. Extreme weather phenomena may activate growth in many of the species present in the area [62].

The occurrence of such events affects the efficiency of the models, and can lead to under- and
overestimation in predicted values [63]. The accuracy and the use of data from the water monitoring
network prediction models of vegetation cover can be used in follow-up work in wetlands like those at
Tilopozo. The follow-up work on vegetation behavior, through the use of a water monitoring network
data, should enable the determination of the status of a wetland, and be able to integrate human
pressures [64].
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The existing research into the wetlands studied has focused on evaluating their composition and
structure [24,65,66], but there has been little research into the background status of these wetlands
against which predicted future states can be compared [63]. According to Liu et al. [64], in the Ordos
Larus Relictus National Nature Reserve, China, there was a change in the structure of the wetland
between 1990 and 2014 due to climate change and the indiscriminate extraction of water. The free water
column decreased by 83.7%, which resulted in vegetation fluctuations. Liu et al. [64] also predicted
that, by 2100, the free water column will have almost disappeared, and that vegetation present will be
reduced by 22.3%.

5. Conclusions

The historical analysis of the surface covered with vegetation in the Tilopozo salt meadows showed
a loss of 34 ha between 1985 and 2016, which equates to an average annual loss of 1.08 ha year−1. These
changes were mainly correlated with water table variations. A possible lag of ten years between the
start of the pumping in the upper part of MNT-aquifer and the first observable effects on the vegetation
cover in the Tilopozo salt meadows was also noted.

The behaviour of the vegetation cover was less dependent on meteorological conditions than on
groundwater levels. Nonetheless, the existence of extreme precipitation events generated significant
increases in vegetation coverage, which were mainly induced by the activation of germplasm or the
activation of transitional hygrophilic species in the salt meadow ecotone.

The three predictive models showed high correlations between the modeled vegetation cover and
vegetation area estimates from satellite data. The models comply with the objective of being simple to
build and based on easily accessible information.

The annual model had high correlation (R2 = 83.04%), and is proposed as a tool that will allow the
behavior of the vegetation covered surface estimated, using only meteorological information and the
groundwater levels in the piezometers and and the observation well.

The development of the prediction models has facilitated an understanding of some of the
reasons for the fluctuations on the vegetation cover of the Tilopozo salt meadows, in particular climate
variability and human actions. Climate change may ultimately be very important as it affects water
availability in the high Andes [67]. Prediction models like the ones developed in this research will
allow the status of salt meadows and other types of wetlands in hyper-arid areas to be predicted.
They can be useful tools in conservation planning and management, as well as in developing a deeper
understanding of the behavior of vegetation. The models developed in this research will, in particular,
help improve water management in the MNT-aquifer and help lessen the impact of pumping on the
Tilopozo wetland.
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