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Abstract: Bogotá, the rapidly growing center of an emerging economy in the northern part of South
America, is located within a biodiversity hotspot in the tropical Andes. The surrounding mountains
harbor the ecosystems Páramo and Bosque Altoandino whose high water retention capacity serves as
a “natural water tower” for the city’s freshwater supply. Since Bogotá is steadily growing, the city
spreads into its peri-urban area, thus threatening its proximal ecosystems. In this study, the land
use and land cover change (LULCC) of Bogotá’s surrounding area is analyzed with random forest
algorithms for the period 1989 to 2016. The basin of the Rio Tunjuelo, a subbasin of the Rio Bogotá,
was selected for analysis, as it is typical for the entire area in terms of relief, land use and land
cover. A multiple logistic regression analysis is applied to identify different determining factors of
the changes. LULCC analysis of the Rio Tunjuelo basin shows an ongoing but abating southward
spread of Bogotá’s outer rim, an increase of agricultural land, and decrease of natural vegetation.
After an initial heavily spatial spread of urbanization in the early 1990s, the speed of urban spread
declined in the past years. Statistical analysis implies that the defined natural vegetation classes
must be considered as one spatial entity. The probability for their change increases with decreasing
distance to established agricultural areas, which indicates human impact as a relevant factor for
LULCC. Generally, the explained deviance (D2) is low and hence it is presumed that the LULCC
determining factors are not predominantly found among environmental parameters.

Keywords: Rio Tunjuelo; páramo; random forest; quantity and allocation disagreement; regression
analyses; Receiver Operating Characteristics (ROC)

1. Introduction

Earth’s land surface has always been subject to alterations [1]. Apart from natural causes
(see, e.g., [2–5]), human activities have led to alteration and degradation of ecosystems with an
unprecedented pace and magnitude over the past decades (see, e.g., [1,6]). However, change
in land use and land cover is not distributed evenly around the globe [7]. Highly adapted
ecosystems, particularly alpine biomes, show highest vulnerability, and most likely lack the required
resilience to withstand future changes [8]. Land use and land cover change (LULCC) commonly
results in a decline of pollinators [9], increased fragmentation of habitats [10], and change in land
surface albedo. Consequently, LULCC affects thermal fluxes and leads to alteration of regional
climate [11]. Furthermore, LULCC causes large-scale habitat losses [12] and a general decline in global
biodiversity [13], e.g., regarding birds [14,15], mammals [16], arthropods [17], large carnivores [18],
ants [15], and marine ecosystems [19].
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LULCC in the tropics differs slightly from that in the mid-latitudes [20]. Tropical montane
forests and grasslands show low resilience to perturbations, even though its development took
place in a highly dynamic environment on a rather short time scale (in geological terms) with
perpetual isolation and migration as the key factors [21]. In tropical high Andean environments,
LULCC affects the ecosystem’s (eco-)hydrological properties and functions, mainly in the head water
areas [22–24]. It particularly affects nutrient allocation and topsoil dynamics [25], river’s sediment
yield [26], soil erosion and associated phenomena, such as soil loss and siltation of reservoirs [27],
higher susceptibility to landslides and mass movements [28], plant species population size and, finally,
the risk of species extinction [29].

This paper describes and models the LULCC in the peri-urban area south of Bogotá, Colombia,
between 1989 and 2016. Bogotá, the capital of Colombia, is located in an intramontane basin and
has been subjected to strong urbanization processes and massive population growth during the past
60 years [30,31]. Specific objectives comprise (i) mapping and analysis of LULCC with a focus on the
spread of urbanized areas and natural vegetation classes; (ii) evaluation of identified LULCC according
to their error in proportion, transition, and difference between the land cover classes, and finally;
(iii) testing whether terrain attributes, soil (chemical and physical) parameters and interclass distances
are correlated with recent trends in LULCC in order to provide valuable information for future
conservation planning in this biodiverse landscapes under threat.

2. Study Area

2.1. Geographic Setting

The metropolitan region of Bogotá is located in the intramontane basin of the Sabana de Bogotá
(Figure 1A) in the eastern branch of the Andean Cordilleras (Figure 1B) at an elevation of 2600 m a.s.l.
The basin is of Tertiary origin [32] and filled with Pliocene to Quarternary fluvio-lacustrine deposits [33].
The area is drained by the Rio Bogotá (formerly refered to as Funza), which is a tributary of the
Rio Magdalena.

In its lower course, the urbanized area of Bogotá expands into the flood plains of the Rio
Tunjuelo (Figure 2), which represents a transition zone between the high plain Sabana de Bogotá and the
mountainous landscape of the Rio Tunjuelo drainage basin. The central part of this drainage basin is
characterized by a fragmented mosaic of pastures and cropland, which is delimited longitudinally
by the mountain ranges of the Eastern Cordilleras. The southern part of the valley is distinguished by
the three main tributaries of the Rio Tunjuelo: Chisacá, Mugroso, and Curubital (from west to east),
with sharply incised valleys and high kinematic relief energy. Here, at elevations above 3200 m a.s.l.,
Páramos typically form the natural vegetation cover. Hence, the ridges surrounding the river valley
are vastly covered by this type of vegetation. The Parque Nacional Natural Sumapaz just connects
southwards to that drainage basin.

The Rio Tunjuelo is a tributary of the Rio Bogotá and drains a basin in the South of the city of
Bogotá (Figure 2). The Rio Tunjuelo valley extends for about 390 km2 and consists of three geological
units [34]: (i) sandstones, shales, and local limestone (Upper Cretaceous); (ii) fluvial and shallow water
sediments (Pliocene–Pleistocene); and (iii) Quarternary deposits of various origins.

In the highest altitudes, the relief is largely impacted by Pleistocene glaciations as documented
by glacial sediments (moraines) and glacial lakes. In lower altitudes, the v-shaped valleys are deeply
incised [35,36]. The soils can be subsumed as Andosols formed on Holocene volcanic ashes under a
cold and wet climate [37]. They vary within short distances and are largely related to topography and
current land use [38,39].

Precipitation occurs year-round with two distinct rainy seasons (April–May and November–
December) [40]. Precipitation is mostly of low intensity with annual totals of 1200–1500 mm [41].
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Figure 1. (A) Overview map of the Colombian capital Bogotá, located at the central course of the Rio
Bogotá (data source: Digital Elevation Model based on GMTED2010 [42].) (B) Location of the drainage
basin within the Cordilleras.
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Figure 2. The Rio Tunjuelo drainage basin (data source: Landsat 23 January 2016 Operational Land
Imager RGB 4–3–2).
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Approximately one third of Colombia’s population lives in Andean plateaus (Medellín–
Cali–Bogotá) in the middle of a biodiversity hotspot [43–45]. Within this hotspot, Páramos are
considered to be the most diverse ecosystem with an exceptionally high species density and endemism
[46,47]. A rough distinction can be made between Páramos above 3500 m a.s.l. (Grasspáramo) and
Páramos occurring in the altitudinal range of 2800–3500 m a.s.l. (Subpáramo) [48]. Both Páramo types
provide important ecosystem services, such as organic carbon storage [49–52], water provision for
densely settled areas [53] and water regulation for energy production by hydropower plants [54,55].
Overall, the most prominent and important ecosystem service provided by Páramos is their function as
“natural water towers” [22,56]. Páramos and its related andosols are rich in organic matter accumulation
[57] and allophanes [58], which contribute to an outstanding water-holding capacity [38,59]. Soil water
content at saturation is normally above 80% and for small-scale drainage basins the water yield can
reach more than 60% of total rainfall [57]. Especially in times of water scarcity during dry seasons,
the steady supply of water from the surrounding mountains with its widespread Páramo contributes
substantially to quality of living in the Sabana de Bogotá. However, Páramo functioning and performance
capacity also depend on the existence of High-Andean forests (Bosque Altoandino) and shrublands
(Matorrales), which serve as a protection buffer downslope [60]. Unfortunately, montane forests are also
highly endangered by conversion [61–63] and so the Andes represent one of the regions in Colombia
with highest probabilities of land cover change [64].

2.2. History of LULCC in the Study Area

In Colombia, transformation of land does not follow homogeneous trends. The Altiplanos—large
plateaus within the Cordilleras—clearly constitute areas with the highest increment of settlements.

One such plateau is the Sabana de Bogotá, which is characterized by a long and probably the most
complete occupation sequence in northwestern South America. Early human activities date back
to the Pleistocene–Holocene transition [65–67], but vast changes in the landscape coincide with the
arrival of the Spanish conquistadors in the early 16th century [68]. During the Spanish conquest, the
native population was expelled to formerly inaccessible areas, resulting in new land being occupied to
maintain grazing activities [69].

The process of large-scale fragmentation of the landscape initially started during the colonial
period (c.1600–c.1800). The agricultural frontier was pushed forward mainly in the direction of
fertile soils of the highlands and the intra-Andean valleys [68]. In the mid-19th century, a technical
revolution set in which accelerated the transition of landscape [70]. African grasses, in addition
to other species, were introduced to South America in order to prevent forest recovery and as a
foundation for a vital pasture economy [71,72]. From the mid-19th Century to about the 1940s,
potato farming progressively gained significance in the Sabana de Bogotá and, hence, led to a decline
of natural vegetation cover [73], which agrees with a general trend of environmental perception
towards a modernist city [74]. Colombia’s high plains already had millions of hectares converted into
rangelands [70] by the time the South American ranching boom of the 1950s set in [75]. Lastly, by the
middle of the 20th century, high demographic growth rates in the Sabana de Bogotá [30,76] had led to
the colonization of new land, land concentration and extensive use of land to meet the demands of the
people and the growing market economy [69]. This period also marks the onset of metropolization
and industrialization. The latter is exemplified by increasing direct investments of foreign companies,
particularly in the mining sector [77,78] and the establishment of a secondary sector (e.g., tanneries)
with a low spatial but high environmental impact [79].

The strong population growth was accompanied by the construction of large (mostly) informal
settlements [80] in the surroundings of Bogotá at the expense of natural vegetation. Between 1985
and 2000, there appears to have been an annual loss of 0.6% and 0.8% for Páramo or montane forests,
respectively [81]. In the southwestern Sabana de Bogotá, some remnant forests are conserved by local
communities, while other ecosystems were almost completely degraded [82]. More recently, some areas
within the Andes [83] and in the northern Sabana de Bogotá in particular [84] have witnessed surprising



Land 2018, 7, 75 5 of 28

trends of reforestation. For most of the Andes, this trend is related to the natural development of
secondary forests in areas where poppy plantations have been abandoned [85].

Future scenarios provide bleak perspectives for the ecosystems in the Andes, especially due to
the impacts of climate change: while more than 75% of the Andean biomes remain stable, the currently
most endangered biomes are becoming even more vulnerable [86], the agriculturally used areas are
expected to become more severely affected [87], and the discharge of the main rivers is steadily
decreasing [88].

3. Methods and Data

3.1. Preparative Work

Our study of land use and land cover change (LULCC) is based on the analysis of selected Landsat
images covering the time span from 1989 until 2016 (Table 1), all characterized by a cloud cover of a
maximum of 50%. Images from the Landsat Thematic Mapper (TM) and Operational Land Imager
(OLI) images were processed using an fmask algorithm [89,90] for (i) haze removal using LEDAPS
internally [91], (ii) conversion of digital numbers to top of atmosphere radiation, and (iii) detection
of clouds and cloud shadows. Fmask was used with its Python language implementation [92].
All possible band ratios were calculated and ratios that equal zero were excluded before classification.
By using all possible ratios as input, one can expect to gain more explanatory variables for the
random forest classification trees in a heterogeneous landscape. This procedure was inspired by, e.g.,
Barrett et al. [93], who used all possible ratios from the visible spectrum to delineate uplands in Ireland
(also with a random forest approach), Satterwhite [94], who excessively tested band ratios for Landsat
TM to discriminate vegetation and soil surfaces in semi-arid regions, and Gardner et al. [95] who
tested Landsat TM ratios’ suitability as vegetation indices. Furthermore, the following indices were
calculated for all images and for their respective sensor type: Soil Adjusted Vegetation Index (SAVI
Huete [96]), Normalized Difference Vegetation Index (NDVI Rouse et al. [97]), Normalized Burn
Ration (NBR Key and Benson [98]), as well as the tasseled cap transformations [99,100] were calculated
for all images and for the respective sensor type.

Table 1. Available Landsat scenes.

Date Sensor Cloud Cover [%]

22 December 1989 TM 10.0
19 February 1991 TM 30.0
29 January 2001 TM 0.0
1 January 2014 OLI 20.51

23 January 2016 OLI 46.86

3.2. Land Cover Classification

A land cover classifcation was developed for each of the years under investigation using a random
forest land cover classification [101], making use of Landsat TM and Landsat OLI images, their band
ratios, NDVI, SAVI, NBR, and tasseled cap transformations. A total of nine land cover classes were
created (Table 2). The following aspects were considered for classification and endmember selection:

High Andean ecosystems are highly impacted by frequent biomass burnings [102]. Thus,
a classification to compile these areas was created. Even though clouds were detected separately
by fmask, an endmember including cloud spectral characteristics was created to avoid classification
errors. Various water bodies occur in the Distrito Capital, either naturally [35] or as human-made water
reservoirs; hence, a class for water surfaces was created.
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Table 2. Class description, class separation approach and relative spatial share of each land cover class
from 1989 to 2016.

Spatial Extent [%]

Class Class Description Separation Approach 1989 1991 2001 2014 2016

GHBG

greenhouses appear as large
complexes, bare ground is the land
surface with exposed
bright sandstone

derived from image interpretation,
large variation in the digital
numbers but with similar
characteristics of the spectral curve

1.7 0.3 8.5 5.7 1.3

Settlement densely populated areas, build-up
areas or otherwise sealed areas

knowledge based classified in
combination with visual image
interpretation

11.5 10.0 11.2 11.9 14.5

Natural
Vegetation 1

Espeletia (frailejon) covered
high-altitude ecosystem (Páramo) as
stated in Diazgranados et al. [103],
often on slopes, no very thick solum
and rather shallow vegetation cover

knowledge based classified in
combination with visual
image interpretation

29.6 32.9 22.5 21.0 23.7

Natural
Vegetation 2

high vegetation cover, often
shrubby, thicker solum than Nat.
Vegetation 1 class, gradual transition
to Nat. Vegetation 1 class, most likely
Bosque Altoandino and other
forest-like ecosystems occur here

knowledge based classified in
combination with visual
image interpretation

13.0 15.4 15.5 14.2 11.8

CP coniferous plantations
knowledge based classified in
combination with visual
image interpretation

6.9 2.9 6.2 5.8 7.2

Agriculture
mostly agricultural fields and
mosaics used for ranching and
farming

mostly based on the ratio of red and
near-infrared bands, derived from
agricultural fields only

36.0 35.6 34.7 40.6 40.8

Burned Areas
burning scars of wildfires, mostly
surrounded by Natural Vegetation
1 class

derived from very low reflectances
in the visible spectrum and
near-infrared

0.7 1.2 0.2 – 0.1

Clouds derived from clouds very high reflective values in
blue band 0.1 0.3 0.7 0.1 0.5

Water natural and artificial water bodies very low reflectance, especially in
near-infrared/infrared bands 0.3 0.3 0.4 0.6 0.3

Urbanized areas that were detected in the satellite images comprise very diverse spectral features,
which were summed up in the class Settlement. The most diverse class is the Greenhouses and Bare
Ground (GHBG) class. Areas of vegetation-free ground occur for several reasons, some being the
presence of active or abandoned mining sites and of construction areas. Secondly, greenhouses as
well as several industrial parks and their brightly reflecting roofs appear very distinct in the satellite
images. Both the bare ground and the bright roofs show a very wide range of reflection values for each
Landsat band. The shapes of their spectral curves are quite similar. Since a distinction between these
two surface classes seriously reduced the overall accuracy of the random forest classification, both
were grouped into the class GHBG.

For the large areas of re-afforested woodlands [104] close to Bogotá and in the surroundings of
water reservoirs (Figure 2, map center), a specific class for such Coniferous Plantations (CP) was defined.

The agriculturally used areas were subdivided according to their spectral characteristics, mainly in
the near-infrared and red wavelength spectra of the Landsat data. A description of the classes is given
in Table 2. The endmembers were used for the random forest creation with a split of 70% training data
and 30% test data. All random forest models were analyzed and their accuracy and performance was
assessed using Kappa index of agreement, overall accuracy and error matrices.

The fmask cloud and cloud shadow layers resulting from the supervised classification were used
to crop the scenes. Since fmask was not capable of detecting extremely thin or very small clouds,
a manually created layer of such (remaining) clouds was created. Additionally, the topographic
shadows in the scenes were added to this layer. Said manually created layer was also used to crop
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the classification layer. Since the different satellite scenes captured various extents of cropped areas,
relative portions were used for area calculations.

The different raster layers displaying land cover classes were compared to estimate the LULCC
at pixel level. The domain of changes was computed according to Pontius Jr. and Santacruz [105],
who introduced the following terms: Quantity difference is the error in proportion of each class within
the total from a non-spatial perspective. Allocation disagreement gives the deviation in allocation of
the pixels over space from the spatial perspective and consists of two components: exchange and shift.
Exchange is the transition from category i to category j in some pixels and a transition from category j
to category i in an identical number of other pixels and shift refers to the difference remaining after
subtracting quantity difference and exchange from the overall difference. Accordingly, shift indicates the
amount of altered pixels with a different share.

3.3. Multiple Regression Analysis

The land cover classification results based on the 1989 Landsat scene were randomly spatially
sampled for all land cover classes with 1000 points for each class; during this process, a total
of 10,000 sampling points were created. These 10,000 points were used to sample the remaining
consecutive time slices and hence a land use and land cover time series was created for each sampling
point. During this operation, some points had to be omitted because the cloud masking left gaps in the
classified images and, as a result, not all sampling points could score values. A total of 9100 sampling
points remained.

A digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) with 30 m
ground resolution [106] was obtained, denoised [107] and first-order derivatives Aspect, Slope, Profile
Curvature, and Tangential Curvature were created using SAGA GIS [108]. The soil physical and
chemical properties of the topsoil layer (pH, cation exchange capacity (CEC), soil organic carbon (SOC),
bulk density of fine earth, content of clay fraction, content of silt fraction, content of sand fraction,
content of coarse material) as well as the absolute depth of the soil and the underlying weathering
layer were obtained from the global dataset Soilgrid, available with a 250 m ground resolution [109].

Additionally, the 9100 sampling points measured were used to sample the soil and relief
parameters. For each sampling point, the closest distance to the next adjacent different land cover class
was acquired as well as the distance to the closest river and street (data available from OpenStreetMap
contributors and Geofabrik GmbH [110]). The resulting distance histograms (distance to rivers
and streets) both show a positive skew. In order to employ these parameters as a predictor in
a multiple regression analysis, the values obtained were logarithmized (by natural logarithm).
Before log-transformation, the value of a cell length (30 m) was uniformly added to all distance
values because a logarithm of 0 is undefined and the natural logarithm produces negative values for
distances less than 1 m. The cell length of 30 m corresponds to the approximate 30 m cell size of SRTM
data (1 arc-second) and the pixel size of Landsat TM and OLI images.

The resulting data set was used to establish a logistic regression model with the state ‘changed’
(TRUE/FALSE) as predictand. The model family was set to binomial distribution where the logical
variable is the response. The basic assumption is that the chance that land cover change will commence
is equal to the chance it will not commence. In the model, the impact of each predictor on the state
‘changed’ for each time step is estimated. The intercept and coefficients for each predictor with a
significance of p < 0.05 indicate occurrences that are not random, hence they indicate a statistical
relation between land cover change and the specific variable.

The predictive capabilities of the model for each land cover class were tested applying statistical
measures for binary data according to the determination of the state changed as true or false,
corresponding to Pontius Jr. and Schneider [111]. The Receiver Operating Characteristic curve
(ROC) [112] and the area under the ROC (AUC) [113] were calculated in order to estimate the
discriminatory power of the results. In addition, the consecutive time steps (1989–1991, 1991–2001,
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2001–2014, and 2014–2016) as well as the transcending steps 1989–2016 and 1991–2016 were also
analyzed in order to control the overall trend of land cover change.

All analyses were conducted using R version 3.3 [114] on a Debian GNU/Linux 8 machine.

4. Results

4.1. Preparative Works

When applying the fmask algorithm to delineate cloud areas, the internal classification scheme
of the fmask cloud detection algorithm occasionally failed. The error of omission (in case the fmask
classified pixel indicated the absence of cloud or cloud shadow spectral characteristics while the
opposite was true, also called Type II error) occurred frequently in the Tunjuelo basin (Figure 3).
The error of commission (in case the pixels classified by fmask indicated the presence of cloud or cloud
shadow spectral characteristics while its absence was true, also called Type I error) was not applicable
in the Rio Tunjuelo drainage basin area (Figure 4). Satellite images with large portions of cirrus cover
were rejected from analyses a priori, though fmask was able to detect also cirrus clouds, the resulting
overall accuracy was not sufficient for this study.

74.27°W 74.17°W

4
.5

5
°N

4
.6

5
°N

0 1 2
km

N

Cloud

Shadow

Type I Error
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Figure 3. Landsat image depicting the Rio Bogotá and the transition between urbanized and agricultural
areas within the Sabana de Bogotá. The image offers an example of a failed cloud detection and the
corresponding shadow (yellow) and an erroneous cloud detection or cloud shadow classification (red)
(data source: Landsat 23 January 2016 OLI RGB 3–2–1).
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Figure 4. Landsat image with cloud and cloud shadow mask depicting the agriculturally used part of
the Sabana de Bogotá in the northern part of the city of Bogotá. There are no clouds in the image, but
fmask misclassified certain areas as clouds. Mostly, these areas are related to greenhouses (data source:
Landsat 22 December 1989 TM RGB 3–2–1).

4.2. Development of Land Cover Classes

The results of the land cover classification applying machine learning algorithms are summarized
in Figure 5 and Table 2. The class Clouds is omitted because all clouds and shadows were cropped from
the image during the preprocessing step.

In total, for the 25-year observation period, the proportion of the agriculturally used area
in the Sabana de Bogotá decreased, and, concurrently, agricultural areas further extended into the
mountainous area and their spatial extent increased. Since 1991, areas covered by the land cover classes
Natural Vegetation 1 and Natural Vegetation 2 constantly have been dwindling, while areas with Natural
Vegetation 2 have shrunk less distinctly than those with Natural Vegetation 1 (Table 2).

In 1991, the class GHBG only covered a small fraction (0.3%) of the study area. These patches
occur predominantly in the northwestern part (Figure 5) and the Settlement class covers 10% of the area.
The vicinities of the settled areas (class Settlement) are widely adjoining agricultural fields. In 1991,
35.6% of the Rio Tunjuelo basin was being used by agriculture. The agricultural areas predominantly
occur in the central and southern parts of the Rio Tunjuelo basin (Figure 5). The land cover class CP is
detected in all images almost exclusively in the direct vicinity of settlement sites or areas characterized
by strong human impact. For illustration, in the map’s center (Figure 5) the two dams Embalse de la
Regadera and Embalse Chisacá are vastly surrounded by conifer plantations. In addition, the eastern
mountain range adjacent to the urbanized area is considerably covered by the CP class. In 1991, it had
covered 2.9% of the study area.

The land cover class Natural Vegetation 1 is located in the mountainous area and can predominantly
be found in the headwater areas of the Rio Tunjuelo and its tributaries (Figures 2 and 5). The majority of
this land cover class occurs in the southern Rio Tunjuelo basin adjacent to the National Park Sumapaz.
Additionally, large connected areas of the Natural Vegetation 1 class appear along the western divide
of the Rio Tunjuelo basin. In the central, western, and northern parts of the Tunjuelo basin, only
small patches of the Natural Vegetation 1 class are detected. In 1991, it had a share of 32.9%. The land
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cover class Natural Vegetation 2, which is in its physical characteristics closely related to the Natural
Vegetation 1 land cover class, occurs predominantly in the southern and southeastern part of the Rio
Tunjuelo basin, in the transition between the occurrence of Natural Vegetation 1 class and agriculturally
used land. In 1991, large areas in the western part and some patches in the southeast of the Rio
Tunjuelo basin had shown fire scars (Figure 5), the class Burned Areas with a spatial extent of 1.2%.
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Land Use and 
Land Cover Classes

no data
Settlement
GHBG
Natural Vegetation 2
Natural Vegetation 1
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Water
Clouds
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Figure 5. Land Cover of the Rio Tunjuelo basin south of Bogotá; in its lower course and close to its
confluence with the Rio Bogotá the Rio Tunjuelo runs through the peri-urban area of Bogotá. The maps
depict land use and land cover for the years 1991, 2001, and 2016.

Up to 2001, the portions of GHBG had increased to up to 8.5%. Large areas in the vicinity of the
city were transformed from agricultural land to GHBG and 11.2% were covered with Settlement at the
time, CP occupying 6.2% of the study area. There were no significant changes in the proportions of
agricultural land in 2001 (34.7%), although the areas in the northern part of the study area (Figure 5)
were converted to GHBG to a large extent. The share of Natural Vegetation 1 dropped by almost ten
base points to 22.5%. In contrast, the Natural Vegetation 2 class remained stable at 15.5% in relation to
1991. The areas affected by forest fires (Burned Areas) declined to 0.2% and the spatial extent of water
bodies (Water) did not change significantly.

In 2016, vast areas covered by GHBG in 2001 changed into Settlement in the northern part of the
study areas. Hence, the share of GHBG dropped from 8.5% in 2001 to 1.3% in 2016, while the spatial
extent of Settlement class increased from 11.2% in 2001 to 14.5% in 2016. There was no significant change
to CP within that period. In 2016, it covered 7.2% of the Rio Tunjuelo basin. In comparison to earlier time
slides the spatial extent of Agriculture increased by six base points to 40.8%. Especially in the southern
and central part of the study area (Figure 5) this land cover class expanded upslope. Natural Vegetation 1
class remained approximately at the same level (23.7%) as in 2001 (22.5%), while Natural Vegetation 2
declined to 11.8%. Burned Areas only cover the tiny fraction of 0.1% of the Tunjuelo basin. The class
Water remained unchanged with 0.3% spatial extent.

The quantification of change (Figure 6) indicates that the share of unaltered pixels increased
from roughly 60% between 1991 and 2001 to 70% for the period between 2001 and 2014 and to 74%
between 2014 and 2016. In general, the allocation disagreement is higher than the quantity disagreement,
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as the exchange and shift components together show a higher share than the quantity component. In the
period from 1991 to 2001 the three difference domains share almost equal portions (12.1% quantity,
13.7% exchange, and 13.5% shift) of the overall difference (39.3%). In contrast, for the period between
2001 and 2014, the overall difference (29.6%) is roughly 10% lower than in the preceeding period with
almost two thirds of the difference being defined by exchange (19.7%). Shift is almost without relevance
(2.4%) and quantity makes up 7.5% of the disagreement. This distribution of change parameters is
almost equal for the period between 2014 to 2016 with just five basis points lower exchange value
(14.1%) and, hence, a smaller overall difference (25.3%). Thus, the non-spatial error in proportion
(quantity) of the classes within the total decreases and the allocation difference increases. Here, the
pairwise difference (exchange) predominates the non-pairwise difference (shift).
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Figure 6. Share of three domains of change and stable conditions in relation to time.

4.3. Multiple Regression Analysis

Changes in land use and land cover are tested for their relation to the natural environment.
The parameters of the natural environment that were surveyed include topographical characters,
soil characteristics and distance relations.

GHBG. The regression analyses (Table 3) show that changes of the GHBG land use class only
weakly relate to the local soil physical and chemical parameters. The terrain parameters only show
for the 1989–1991 and 1991–2001 time intervals significant items with varying positive or negative
values that relate to the change of the GHBG land use class. The distance parameters and the change
of GHBG class do not show distinct relations at all. There are plenty of time intervals with items on
various levels of significance, but not a single one is clearly signed positively or negatively. Thus,
distance parameters are considered as inconclusive.

Settlement. The Settlement class shows similar results of the multiple regression analyses as the
GHBG class does. The terrain parameters indicate no sound relation to the likelihood of land cover
change for the Settlement class. Among the soil physical and chemical parameters only gravel content,
the organic carbon content, CEC, and bulk density point to a statistical relation to land cover change.
The relationships of these parameters to LULCC appear to be negatively correlated: the lower the
concentration of gravel in the topsoil layer, the more likely LULCC is in this area; the lower the SOC
content for a specific area, the more likely land cover change seems to appear. On all time intervals,
the vicinity of the GHBG class shows a negative statistical correlation, meaning the lower the distance
of the GHBG class is to the Settlement class, the more susceptible it is for change. This relation is in
parts highly significant, at p < 0.001.

Settlement and GHBG. When all sampling points for GHBG and Settlement classes are analyzed
together as one spatial entity, the following relations are revealed: The terrain parameters indicate
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some significant entries, but no coherent temporal pattern occurs. The distances of the sampling
points to the Agriculture class for the periods 1989–1991, 1991–2001, and 1991–2016 show moderately
significant relations (p < 0.01). Thus, the closer the two classes (Settlement and GHBG class) are to the
Agriculture class, the more likely is a change of the land cover. Among the soil physical and chemical
attributes the pH is the most distinct one. On all time intervals pH is a significant negative descriptor
for the Settlement and GHBG to be changed. Thus, this model suggests that a low pH value increases
the possibility of change within these two classes.

Natural Vegetation 1. The regression table for the Natural Vegetation 1 class indicates a scarce
relation of the likelihood of change in that class and the soil physical and chemical parameters. CEC as
a predictor stands out to some extent because three time intervals show a positive impact of CEC for
the change of the Natural Vegetation 1 class. Hence, this relation can be summarized as: the higher
the CEC values, the more likely a change becomes. Among the distance parameters of the Natural
Vegetation 1 class sampling points, the distance to the CP class is the most outstanding one. Since these
values are negative, it means that: the lower the distance of the agricultural class to Natural Vegetation 1
class, the more likely is a change of the Natural Vegetation 1 class. The neighboring class of the Natural
Vegetation 1 class is the Natural Vegetation 2 class (Figure 5). However, the distance to the Natural
Vegetation 2 class appears to be a weak descriptor for the change of the Natural Vegetation 1 class.
The same applies for the distance to street or distance to stream. Both parameters show positive values;
thus, the greater the distance of Natural Vegetation 1 class to the next river or street, the higher is the
likelihood for LULCC. Among all tested parameters, the terrain parameters occur as most significant.
While the elevation parameter is significant for four time intervals, the slope parameter appears to be
of less descriptive value to explain land cover change because only the two transcending time intervals
(1998–2016 and 1991–2016) are statistically significant. In contrast, the exposition indicates four such
negative entries.

Natural Vegetation 2. For the Natural Vegetation 2 class, the terrain parameters show less strong
descriptive power to explain land cover change than for the Natural Vegetation 1 class. All significant
items appear positively correlated. The soil physical and chemical properties have less descriptive
value to explain the change in the Natural Vegetation 2 class. Only SOC content shows a negative and
weakly significant relation to LULCC. Among the distance parameters, the distance to CP class and the
distance to street stand out. Since these values are positive, their relationship appears as: the higher
the distance between CP class and Natural Vegetation 2 class, the more likely is a land cover change of
the Natural Vegetation 2 class. The values of distance to street appear as negative: hence, the lower the
distance between the sampling points of the Natural Vegetation 2 class and the next street, the more
likely is a change of the Natural Vegetation 2 class.

Natural Vegetation 1 and Natural Vegetation 2. By considering the spatial extent of the Natural
Vegetation 2 class and the Natural Vegetation 1 class as one spatial entity, the relations become stronger.
The soil physical and chemical parameters appear to be of minor descriptive value in explaining
LULCC. In comparison to Natural Vegetation 1 class and Natural Vegetation 2 class alone, there are very
few distance parameters that show any significant relation to the land cover change. Nevertheless,
the distance to the Agriculture class emerges to be the most striking of the tested parameters. Except for
the time interval 1989–1991, which is moderately significant (p < 0.01), all other time intervals appear
strongly significant (p < 0.001) descriptors. The fact that all time intervals show negatively signed
values indicates that: the lower the distance of the natural vegetation cover to the Agriculture class,
the more likely is a land cover change.

Agriculture. The agriculturally classified areas have in common that only very few of the tested
parameters show any significance; they are either mostly weakly significant (p < 0.05) or inconclusive.
Among the soil physical and chemical parameters and the terrain attributes, no item is highly significant
(p < 0.001). Among the terrain parameters, elevation and aspect are good predictors for the combined
classes of Natural Vegetation 1 and Natural Vegetation 2. For four time intervals, elevation occurs as
negatively significant.
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Table 3. Synopsis from the Multiple Regression Analysis tables. The second column indicates the used predictors in the Multiple Regression Analysis for the tested
time intervals. If a statistical relation between change of the land cover and a tested parameter exists, it appears significant in the regression tables for the distinct time
interval. This table summarizes the classes Greenhouses and Bare Ground (GB), Settlement (SM), the combined classes Greenhouses and Bare Ground and Settlement
(GBSM), Coniferous Plantations (CP), Natural Vegetation 1 (NV1), Natural Vegetation 2 (NV2), the combined classes Natural Vegetation 1 and Natural Vegetation 2
(NV) and, Agriculture class (AC). Highly significant results (p < 0.001) appear in boldface.

Time Intervals

Predictor 1989–1991 1991–2001 2001–2014 2014–2016 1989–2016 1991–2016

Te
rr

ai
n

Pa
ra

m
et

er
s Elevation NV1, NV NV1, NV NV1, NV NV1, NV

Slope NV2 NV2 NV1, NV2 NV1
Aspect NV1 NV1 NV1, NV NV1, NV NV1, NV

Profile Curvature
Tangential Curvature GB, GBSM GB, GBSM

D
is

ta
nc

es

Distance to GHBG SM, NV2 SM SM, NV2 SM SM, NV2 SM, NV2
Distance to Settlement NV1, NV2 NV2 NV1, NV NV

Distance to CP NV2 GB GB, NV1, NV2 GB, GBSM, NV1 GB, GBSM, NV1, NV2 GB, NV1, NV2
Distance to Natural Vegetation 1 SM, GBSM SM, GBSM SM, GBSM SM, GBSM, GBSM
Distance to Natural Vegetation 2 GB, SM GB, NV1 SM GB, NV1 GB NV1

Distance to Agriculture SM, NV, AC SM, GBSM, NV1, NV, AC SM, GBSM, NV1, NV, AC SM, NV SM, NV NV1, NV
Distance to Burned Areas NV1, NV2 GBSM SM, NV2, NV SM, NV1, NV SM, GBSM, AC AC

Distance to Water SM SM AC AC AC
Distance to Street NV2 GB, NV1, NV2 SM GB, NV1 GB, SM, NV2 SM, NV1, NV2

Distance to Stream NV2 GB, NV1, NV2 GB, NV1 NV1

So
il

C
he

m
ic

al
an

d

Ph
ys

ic
al

Pa
ra

m
et

er
s

Soil Cation Exchange Capacity GB GB, GBSM, NV1, NV NV1, NV2, NV, AC GB, GBSM, NV2, AC GBSM, NV1, NV
Soil Organic Carbon Content SM GB, SM, GBSM GB, GBSM, NV GBSM, NV2 NV2, NV GB, SM, GBSM, NV2, NV

Soil pH GBSM, AC GBSM, NV GB, GBSM GB, GBSM, NV GBSM, NV GBSM, NV, AC
Bulk Density SM, GBSM SM, GBSM SM, GBSM

Depth to Bedrock AC AC
Gravel Content SM, NV2 GBSM SM, GBSM NV2 SM
Sand Content AC AC
Silt Content GBSM GBSM NV1 NV2 GBSM, NV1, NV2

Clay Content NV NV
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4.4. Model Performance

Five Landsat scenes were used to apply a land use and land cover classification and the
classification results were used to sample the class values and hence to create a time series of land use
and land cover data. The state changed or unchanged in the time series was predictand for a logistic
regression to analyze the impact of various stationary and natural parameters on LULCC. The accuracy
and performance of these works is given in this section.

4.4.1. Random Forest

The Kappa Index of Agreement is calculated from the observed and expected values on the
diagonal of a square contingency table. Expected and observed values are the split 70% training data
and 30% test data of the endmembers. The results of the Kappa Index of Agreement of the random
forest land cover classification are given in Table 4. Values above 0.9 for all time intervals indicate a
very good agreement of the training and test dataset.

Table 4. Estimation of accuracy for random forest land cover classification.

Year 1989 1991 2001 2014 2016

Kappa Index 0.964 0.953 0.959 0.985 0.974

4.4.2. Multiple Regression Analysis

The Area Under the Curve (AUC) is a measure for the discriminating power of the model
(Figure 7). The closer the curve approaches the upper left corner, the stronger is the predictive power
of the model. As a rule of thumb: 0.5 indicates a completely random relationship, 0.6 means the model
passes, 0.7 the model is good, 0.8 the model is very good, 0.9 the model performs excellently, and 1.0
the descriptive power of the model is perfect. D2 is a measure of the variability of the residuals after
fitting the model in comparison to the null deviance. The True Positive Rate (TPR) gives the proportion
of correctly classified positive sampling points. The True Negative Rate (TNR) is the proportion of the
correctly classified negative sampling points.

For the GHBG class, the model’s deviance (D2) varies between 0.32 and 0.08, which means between
8% and 32% of the land cover change is explainable by all used parameters (see Figure 7a). Despite the
low D2 values, the model mostly performs well as indicated by the Receiver Operating Characteristics
(ROC) curve. This curve comprises the model’s sensitivity/TPR and the model’s specificity/TNR.
Correspondingly, for the GHBG class, the model is well suited to describe what the relation is between
the change of land cover and the tested predictors. This is represented by high TPR values. For the
time intervals 2001–2014 and 2014–2016, the model has low discriminatory power because of the
higher values on the TNR side. The ROC curves of the GHBG class in Figure 7a deviate—in parts
strongly—across the time intervals. The area under the ROC curve (AUC) indicates the discriminatory
power of the model. The grayish diagonal (AUC = 0.5) represents 50% specificity and 50% sensitivity,
which correspond to a random relationship of the parameters. For the GHBG class, the AUC values
range between 0.7 and 0.84.

The D2 values of the Settlement class are generally higher than those for the GHBG class; they range
between 0.17 and 0.35 (see Figure 7b). The lowest predictive potential is documented for the
2014–2016 time interval, which also holds the lowest AUC values (0.77). This is still a good degree of
discriminatory power. The TPR values are generally lower than the TNR values. The very good AUC
values prove the model’s suitability to detect transformation in urban environments.

In combination, the GHBG and Settlement classes hold also moderate explained deviances (D2,
Figure 7c). The maximum D2 totals 0.35 for 1989–1991, and the minimum is 13% for 2014–2016.
The discriminatory power of this model is high, with AUC values between 0.74 and 0.87. The models
for the 2001–2014 and 2014–2016 time intervals show the lowest AUC.
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Figure 7. Receiver Operating Characteristic (ROC) curves for regression analyses results of (a) GHBG,
(b) Settlement, (c) combined GHBG and Settlement, (d) Natural Vegetation 1, (e) Natural Vegetation 2,
(f) combined Natural Vegetation 1 and 2, (g) Agriculture land cover classes.

The D2 values for the Natural Vegetation 1 model (see Figure 7d) show that the explained deviance
varies strongly between 0.14 and 0.44. The best performing model is that of the time interval 1989–2016,
the lowest descriptive potential incorporates the model of the 1989–1991 time interval. The AUC
values are good (0.76) to excellent (0.9), while TNR values prevail over TPR values.

D2 for the Natural Vegetation 2 class (see Figure 7e) ranges from 0.13 to 0.24. AUC also rank on
a lower level than those of the Natural Vegetation 1 model, but values greater than 0.74 still perform
sufficiently. There are no strong deviating values in the ROC curve. Thus, all time intervals are rather
equally descriptive.

The combination of Natural Vegetation 2 and Natural Vegetation 1 classes (see Figure 7f) perform
appropriately. AUC and D2 values are lower than for both classes separately. The TNR outweighs
the TPR in parts by far, thus the model is better suited to describe the missing relations than existing
relations between the predictand (state changed or unchanged) and all tested parameters.
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The 1989–1991 ROC curve outlies strongly. All other curves are rather on a same discriminatory
level. The class Agriculture holds low to very low D2 values (Figure 7g). Except for the 1989–1991
time interval, the explained deviance (D2) is below 0.1, which is very poor. The model has low
discriminatory power, since the ROC curves deviate very little. The AUC is high enough for a
successful model. The majority can be rated a passing model (AUC > 0.6); only the model of the
1989–1991 time interval deviates in a positive manner with an AUC value of 0.78.

5. Discussion

5.1. Land Cover Classes

The development of the GHBG land cover class clearly reflects the development of Bogotá’s
southern peri-urban area: Mining complexes started exploiting natural resources in the 1950s,
predominantly focusing on the extraction of construction materials such as sand and gravel as well
as clay for brick production [115]. As a result, the vegetation was removed from vast areas and
bare soil became exposed when extraction started, at the latest. As mining of sand, gravel, and clay
predominantly occurs in the floodplains of the major rivers, flood retention areas were also destroyed.
Today mining is conducted with reduced intensity due to changed legal conditions [78,115] and
environmental concerns [116,117]. The alterations of water bodies and their spatial extent can also be
related to the development of the mining sector, as depleted mining sites got flooded and now have
become artificial lakes [118,119].

Several settlements arose within the perimeters of the mining areas, such as Ciudad Usme,
Ciudad Bolivar and Ciudad Tunjuelito (Figure 2). These settlements were the nuclei for the following
urban annexation of the valley of the Tunjuelo river, a common process as stated by Seto and Fragkias
[120]. The trend of urbanization is accompanied by the trend of population concentration. Almost all
the streaks and spots of green (classified as Agriculture land cover class) that were to be found in 1991
all over the city were transformed until 2016 into Settlement or GHBG land cover class. Only areas that
can be distinguished as larger parks or complexes of recreational areas are an exception. That pattern
of development displayed by the application of a random forest classification to the Landsat images
agrees also with the research of Díaz-Granados Ortiz and Camacho Botero [121].

The presence of greenhouses itself gives another insight of developing trends in the Sabana de
Bogotá as the establishment of a sector of peri-urban horticulture in Bogotá is spatially significant [122].
Nonetheless, this trend is missing in the Rio Tunjuelo basin. There are several possibilities to
explain this: (i) the mining facilities are too space consuming, (ii) the remaining terrain is just
unsuitable for large complexes of greenhouses, (iii) the soils are still fertile enough for cash cropping
of potatoes, (iv) the Rio Tunjuelo valley was and is a region with economic deficits [73]. As a result,
direct investments for the construction of greenhouses are missing. Presumably, these reasons interplay
to a certain degree.

Although the GHBG land cover class is prevalent, especially in the 2001 image (Figure 5),
visual inspection of that Landsat scene and comparison to other satellite images clearly indicate
very heterogeneous lighting conditions and a biophysical difference of large areas in the northern
part of the Tunjuelo basin. Climate data from the Sabana de Bogotá do not suggest drought conditions.
The metadata from the Landsat files were checked, but there is only minor deviation in image
acquisation time of the day, sensor mode, sun azimuth, or sun elevation.

Remote sensing in urban landscapes is crucial and successful by applying multitemporal Landsat
imagery [123]. In the case of the Rio Tunjuelo valley and the peri-urban area of Bogotá, several
restrictions need to be emphasized. The reason why the land cover class was named GHBG can be
found in the partly inseparable spectral properties of the bare ground and the bright reflection of
rooftops mostly to be found in the vicinity of industrial estates. Thomas et al. [124] also encountered
these inseparabilities for studies in semi-arid Arizona (USA). High commission errors (Type I) in
relation to bright rooftops were also found for Ghent (Belgium) [125], while for studies in Florence
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(Italy), there seemed to be no such confusion [126]. Consequently, Jensen and Cowen [127] generally
recommend data with higher spatial resolution across a wide spectrum of wavelengths for mapping
and classification in urban and peri-urban environments.

The random forest algorithms are considered to be omitted as a source of error for an
overestimation of the areas covered by GHBG because (i) outliers are detected and omitted
automatically [128], (ii) overfitting is avoided [101,129] and (iii) random forests are not susceptible to
noise [130]. In contrast, Gislason et al. [128] admit that, by tweaking the number of variables used for
a split (70% training data and 30% test data in the study at hand), the accuracy can be slightly affected.
This is backed by investigations on variable importance measures within the internal decision tree
of the random forest algorithm. Individual trees of a forest can be biased by an improper variable
selection and influenced by bootstrapping. Hence, the variable importance measures of the random
forest function might result in unreliable scenarios [131].

Another case of possible spectral confusion occurs between the land cover classes Natural
Vegetation 2 and CP. There are tiny but multiple areas that are presumably misclassified. The spatial
extent of the CP land use class reaches into the natural vegetation, even at high altitudes, e.g., the
region of Curubital (southeast in Figure 5). In this area, no CP are observed [132]. The confusion
matrices did not reveal any distinction problems between these two classes as it was seen, for
example, by Muñoz-Villers and López-Blanco [133] for tropical montane cloud forest, agroforestry,
and coniferous forests. Thus, the ambiguous differentiation between the land cover classes of Natural
Vegetation 2 and CP is most likely caused by the spectral properties of the mosaic structure in the
valleys of the upper Rio Tunjuelo basin and is assumed to be a mixed pixel problem [134].

Generally, the spread of natural vegetation in the drainage basin of the Rio Tunjuelo has been
decreasing at least since the early 1990s. This finding agrees with the trend of deforestation of montane
ecosystems in the Andes over several decades [135–137]. According to Etter et al. [64], the Rio
Tunjuelo basin is not explicitly located in an expected deforestation hotspot, but our studies agree with
Hernández-Gómez et al. [138], who indicate decreasing buffer zones around the Páramos in the region
of La Pasquilla (Figure 5, western mountain range, map center). It can be assumed that, in the depiction
of satellite imagery, this process appears as decelerated because as reafforestion measures partly
compensate for the deforestation losses. Additionally, it has to be considered that locally or—what
might not be the case for the Rio Tunjuelo basin—the Colombian peace process has been leading to a
decline of poppy (Papaver somniferum) plantations and secondary forest regrow [83].

The upward shift of the spatial distribution of the natural vegetation land cover classes might be
first of all explained by an increased demand for agricultural land that is satisfied by the clearance
of the forest areas nearest and easiest accessible to the settlements [139]. Despite the lack of research
on Páramo ecosystems, several studies report on the conversion from natural vegetation to cultivated
land [140], especially in the context of cash cropping when the lower boundary of natural ecosystems
is pushed higher for the need of fresh fertile Andosols to improve the yields [141]. Since the Natural
Vegetation 2 land cover class is interpreted as an ecotone between the genuine Páramo ecosystem
(Natural Vegetation 1) and the altitudinal lower lying ecosystems like Bosque Altoandino, the clearance
and conversion into agricultural fields at present takes place preferably in those areas where Natural
Vegetation 2 land cover class occurs. The relation between the likelihood of Natural Vegetation 1 land
cover class to be changed and the distance to Agriculture land cover class is highly significant. Thus,
one ought to follow Tobler [142] and his first law of Geography. Thus, when the land cover already
has been changed and the necessary facilities for human economic activities exist (like streets or
settlements), the likelihood of further land cover change increases.

5.2. Multiple Regression Analyses

In statistical terms, the likelihood of change of the GHBG land cover class is impacted by the
distance to the CP land cover class. Presumably, this applies to the area with most of GHBG in the
northern and northwestern part of the research area. The majority of areas classified as CP is found on
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the eastern slopes of the area. Generally, this is a question of suitability: CP plantations were reforested
in the agriculturally less attractive locations on the slopes [143], while greenhouses, industrial estates,
and otherwise impervious sites are set up mostly in rather level areas. Thus, this is interpreted to be
rather a question of differing site specifics and circumstances of creation than a specific predictor for
land cover change.

Despite the fact that urbanized areas are responsible for responding to changes in biogeochemical
cycles [144], generally, the alteration of Settlement and GHBG classes in the research area seems not
to be related to biophysical properties (anymore). For GHBG and Settlements land cover classes, the
soil physical and chemical parameters show low or inconclusive impacts, such as high/alkaline pH
values and high values for SOC content for GHBG being significant predictors at the same time. Other
examples for such inconclusive impact are positive and negative significant values for cation-exchange
capacity as a predictor for LULCC. The same applies for the terrain parameters. In the past, there might
have been some pragmatic restrictions that prevented people from settling e.g., on steep slopes, but
today these restrictions are insignificant because of improved construction techniques and the fact that
long distances and difficult terrain features can be overcome by motorized vehicles [68]. This theory
is backed by our regression analyses where the terrain parameters appear to be mostly irrelevant for
changes in the distribution of GHBG and Settlements.

The only exception is the combination of GHBG and Settlements with low/acid pH values, which
is indicated as significant predictors on all six time intervals. This can be variously interpreted: (i) it
underpins the interpretation that genuine urbanized areas summarized by the land cover classes
Settlements and GHBG, which is interpreted more as a buffer zone in the urban fringes where industrial
estates and other land consuming economic sectors allocate, need to be considered as one spatial entity;
(ii) the geogenic conditions in the Sabana de Bogotá favor the development of acid soils [34]. The resulting
soils are less suitable for most agricultural practices and hence lower crop yields could lead to fallow
land becoming occupied by the expanding city of Bogotá. For The Netherlands, Verburg et al. [145]
showed a strong correlation of favorable soil characteristics and agricultural use, while less favored
locations have been left for natural and seminatural vegetation.

In addition to the tested parameters, several other impacting factors provide further reasonable
explanations: For the Pearl River delta, Seto and Kaufmann [146] found foreign direct investments to
be a promoting factor for land cover change. In addition, in Kenya, the pace of economic development
and population growth strongly impacts the development of land cover [147]. In Bejing, the conversion
of farmland into urbanized areas is, from an economic point of view, driven by land rent maximization
theory [148]. Lambin et al. [1] relate the strong urbanization inter alia to the economic attraction of the
expanding cities and to demographic developments, in particular.

The impact of the terrain parameter aspect on the change in Natural Vegetation 1 land cover
class is considered here to be caused by the overall shape of the Rio Tunjuelo basin (Figure 2).
The horseshoe-like remains of the high Andean vegetation are predominantly facing northwards,
since the terrain is ascending southwards. Among the terrain parameters, only elevation is a predictor
for change. The lower elevated areas covered by natural vegetation are affected first in the course of
occupying new fertile soils upslope. Either for pasture or cropping, the natural vegetation is removed
and the process of soil degradation is initiated: the soil carbon content decreases [51], nutritive values
decline [149] and a general loss of precious topsoil layers occurs [27,150,151], amongst others. Hence,
even reforestation is no longer possible since all the valuable soil is lost together with its benefits [38].
This trend of agriculture at the lowest possible altitude was already reported in the 1980s from
Ecuador [140] and Honduras [152]. Slope is not listed as a significant predictor for land cover change
of the natural vegetation classes. This might be explained by several factors: (i) even steep slopes are
tilled and cultivated; and (ii) agricultural fields are of rather small scale and are embedded in a mosaic
of other land cover classes (especially in the Rio Tunjuelo basin). The used spatial resolution of 30 m
might be too coarse to properly divide the classes or many pixels were classified improperly because
of mixed pixels [134]; (iii) while the more or less level areas (Sabana de Bogotá) have been in use since
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early colonization the steeper slopes were cultivated later, designating the upper Rio Tunjuelo basin
already in the 19th century for the city’s food supply [73]. Thus, for much earlier time intervals, terrain
parameters might be able to provide an adequate explanation, but certainly not for the recent changes
referred to here.

Generally, Andosols are very rich soils and therefore highly attractive for intensified
agriculture [1]. Cation-exchange capacity and organic matter are strongly linked in Páramo [153].
Podwojewski et al. [149] relate low CEC values with degradation of various Páramo types in the
Ecuadorean Andes. Thus, high CEC values indicate still intact soil structures. In contrast, the affinity of
change in relation to low SOC values points to already degraded or at least affected environments [25].
Thus, this relation appears inconclusive. The soils in the surroundings of Bogotá are moderately to
highly acidic [46]. Alkaline pH values that increase the likelihood of land cover change therefore
indicate an early state of degradation—mainly caused by grazing in the high Andes [154]. Farley and
Kelly [155] report on higher pH after afforestation. For agricultural fields, pH is reported to be very
dynamic with high restoration potential [156], but Páramo does not show any such dynamics in regard
to pH.

The short distance to CP land cover class as predictor for change of Natural Vegetation 1 land cover
class relates most likely to the large areas of reafforested Pinus radiata and alike coniferous plantations
on the eastern Cordillera (eastern part in Figure 5) and the surrounding Páramo areas. In contrast,
for Natural Vegetation 2 land cover class, this predictor indicates the reverse condition: a large distance
to CP land cover class indicates the likelihood of land cover change. However, in the eastern Cordillera,
Natural Vegetation 2 and CP land cover class occur in juxtaposition. For both natural vegetation classes,
no distinct predictor for land cover change was found. Thus, most likely, the more or less clustered
occurrence of the land cover class CP (Figure 5) causes controversial results in the regression tables.
Only considered as one spatial entity, one finds the striking relation between Natural Vegetation and the
distance to Agriculture class. The proximity of agricultural fields to natural vegetation clearly indicates
an increasing chance of clearance for natural vegetation entities. In the expanding metropolitan region
of Bogotá, it is profitable to do cash cropping with potatoes or benefit from the derivates of mountain
grazing [141]. Thus, the agricultural frontier is pushed upwards. That agrees well with studies from
Cameroon where with a similar methodological approach, forest clearing was explained by the distance
to forest edges and other land cover types [139]. For a Mexican city, López et al. [157] show the process
of urbanization where the most valuable soils were incorporated in the city’s settlement just because of
its proximity to the settlement’s core. It is remarkable that the network of roads is of no importance to
explain the causes of land cover change, since the construction of roads has crucial effects in montane
zones [61,158].

The distance of a changed sampling point to Agriculture land cover class is the only parameter that
is interpreted as sound. Most of the other tested parameters show a rather low proportion of deviance
explained (D2 values in Figure 7) and only a few significant time intervals. Thus, it can be disputed
whether these parameters are true drivers of land cover change. If not, they appear, at least, of minor
importance for a distinct period of time. Presumably, the cultivation of new fields and degradation of
natural vegetation is rather related to land ownership or accessibility than to soil physical or chemical
properties, especially because Andosols are virtually ubiquitous at higher altitudes. For changes of
high Andean forests in Ecuador, Jokisch and Lair [136] show the dynamics of a complex structure of
decision-making against the background of socioeconomic circumstances. In the Venezuelan Páramos,
a great diversity of grazing practices developed, based on the decision-making of individual families
to arrange with the limited resources [159], voiding any analyses of natural parameters. Additionally,
in other Páramo regions, social investigations show that up to 75% of an area is directly affected by the
farmer’s decisions and activities [160].
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6. Conclusions

In our study, we created a time series of land cover data for the urban-rural fringe south of
Bogotá using Landsat images and random forest algorithms. It is shown that human-made or
human-influenced structures and patterns gained spatial significance: the spatial extent of farmland
increased with a strong variability among the different phenological states of the land cover classes,
and natural vegetation generally decreased.

The classification approach shows satisfactory values of accuracy but offers several limitations:
only a few images with minor portions of cloud cover exist, hence the time span between the time
intervals of the time series is rather wide. The used fmask cloud and cloud shadow detection offered
satisfactory results for land cover classification. The spatial resolution of Landsat images of 30 m
appears to be too coarse to work in a highly fragmented and topographically complex mosaic of
natural ecosystems, agricultural fields, pasture and reforestations. The spectral channels of Landsat
images are not dense enough to adequately distinguish between several ecosystems. Spectral confusion
and misclassification might be the outcome. This effect is amplified by the small-scale mosaic of land
cover in the research area. Nevertheless, the results appear reasonable and agree mostly with other
findings for that area. As a continuing aspect of the land cover change pace, spatial focus and type of
change are not linear as the analysis of the domain of change showed. Most of the transformation took
place in the 1990s.

In this study, mostly environmental parameters were tested to identify causal or most likely causal
variables for LULCC by multiple logistic regression analyses. The analyses suggest that the two land
cover classes designated for natural vegetation must be considered as one spatial entity. The same
applies for the land cover classes determined for urban areas. Furthermore, the regression analyses
show no specific driver of land cover change between 1991 and 2016, but one that is the proximity
of agriculturally used areas to natural vegetation. Accordingly, the LULCC in the Rio Tunjuelo basin
must be interpreted as human-made.

Since this is a consecutive analysis of the random forest land cover classification, the uncertainties
of it propagate as well. The ROC curves suggest sufficiently fitting models to explain some of the
land cover change in the Rio Tunjuelo basin by the used predictors. The AUC values indicate at least
reasonable, but mostly good to very good results. Thus, this approach to model land cover change
using environmental parameters as predictors is successful.

There might be plenty of drivers for change in the Natural Vegetation land cover classes that
are not covered by this study. For example, in the Rio Mugroso subbasin, a higher than normal
amount of conversion is observed and it is unclear why it happened at such a pace in that area.
Landownership or resettlement might serve as explanations. Jokisch and Lair [136], for instance,
showed that abandonment of an area led to afforestation measures and extensive landuses. Conversely:
an intensified colonization might lead to deforestation and clearance. The transition between the two
Natural Vegetation land cover classes is gradual and a lot of uncertainties remain, but it is backed by the
shares of spatial extent (Table 2) and the difference domains (Figure 6) that both are decreasing. The
authors believe that there is no unique cause for the Natural Vegetation to disappear. It is most likely
that several causes interact with each other, but, as it is shown in other Páramo complexes, the human
impact is steadily increasing and represents the main factor for changes in the nature spheres [151].

Additionally, it is possible that not all drivers of land cover change were identified when the
results show an explained deviance (D2) of about 20% for natural vegetation. The authors believe
that environmental parameters were major predictors for land cover change in the past, but, in a
highly industrialized country, these parameters are outplayed by socio-economical, socio-political and
socio-ecological parameters by far. Therefore, future works should focus on these parameters in order
to complete the studies on land cover change in the Rio Tunjuelo basin. Despite all restrictions and
simplifications, this study is considered to be of considerable value for policy and decision-making to
ensure the wealth of high Andean biodiversity for future generations.
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