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Abstract: Due to the fact that the South Africa’s savanna landscapes are under changing conditions,
the previously sustainable firewood collection system in rural areas has become a social-ecological
factor in questions about landscape management. While the resilience of savannas in national parks
such as Kruger National Park (KNP) in South Africa has been widely acknowledged in ecosystem
management, the resilience of woody vegetation outside protected areas has been underappreciated.
Collecting wood is the dominant source of energy for rural households, and there is an urgent need for
land management to find sustainable solutions for this complex social-ecological system. However,
the firewood collection scenario is only one example, and stands for all “human-ecosystem service”
interactions under the topic of over-utilization, e.g., fishery, grazing, harvesting. Agent-based
modeling combined with goal-oriented action planning (GOAP) can provide fresh insights into
the relationship between individual needs of humans and changes in land use. At the same
time, this modeling approach includes adaptive behavior under changing conditions. A firewood
collection scenario was selected for a proof-of-concept comprising households, collectors, ecosystem
services and firewood sites. Our results have shown that, even when it is predictable what a single
human agent will do, massive up-scaling is needed in order to understand the whole complexity of
social-ecological systems. Under changing conditions, such as climate and an increasing population,
fair distribution of natural goods become an important issue.

Keywords: firewood collection; savanna; Bushbuckridge; Kruger-to-Canyon Biosphere; goal-oriented
action planning/GOAP; adaptive behavior; MARS; social-ecological systems

1. Introduction

Savanna landscapes, as environments with the coexistence of grass, trees, and shrubs, are natural
systems with strong resilience to natural disturbances such as fire, elephants, and other herbivores [1–3].
These bi-stable systems are important in regard to socio-economic and ecological questions [4,5] in a
wide range of tropical and temperate regions.

South African savannas, with their unique and diverse flora, are characteristic in rural areas and
millions of people benefit both directly and indirectly from these natural resources [6,7].

One of the most frequented ecosystem services is the provisioning of wood, e.g., for fuelwood,
construction materials, medical issues, and livestock forage [6]. Fuelwood, such as firewood or
charcoal, is the most rural energy source in sub-Sahara Africa [8]. For savanna trees and shrubs,
firewood collection is sustainable when the collected material is already dead or the collection rates
are below the regeneration rates [6].

To manage sustainable use, traditional authorities regulate firewood collection [7]. However,
increasing settlement [9], population growth, and a decline of natural resources [10] apply pressure
to the social-ecological system. Additionally, changes of land use in community areas, such as a
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mixture of various human activities [11,12] and climate change, contribute to a more unsustainable
use of this energy source. Extensive clearing of trees for cooking fuel [13], agricultural expansion, and
charcoal production are destroying or at least fragmenting these landscapes [6,14]. This increasing
need and unstainable use of firewood collection requires an adaptation in the firewood collection
behavior. Covering those management questions in large scale simulation studies, human behavior
and decision-making is a known challenge [15].

Agent-based modeling (ABM) has a well-proven record on social-ecological systems [15–19].
Unfortunately, in most cases, these models are strictly fixed rule-based [20] and therefore, are not able
to represent a realistic picture of the adaptive behavior under changing conditions.

Goal-oriented action planning (GOAP) is an artificial intelligence-based approach to overcome
this obstacle [21–23]. It is widely used in game development, but we are not aware of an application to
social-ecological modeling.

The authors of this study designed the firewood collection process as a goal-oriented action
planning (GOAP) behavior [24] and developed a model for firewood collection in South African
savanna landscape communities for this study.

2. Materials and Methods

2.1. Study Side

The Bushbuckridge district is in north-eastern South Africa next to the Kruger National Park
(Figure 1).

Figure 1. Location of the study site near the Kruger National Park (KNP) in the Bushbuckridge district.
The picture shows transportation of firewood by car.



Land 2018, 7, 97 3 of 17

Many studies about firewood collection and savanna ecosystems were conducted in the
Bushbuckridge area [8,9,25–34], which is also a part of the Kruger to Canyon (K2C) Biosphere
Region [9,31,32]. The availability of excellent prior knowledge and existing long-term data make
Bushbuckridge a prime geographical region for social-ecological simulation models.

In this marginalized region, the population density is around 150–350 people per km2;
unemployment is common, and the monetary income per household is low [27]. Village residents use
the communal land for cultivation, grazing, and wood harvesting [35]. Using these ecosystem services
is essential to rural communities [27]. The vegetation is Mixed Lowveld Bushveld with some dominant
trees species like Acacia spp., Combretum apiculatum, Terminalia sericea, and Sclerocarya birrea [26,27,36,37].

2.2. Data

In South Africa, firewood collection is mostly carried out by females and can take up to two
hours daily to collect enough wood, especially in rural areas [38]. The social regulation for firewood
collection is traditionally done by local authorities [7]. Collecting wood is free of charge [39] and is
used for cooking, heating water, and keeping warm [25]. Even with increasing electrification, firewood
collection is done for cost saving and may increase levels of unsustainable wood harvesting [8,33].
Some households are able to buy firewood from local vendors [25].

Based on the information from previous studies, we summarized some key factors in Table 1.
These values will later be used to parameterize our model.

Table 1. Approximate data from selected sources for the model.

Contents Model Input Parameter Source

Firewood consumption 8 kg/day [33]
Meals 1–2 cooked a day [33]

Trips to collect firewood per household 4 within a week [33]
Time per trip 2 h [33]

Female trips on foot 1 h–2 h 20 min [38]
Social regulation Authorities [7]

Collecting preferences Dead wood [39]
Energy preference Firewood (for cost saving) [40]

Households with motor-car 19.3% [41]
Households with stove (electric/gas) 78% [41]

2.3. Multi-Agent Modeling and Simulation and MARS

Agent-based modeling incorporates artificial intelligence (AI) into modeling and simulation.
Individual entities (“agents”) interact with each other and their surroundings [42], e.g., an agent who
is cutting down a tree interacts directly with this specific tree agent located at a geographical position.
Their behavior is described on an individual level following a set of rules. It should be noted that
agents can be individuals but also social groups, communities, or other entities that act and react to
outer conditions [43]. These actions and reactions on an individual level may lead to a higher state of
complexity, i.e., self-organization and emergence [44], which makes this approach especially suitable
for research on social science [45].

The multi-agent framework MARS (Multi-Agent Research and Simulation) is under development
at the University of Applied Sciences Hamburg [46] and incorporates the newest concepts of both
agent-based modeling and simulation. The frameworks target both simple and complex models by
using specifically designed approaches tailored to the respective disciplines such as socio-ecological
systems [47,48].
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2.4. Goal-Oriented Action Planning (GOAP)

Human behavior could be described as a sequence of decisions. Goal-oriented action planning
(GOAP) derives from the field of AI and integrates adaptive decision-making into multi-agent models.
Based on STRIPS (Stanford Research Institute Problem Solver), this planning algorithm aims to reach
goals by executing a set of actions [49]. Each agent keeps an inner state which is represented by a set
of properties (attributes). These properties are often described as Boolean predicates that evaluate to
either true or false, respectively. These properties change over time and are influenced by the inner or
outer sensations of the agent.

A “goal” can be described as a desired state to be reached. A hungry agent, i.e., the “IsHungry”
predicate results in true (“IsHungry = true”), might follow his individual goal to change his internal
state to “IsHungry = false”.

Moving from one state to another is usually done by executing (“firing”) a sequence of “actions”.
Before the “actions” are fired, a plan must be implemented to find the best sequence of actions to reach
the goal [50]. Each action contains a list of preconditions that need to be fulfilled before being executed,
as well as a set of postconditions that are valid after successful execution. Additionally, an action might
hold a “cost” value, indicating the necessary effort for a successful execution.

The planning algorithm calculates a way of minimal costs to reach the goal. We will show that
this decision-making architecture allows the agents to adapt their behavior in correspondence to a
changing environment [19].

In general, GOAP would not need a software realization to work. The planning process could
also be done on a sheet of paper and with a pen. If hundreds or thousands of humans are considered
this task will become very time-consuming.

For this study, the MARS framework was technically extended by GOAP planning algorithms.
That allows any MARS software agent to decide individually on base of an adaptive schedule.

2.4.1. State Model

The “state model” represents the individuality and personality of an agent. For example, an agent
“Firewood Collector” may have a personal schedule, an individual set of experiences, personal traits,
e.g., civil obedience, access to skills and equipment, living standards, or others.

By utilizing GOAP, each agent can plan his/her own sequence of actions as needed in order to
reach a personal goal. Basically, these goals are represented by a set of values within the state model
that should be achieved in the near future. The actual sequence of actions to reach that specific goal
depends on the goal itself, the current state of the whole system (=world), and the individual state
of the agent. Obviously, this means that even in the case of two agents sharing the same goal, their
preferred sequence of actions to fulfill that goal might be without any overlap.

2.4.2. Planning

Planning is the process of thinking about the activities required to achieve a desired goal, often by
considering constraints such as minimizing costs. If a cost value, e.g., the energy needed to execute an
action, is assigned to each action, a sequence of actions will lead to total cost statement. By utilizing
constraints, such as reducing total costs to a minimum value, the outcome of the planning process can
be significantly changed. This can also be done on an individual level, i.e., different human agents
may have individual planning constraints related to their personality or availability of resources.
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The result of the planning process is a sequence of actions that transform the current state model
of an agent into the desired state formulated by the goal description. So far, GOAP planning is not
too dissimilar from other planning algorithms. The major advantage might become visible when
considering a change of the environment, the social network of the agent, or within the agent himself
during performing this transformation. As an example, the reader might think of driving to a location,
e.g., a workplace or a supermarket, when an unexpected phone call suddenly interrupts the originally
planned process. A change in the form described above would lead to a re-planning process in GOAP.

2.4.3. Actions

An action is something that the agent is able to do, bracketed by pre- and postconditions.
A precondition is a condition or predicate applied to a set of state variables that must always be
true just prior to the execution of an action. Analogously, a postcondition is a condition or predicate
that must be true after the execution. By that, each action changes a part of a state model, either of the
world or an individual agent.

Generally, to reach a goal, a sequence of actions is necessary. Every action is encapsulated and has
no immediate impact on other actions. In some cases, actions must fulfill certain criteria to determine
whether they can be run. For instance, if “CuttingFirewood” has the precondition “NeedAxe”, that
will require a search of the immediate vicinity to see if there is an axe the agent can use. Thus, an action
can trigger other actions (sub-processes) before again returning to the primary sequence.

3. Results

In this study, we aimed to describe the behavior of firewood collection under various changing
conditions in Bushbuckridge, South Africa by using an agent-based simulation model incorporating
GOAP planning. We combined existing data and knowledge of firewood collection behavior (see
Table 1) and transformed this into a goal-oriented model.

The model itself is simplified in order to show that this way of modeling is suitable to express
adaptive behavior under changing conditions.

3.1. Conceptual Model

The conceptual model is the first step in creating an agent-based model [51]. It describes, in a
simple but not overly simplistic way [52], the complexity of a subset of the real world in a model.
During the conceptual modeling process, modelers have to decide which subset of all concepts have to
be included—and which do not. Obviously, this selection must be aligned with a specific research or
management question.

In this paper, the conceptual model (see Figure 2) combines four different key elements for
firewood collection. The selected components are Household, Collector, the Landscape, and Firewood
site. A household aggregates one or more Family members. If the household needs firewood, one
of the family members becomes a collector. The collector has to bring firewood to the household.
The Landscape component provides several Ecosystem Services. One of them, firewood provisioning,
is represented by a Firewood site. Collectors are able to interact with this service.

Figure 2 also shows constraints that might change over time. The steady growth of the human
population certainly changes firewood collection behavior. Changes may also arise from social or
political processes, land use, climate changes, or other processes.

Therefore, the interaction between the conceptual components shown in Figure 2 needs an
adaptive part. This is implemented by incorporating GOAP planning.
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Figure 2. Conceptual model (left side) with changing conditions (right side).

3.2. Domain Model

Following an initial conceptual model (Figure 2), the next step is to build the domain model.
For agent-based models, this means defining the agents and the environment. An agent is typically
represented by attributes and methods. Here, we limit ourselves to highlighting the interaction
between the firewood collector as an agent and the firewood site as part of our environment.

The agent type collector has a list of attributes such as age, gender, health condition, wood
carrying capacity, and personal time schedule, among others. The combination of attributes always
depends on the exact research question. As a result, for this showcase, all of our agents are without
personal settings and are all able to walk, drive a car, take an axe, and collect and cut firewood.
At the same time, they have the same knowledge about the firewood sites and are able to go back to
their home.

For the goal-oriented action planning, in this approach, the collector agents plan their sequences
of actions to bring firewood to their home. Each particular sequence of actions not only depends on
the goal, but also on the different state variables of the agents and the world.

The environment here is the landscape defined by its geographical coordinates, spatial extent, and
its biological diversity; it also provides several ecosystem services, e.g., firewood. In MARS scenarios,
this environment is modeled by GIS files where firewood collection sites are marked points-of-interest
(POI).

3.3. Scenarios

Simulation scenarios are a well-established approach to become aware of future challenges
or changes in complex adaptive systems. For this study, the domain model described above was
implemented in the MARS framework. In order to define relevant scenarios, we included possible
changes over time, which actuate the system (Table 2).
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Table 2. Changing conditions with examples and the effect on firewood collection, based on
literature research.

Changing Condition Possible Trends Effects on Firewood Collection Source

Population Increase Higher demand for firewood [8,27,40,53]
Social Disobedience Illegal firewood collection [7]
Policy Restriction of cutting Fewer sites to cut firewood [6]

Land use Alternative sites More effort to collect [54]
Climate Reduced resprouting capacity Over-harvesting [55]

Land cover Species shift Firewood quality [54]

For firewood collection, there are several changing conditions coupled with a number of
consequences of interest. Changes could be in e.g., population, the social system, policy, land use,
climate, and land cover.

With regard to the system considered in this study, this list of potential changes is certainly not
comprehensive. However, the broad range of aspects and their importance should be visible.

3.4. GOAP

As stated above, a GOAP-based planning algorithm should make firewood collectors (agents)
capable of reacting to changes in their individual, social and environmental contexts. In the first step,
we enhance the state model of firewood collector agents by predicates to allow the evaluation of pre-
and postconditions.

3.4.1. Firewood Collector

By analyzing the firewood collection process, we identified several aspects that have a vital
impact on the individual behavior of collectors. The resulting list is shown in Table 3. Obviously,
the availability of time, money, and the set of tools, e.g., axes, are important factors, but respect and
obedience in social hierarchical groups are also of importance.

Table 3. Table of setting for the Collector state model.

Aspects Predicates on States Possible Values

Time schedule HasTime True/False

Equipment HasAxe True/False
HasCar True/False

Living standard HasMoney True/False

Civil obedience TrustChief True/False

Personal collecting conditions

HasFirewood True/False
IsOnFirewoodsite True/False

BroughtFirewoodHome True/False
IsAtHome True/False

“Personal collection conditions” reflect the current situation of an agent in a set of logical values.
Applying the GOAP planning algorithm to a firewood collector who has no money, no car, and

no axe available achieves the action plan from Figure 3. Each action (green ellipse) is triggered by the
set of preconditions and affects several state variables, as described in the “Effect” element. Figure 3
shows the “Happy Path”, a basic action plan that does not consider problems or changes: simply
walking to a firewood collection site, harvesting wood, and walking back home.
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Figure 3. The “Happy Path”, i.e., the most basic action plan.

However, in a non-uniform world, resources and skills are not equally distributed. That leads to
different methods to acquire firewood for the household. Figure 4 shows five different action plans for
firewood acquisition under variable circumstances.

Figure 4. A composition of all possible action plans to acquire firewood for a collector with time, axe,
car, and money.
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If the setting of the agent is different, e.g., the collector has no car and no money, there are fewer
successful ways to fulfill the goal “HasFirewood = true” (see Figure 5).

Figure 5. The composition of all actions: possible for this collector in green, impossible in red.

GOAP is a complex algorithm to calculate the various ways to fulfill a goal by taking different
steps, i.e., actions. It also offers optimization criteria, for example, to find the least time consuming one.
If there are more than one “optimal” action plans resulting from the GOAP planning, a random or
rule-based selection can be done.

3.4.2. Firewood Sites

In most regions of South Africa, firewood collection takes place on official firewood sites [25].
Because the actual location of true sites is not important for this study, we placed four fictive sites (a, b,
c, and d) with different attributes (see Table 4) into the landscape around Bushbuckridge (see Figure 6
for map).

Table 4. Characteristics of firewood collection sites.

Site Walking
Distance (m)

Time by
Walking

Reachable
by Car

Driving
Distance (m)

Official
Firewood Site Limitation

a 400 < 3 h No - Yes No
b 800 < 3 h Yes 800 Yes No
c 1500 < 3 h Yes 1500 Yes No
d 2000 > 3 h Yes 2000 Yes No

Figure 6. Map of the landscape with points-of-interest (POI) = firewood sites.
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For the initial step of this study, we presumed that the sites are without any limitation on firewood.
The three collecting sites (b), (c), and (d) are not only reachable by walking, but also by driving. Distance
and time are important factors for calculating costs in this case.

3.5. Experiments

The preliminaries above were used to define more complex and integrated scenarios. The first
experiment varied capabilities and resources of firewood collectors; the second, environmental factors;
and the third, a combination of both.

3.5.1. Agents—By Changing Attributes of Collectors

Obviously, the most preferred site is site (a), which is both easy to reach and has plentiful
collectable firewood.

We designed three different types of collector agents to represent three categories of human
firewood collectors:

I Presents a collector with unlimited time but without any equipment. This type could represent a
child, for example.

II Marks a stereotype for a collector which has only a maximum three-hour time limit, access to a
car, and no civil obedience. Which could e.g., stand for a young man within a group who collects
firewood by car.

III In this type, the collector has a higher living standard but only three hours of time.

The result of the planning process is shown in the last row of Table 5. Only type III displays
deviant behavior. Which action plan is executed depends on optimization constraints, e.g., costs or
time consumption.

Table 5. Attribute setting of the collector for three different scenarios and its model outcome.

Collector Attribute I II III

HasTime (>3 h) True False False

HasAxe False True True

HasCar False True True

HasMoney False False True

TrustChief True False True

Outcome from GOAP Collect on site a Collect on site a
Collect on site a *

Drive to site b and collect *
Buy firewood *

* Depends on “costs” for a car, time, and money.

By considering only this setup, a high risk of overharvesting site (a) becomes obvious.

3.5.2. Environment—By Changing Attributes of Firewood Sites

After creating different collector types, we designed three different settings (A, B, C) for our four
firewood sites (a, b, c, d), each representing a different state of over-harvesting (see Table 6).

A Is a direct result after unlimited firewood collection. All dead wood on site (a) is gone, but there
is living wood to cut on site (a). All other sites are still provided with dead and living firewood.

B There is no more firewood on site (a), (b), and (c), which are reachable within three hours.
However, there is still both dead and living firewood on site (d).
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C Here, we designed the opposite of unlimited firewood; there is no legal firewood on any of our
four sites.

Table 6. Attribute setting of the firewood sites for three different scenarios.

Firewood Site Attribute A B C

a HasDeadWood False False False
HasLivingWood True False False

b
HasDeadWood True False False

HasLivingWood True False False

c HasDeadWood True False False
HasLivingWood True False False

d
HasDeadWood True True False

HasLivingWood True True False

After designing three different collector types and three different firewood site scenarios (see
Tables 5 and 6), we combined them to have a total of nine different scenario outputs (see Table 7).

Table 7. Combined scenarios and model output.

Combination of
Changing

A B C

(No More Dead
Firewood on Site a)

(No More Dead or Living
Firewood on Sites a, b, c)

(No More Legal
Firewood Available)

I (time, no equipment)
- Walk and collect at

site b
- Walk and collect at

site d No plan possible

II (poor, less time, don’t
trust chief)

- Walk and cut
firewood at site a

- Walk and collect at
site b

- Drive to site d
and collect No plan possible

III (has everything, but
only less time)

- Buy firewood-
Drive to site b
and collect

- Buy firewood - Buy firewood

Even this basic scenario setting produced a variety of different strategies:

A/I: When there is no more dead firewood on site (a), the collector without an axe (I) has to walk a
longer distance to collect firewood on site (b).
A/II: If the collector has an axe but no car (II), he still can cut firewood on site a or walk to site (b) to
collect there, like collector type I.
A/III: A well-situated collector (III) can buy firewood, or if he has time drive to site (b), he may
collect there.

For scenario B, time is a critical attribute. The only site with firewood to collect or to cut needs
more than three hours to complete the goal.

B/I: The collector I has time and is therefore able to walk the longer distance to reach site (d) and
collect there.
B/II: This collector type has only three hours to bring firewood to the household, but has access to a
car and can drive to site (d) to collect there.
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B/III: Because of time limitations, collector III has to buy firewood.
C/I and C/II: If there is no more firewood available (C), there is no plan possible for collector I and II.
C/III: Collector III can reach the goal by buying firewood.

By modeling with GOAP, it is plausible in this instance that there is no plan to fulfill the actual
goal. However, this is not a dead end for the model; on the contrary, it serves as a way to find new
solutions and to model adaptable behavior.

In this experiment, two cases did not result in a suitable sequence of actions to meet the demand.
This may lead to “cascading” the problem back to the delegating entity:

C/I For collector I, there is no chance to fulfill the goal. Therefore, after the planning, no actions are
executed. The design of the model must be able to account for this. Perhaps there are alternatives
in the household level.

C/II Like collector I, collector II has no chance to bring back firewood to the household. Because of
his lack of civil obedience, he may be able to change his behavior, e.g., by collecting firewood
outside official sites. Even if it is not currently implemented in this model, the outcome shows the
modeler that something is happening, and that the model needs an improvement for this scenario.

There are also visible results at the landscape scale. The modeling is about different behaviors
and adaptive decision making by people, but the results can change the landscape view; in this case,
the different firewood places. Questions to be answered could be:

• Which of them are the most frequented and what will happen if these sites run out of firewood?
• What will happen if the demand for firewood increases?

For the first attempt, there is enough firewood on each collection side, so only the expenditure
of reaching the area and collecting brings the decision which collecting place is best. This will be
completely different when places nearby have no more firewood available. Here we are able to define
a tipping point for overharvesting. If the firewood collectors need more time, money, or a vehicle,
it causes changes in behavior between households with different social-economical standards.

This modeling approach also opens up options for new perspectives; for example, what happens
if the collector type P gets access to electricity and an electric stove. Certainly, this will change the
individual firewood collection behavior, but the question remains about how this will impact the
entire system.

4. Discussion

Overharvesting and unstainable fuelwood extraction are contributors for land use and land cover
changes (LUCC) causing a significant impact on the overall savanna ecosystem [8,9,29,54,56].

The aim of this paper was to show the capabilities of modeling adaptive human behavior under
changing conditions with GOAP.

Starting with a very simple initial approach and unlimited resources, we showed that the
firewood collector always collects firewood in a way that requires the least effort. In our experiments,
this means collecting dead wood from the nearest firewood site or, if possible, buying firewood.
By increasing the options and limitations, different collector stereotypes developed varying strategies
for acquiring firewood. Other modeling approaches do not support this adaptation of social-ecological
behaviors [57–59].

In some cases, it became quite obvious that no suitable planning was possible. This might indicate
a gap in the model description, but could also point to a possible conflict in the real world.

Moreover, our modeling approach focuses predominantly on the landscape level. Overharvesting
of firewood sites, tipping points for illegal harvesting, landscape fragmentation, and the need for
alternatives are important topics in modeling savanna ecology [9,29]. The complexity of ecosystems
requires not only rule-based models [19,58,59], but also adaptive agent-based models.
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We found that individual firewood collecting behavior could be modeled in an acceptable
manner with GOAP. The resulting behavioral patterns fit our own observations and published
results. We showed using a basic example of overharvesting, that the behavior of agents has direct
consequences at the landscape level. Even the synthesized model shows this cross-scale impact well.

We observed that defining costs and thresholds using a single rating system that combines
monetary values, elapsed time, and performed activities is a challenge. This subjective task should
be carried out by experts, a conclusion supported by the literature [6,33,34,39,60,61]. In the near
future, we intend enhancing and up-scaling the model by incorporating specific local conditions from
Bushbuckridge, e.g., number of households and availability of firewood collection sites, together
with limitations regarding more specific firewood quantities and different qualities for each firewood
site [33,62]. Some of the extensions for achieving a more realistic model are:

• Collector: consider the effect of gender and age on different collection behaviors and distances
covered; also incorporate fear of walking through potentially dangerous areas;

• Household: differentiate households based on different amounts of firewood needed, availability
of electricity, income levels, and the number of household members;

• Landscape: include illegal firewood sites and locations of alternative energy sources, like dung;
• Firewood site: distinguish between different qualities of firewood.

However, it is expected that the greatest increase in knowledge will result from the massive
up-scaling, i.e., by increasing the number of households and collectors competing for firewood in a
region. What will happen if all accessible collection sites are overharvested or if, due to climate change,
there is a shift in tree and bush species? Exploring these scenarios will include thousands, perhaps
millions, of individuals with high variability in intentions, goals and capabilities.

Dealing with the increasing complexity requires sophisticated and cross-scale simulation models.
Only then can decision-makers and on-the-ground managers be better supported by scientists.
The adaptive manner of this modeling approach also allows system experts to gain a better
mechanistic understanding of the specific social-ecological system. Emerging behavior, and patterns of
self-organization are worthwhile properties to look for as well as tipping-points in the system.

5. Conclusions

The understanding of human–nature interaction is an important step for achieving sustainable
management solutions in the context of social-ecological systems.

Management decisions are often achieved by personal experiences, abilities, and within
hierarchical structures. Under changing conditions, such as climate and an increasing population, the
decision-making process becomes more complex. These experiences bring a high risk of ecological and
social degradations.

For decision makers it is predictable that, each single household will exploit the closest firewood
site and travel further when the closest sites are exhausted. Consequently, the knowledge growth will
come when the upscaling for hundreds, thousands, or millions of households is observed.

The MARS framework is exactly developed for these massive number of individual agents
in highly complex social-ecological systems. To understand the processes that lead to emerging
phenomena, tipping points, or self-organization decision makers need such powerful frameworks.

Because of the higher demand and the potential loss of all ecosystem services, there is a high
demand for suitable modeling approaches that carter for solutions for the worldwide problems.

The presented approach for adaptive planning of human behavior in agent-based modeling
and simulation scenarios based on artificial intelligence are practical for all kinds of social-ecological
modeling—especially, for limited natural resources like water, food, and fuel wood.

These promising results will lead to an expansion of the model in the near future.
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