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Abstract: Remote sensing-based assessments of large river basins such as the Krishna, which 
supplies water to many states in India, are useful for operationally monitoring agriculture, 
especially basins that are affected by abiotic stress. Moderate-Resolution Imaging 
Spectroradiometer (MODIS) time series products can be used to understand cropland changes at 
the basin level due to abiotic stresses, especially water scarcity. Spectral matching techniques were 
used to identify land use/land cover (LULC) areas for two crop years: 2013–2014, which was a 
normal year, and 2015–2016, which was a water stress year. Water stress-affected crop areas were 
categorized into three classes—severe, moderate and mild—based on the normalized difference 
vegetation index (NDVI) and intensity of damage assessed through field sampling. Furthermore, 
ground survey data were used to assess the accuracy of MODIS-derived classification individual 
products. Water inflows into and outflows from the Krishna river basin during the study period 
were used as direct indicators of water scarcity/availability in the Krishna Basin. Furthermore, 
ground survey data were used to assess the accuracy of MODIS-derived LULC classification of 
individual year products. Rainfall data from the tropical rainfall monitoring mission (TRMM) was 
used to support the water stress analysis. The nine LULC classes derived using the MODIS temporal 
imagery provided overall accuracies of 82% for the cropping year 2013–2014 and 85% for the year 
2015–2016. Kappa values are 0.78 for 2013–2014 and 0.82 for 2015–2016. MODIS-derived cropland 
areas were compared with national statistics for the cropping year 2013–2014 with a R2 value of 0.87. 
Results show that both rainfed and irrigated areas in 2015–2016 saw significant changes that will 
have significant impacts on food security. It has been also observed that the farmers in the basin 
tend to use lower inputs and labour per ha during drought years. Among all, access to water is the 
major driver determining the crop choice and extent of input-use in the basin. 

Keywords: water stress; remote sensing; ground survey data; spatial and statistics data; NDVI; 
Krishna river basin 

 

1. Introduction 

Spatial information on the distribution of irrigated areas is limited to district level crop statistics 
that are published by the state or national governments in different parts of the world. Although data 
that has been collected by both irrigation and agriculture departments are often available, there are 
often differences in the extent of irrigated area reported between the sources [1,2]. Water availability 
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in major command areas (areas which can be irrigated under a reservoir and are fit for cultivation) 
vary frequently due to rainfall fluctuations which leads to stress during critical crop growth stages. 
Major command areas of the Krishna Basin often suffer from inequitable distribution of water due to 
overuse in head reaches, which is partly caused by farmers’ preference for water-intensive crops such 
as rice and sugarcane [3,4]. Decisions on the allocation of water in the river basin and command area 
require timely availability of location specific information. Monitoring and understanding LULC is 
important for planning to overcome problems, such as loss of agriculture land, decreasing 
environmental quality, water resources management etc. [5]. Land use, as defined here, is how people 
use the landscape whether for development, conservation or mixed uses (e.g., agriculture, built-up 
lands). Land use data is important to analyze environmental processes and problems for sustainable 
development. Land cover is how much area is covered by naturally occurring features such as water 
bodies and natural vegetation (forest, grass lands, shrublands). Continuous monitoring of changes in 
land use and water use in the command areas can be cumbersome, labor intensive, and costly. 
Satellite images available in the public domain at coarse and medium spatial resolution (such as 
AVHRR, MODIS, Landsat and ASTER) are proving to be a viable option to continuously monitor 
land use [6–8]. 

Accurate information on the basin-wise extent of cropland is critical for food security 
assessment, water allocation decisions and yield estimation. This information will also help decision 
makers monitor the dynamic changes in landscapes, such as agricultural lands, fallow croplands and 
land cover such as forests, water bodies and wetlands. Ex-ante assessments of the impacts of different 
land use changes will facilitate socially, economically and ecologically sustainable land use planning. 
Moreover, the departments of agriculture and revenue within countries will need such spatial 
information at the village level to send advisories to farmers on timely access to inputs and adopt 
best agricultural management practices. 

Croplands in South Asia are frequently stressed due to abiotic stress such as recurrent droughts. 
The year 2015 was declared the hottest year on record by the World Meteorological Organization 
(WMO). Very high temperatures over both land and ocean in 2015 were accompanied by many 
extreme weather events such as heatwaves, flooding and severe drought [9]. Several studies have 
been conducted on land use mapping and changes using different satellite imagery. However, the 
main purpose of analyzing changes in agricultural land use is to monitor shifts in cropping patterns 
and cropland changes [10–16]. These analyses rely heavily on agricultural statistics (e.g., area extent). 
Besides being reported at the district and state or provincial level, there are often discrepancies in the 
statistics reported by agricultural and irrigation agencies. Variations in land use at such a large scale 
are insufficient to fully understand their effect on the river basin. On the other hand, remote sensing 
with satellite imagery can give detailed maps of land use and identify where cropping pattern 
changes have occurred significantly in response to variations in rainfall [17,18] and other parameters. 
Remote sensing utilizing satellite imagery has been used to quantify water use and productivity in 
irrigation systems [18], but is less frequently used to identify how irrigated area changes in command 
areas in response to variations in rainfall and water supply. Time series data of the normalized 
difference vegetation index (NDVI) have been used for mapping land use changes [19] and irrigated 
areas [20,21]. Time series data have also been used for detecting changes in irrigated areas in major 
river basins [4,22]. 

Given this background, the present study analyzed land use changes in the Krishna Basin 
including source wise irrigated areas. Water deficit for rainfed crops is also understood based on low 
rainfall which is reflected in the NDVI imagery during 2013–2014 and 2015–2016. The area under land 
use for each year and the changes between years were estimated. Both land use and land cover change 
estimates were compared against ground survey data and secondary sources such as published 
statistics on rice area. The study focused on the areas where significant changes had occurred in the 
cropping pattern. 
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2. Materials and Methods 

2.1. Study Area 

The Krishna River Basin is India’s fourth largest river basin and covers 258,948 km2 of southern 
India, covering the states of Karnataka (113,291 km2), Andhra Pradesh (31,638 km2), Telangana 
(51,845 km2)and Maharashtra (69,028 km2) [3,23]. The river Krishna originates in the Western Ghat 
mountains, flows east across the Deccan Plateau, and discharges into the Bay of Bengal. The Krishna 
has three main tributaries that drain from the northwest, west, and southwest (Figure 1). The climate 
is generally semi-arid, with some dry, sub-humid areas in the eastern delta and humid areas in the 
Western Ghats. Annual precipitation averages 780 mm and decreases gradually from 850–1000 mm 
in the Krishna Delta to 300–400 mm in the northwest, and then increases to >1000 mm in the Western 
Ghats (Figure 1). In the extreme western parts of the basin, the Western Ghats have high annual 
precipitation (1500–2500 mm). Most of the rainfall occurs during the monsoon from June to October. 
Crops are cultivated in three seasons: kharif during the monsoon (June to mid-December), rabi in the 
post-monsoon dry season (mid-December to March), and in the summer season (April and May). In 
the irrigated areas there is double cropping of rice and other grains, single cropping of sugarcane, 
chile, cotton, and fodder grass. Areas with less irrigation grow corn, sorghum and sunflower. Rainfed 
crops include grains (sorghum, millet), pulses (red and green gram, chickpea), and oilseeds 
(sunflower, groundnut). 

 

Figure 1. Map of the study area with a location map. 

2.2. Satellite Data 

MODIS data for the Krishna River Basin was available from the data archive at the NASA-USGS 
website (http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.005). MODIS 2013–2014 to 2015–2016 every 16 
days (Table 1) Terra sensor data were used for present study. It has two specific bands (band 1 (red) 
and band 2 (near infrared)) are processed for land applications as a MODIS vegetation index product 
(MOD13Q1). MOD13Q1 is computed from MODIS level 5 bands 1–2 (centered at 648 nm, and 858 
nm). 
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Table 1. MODIS—250 m Terra vegetation indices 16-day L5 product used in this study. 

MODIS Data Sets Units Band Width nm/Range Potential Application 
250 m 16 days NDVI NDVI −1 to +1 Vegetation conditions 
250 m 16 days EVI EVI −1 to +1 Canopy structural variations 
250 m 16 days red 

reflectance (Band 1) 
Reflectance 620–670 

Absolute land cover transformation, 
Vegetation chlorophyll 

250 m 16 days NIR 
reflectance (Band 2) 

Reflectance 841–876 
Cloud amount, vegetation land cover 

transformation 
250 m 16 days blue 
reflectance (Band 3) 

Reflectance 459–479 Soil/vegetation differences 

250 m 16 days MIR 
reflectance (Band 7) 

Reflectance 2105–2155 Cloud properties, land properties 

MODIS imagery was used to map the spatial extent of LULC for the years 2013–2014 and 2015–
2016. The process began with rescaling 16-day NDVI images, and these were later stacked into a 
single file data composite for each cropping year [24–27]. MODIS 16-day composites were converted 
to NDVI monthly maximum value composite (MVC) (NDVI MVC) using Equation (1), where MVCi 
is the monthly MVC of the ith month and i1 and i2 are every 16-day data in a month:  NDVI୑୚େ౟ = Max (NDVI௜ଵ,, NDVI௜ଶ,) (1) 

In the present study, monthly NDVI MVC were used for classification and a NDVI 16-day data 
set was used for identifying and labelling LULC classes including irrigated areas. The main purpose 
of using MVC was to avoid noise (cloud) in some of the areas [28]. 

2.3. Ground Survey Data 

Ground survey data was collected during 13–26 September 2013 for 227 sample points, 21–30 
September 2015 for 243 sample points and 19–21 October 2015 for 47 sample points covering about 
7500 km of road travel in the Krishna River Basin (Figure 2). In 2013, out of 227 points, 73 were 
collected for class identification and labeling and the remaining 154 points were used to assess 
accuracy. Similarly, in 2015, out of 243 points, 81 were used for class identification and labeling and 
the remaining 162 points were used to assess accuracy. Further, an additional 47 points were used to 
assess accuracy for the 2015–2016 classification. Based on pre-classified output, Google Earth imagery 
and GPS tracking attached to the image processing software captured ground survey information 
while moving on the road. Detailed information was collected for class identification and labeling 
point locations. Point specific information was collected from 250 m × 250 m plots and consisted of 
GPS locations, land use categories, land cover percentages, cropping pattern during different seasons 
(through farmer interviews), crop types, and watering method (irrigated, rainfed). Samples were 
obtained within large contiguous areas of a particular LULC. Landsat 8 products were used as 
additional ground survey information in class identification. A stratified-systematic sample design 
was adopted based on road network or footpath access. Wherever possible, a systematic location of 
sites was done every 5 or 10 km along the road network by vehicle or on foot [27,29,30], which is 
detailed in a description of the ground survey methodological approach. 



Land 2017, 6, 72  5 of 17 

 
Figure 2. Ground survey locations in the Krishna River Basin and representative photographs taken 
during the survey. 

2.4. National Statistics & Secondary Data 

Statistics on cultivated area, production, and price were obtained at the sub-national level 
(districts) from India-stat [31]. 

Daily rainfall data for the study area were downloaded from the tropical rainfall measuring 
mission (TRMM) [32] and processed as monthly rainfall to compare with 11 years (from 2005 to 2016) 
of monthly mean rainfall data, spatial resolution is 0.25 degrees × 0.25 degrees (covers ~27 km). The 
TRMM estimates are near real-time grids from which average monthly rainfall data for each month 
in the rainy season was extracted for the selected 11 years, including for the 2002 drought year. Due 
to the lack of official statistics for drought-affected areas [33], the rainfall data was not used to identify 
drought areas but as an accumulation of evidence of water stress occurrence.  

2.5. Mapping Land Use/Land Cover 

An overview of the methods (Figure 3) and details are described below. The process began with 
mapping LULC areas using MODIS 16-day time series data with spectral matching techniques and 
field-plot information. 
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Figure 3. Flow chart describing the analysis process. 

A time series of MODIS 16-day composite vegetation index images at 250 m resolution was 
obtained for 1 June 2013 to 31 May 2014 and 1 June 2015 to 31 May 2016 (MOD13Q1 data product). 
The 16-day composite images in the MOD13Q1 dataset are available in the public domain and are 
pre-calibrated (http://modis-sr.1tdri.org/html). The large scene size and daily overpass rate of MODIS 
makes it attractive for mapping large crop areas, and NDVI derived from MODIS has high fidelity 
with biophysical parameters [34]. The 16-day NDVI images were stacked into a 23-band file for each 
crop year (two images per month). The monthly maximum value composites were created using 16-
day NDVI MODIS data to minimize cloud effects [35]. 

Unsupervised classification as described by Cihlar et al. 1998 was used to generate initial classes. 
The unsupervised ISOCLASS cluster algorithm (ISODATA in ERDAS Imagine 2014TM) run on the 
NDVI MVC generated an initial 40 classes, with a maximum of 40 iterations and convergence 
threshold of 0.99. Though ground survey data was available at the time of image classification, 
unsupervised classification was used in order to capture the full range of NDVI over a large area. Use 
of unsupervised techniques is recommended for large areas that cover a wide and unknown range of 
vegetation types, and where landscape heterogeneity complicates identification of homogeneous 
training sites [20,30,36]. Identification of training sites is particularly problematic for small, 
heterogeneous irrigated areas. 

LULC classes were identified based on NDVI temporal signatures along with ground survey 
data. We observed crop growth stages and cropping pattern from temporal signatures, such as (a) 
onset of cropping season (e.g., monsoon and winter); (b) duration of cropping season such as 
monsoon and winter; (c) magnitude of crops during different seasons and years (e.g., water stress 
and normal years); and (d) end of cropping season [26,30]. 

The process of labeling class identification was done based on spectral matching techniques 
(SMTs) [8,37]. Initially, 40 classes from the unsupervised classification were grouped based on 
spectral similarity or closeness of class signatures. Each group of classes was matched with ideal 
spectra signatures and ground survey data and assigned class names [8,28]. Classes with similar 
NDVI time series and land cover were merged into a single class. Classes showing significant mixing, 
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e.g., continuous irrigated areas and forest, were masked and reclassified using the same ISOCLASS 
algorithm. Some continuous irrigated areas mixed with forests in the Western Ghats were separated 
using a 90 m digital elevation model (DEM) from the shuttle radar topography mission (SRTM) and 
an elevation threshold of 630 m, Landsat imagery and ground survey data through spatial modeling 
techniques such as overlay matrix, recode and proximity analysis [3,38]. This resulted in nine classes 
of LULC. While class aggregation could have been performed statistically using a Euclidean or other 
distance measure, we employed a user-intensive method that incorporates both ground survey data 
and high resolution imagery in order to avoid lumping classes that might be spectrally similar but 
have distinct land cover. The NDVI of some classes differed in only one or two months, which would 
have caused the classes to be merged if an automated similarity index were used. 

Classification was done at 250 m spatial resolution. In the present study area, average land 
holding size is less than a pixel and there are different LULC classes with 250 m × 250 m pixel (6.25 
ha). Full pixel areas are not an accurate representation of actual cropland areas. Cropland fraction 
was calculated using the methodology described in [3,26,37,39]. Sub-pixel areas are important when 
a particular pixel was named as cropland but also contained different other LULC classes (e.g., 
grasses, trees, shrubs, etc.). 

Ground survey points were used to assess the accuracy of the classification results, based on a 
standard procedure [40–42], to generate an error matrix and accuracy measures for each LULC map. 
Error matrices and Equation (2) ‘Cohen’s kappa coefficient (ߢ)’ are commonly used for accuracy 
assessment. For example, these are useful when building models that predict discrete classes or when 
classifying imagery. ߢ can be used as a measure of agreement between model predictions and reality 
[43] or to determine if the values contained in an error matrix represent a result significantly better 
than random [42]. ߢ is computed as:  ߢ	 = 		ܰ ∑ ௜௜ݔ − ∑ ௜ାݔ) × ା௜ݔ )௥௜ୀଵ௥௜ୀଵܰଶ − ∑ ௜ାݔ) × ା௜ݔ )௥௜ୀଵ  (2) 

where, N is the total number of sites in the matrix, r is the number of rows in the matrix, xii is the 
number in row i and column i, x+i is the total for row i, and xi+ is the total for column i [42]. 

2.6. Water Stress Mapping and Categorization 

Water stress was measured based on NDVI signatures and water stress areas were classified into 
three categories based on intensity/crop condition observed from field survey data. Severe water 
stress areas were categorized as areas with no crop throughout the cropping season due to water 
shortage. Moderate and mild water stress areas were identified where a fraction of the plot was used 
to grow rice or partial damage had occurred and the rest was left fallow. This information was 
collected from 205 fields out of 584 locations. 

NDVI signatures were extracted from the NDVI stack for the years 2013 and 2014 for the ground 
survey locations (conducted in 2015). Out of the 243 locations considered, 81 points were selected 
based on field plot information and spectral similarity with water stress. Farmers’ responses were 
used along with the NDVI signatures to identify ideal spectral signatures (temporal signatures) for 
water stress and non-water stress areas. During the ground survey, we observed that the year 2015–
2016 was one of the severe water stress year and large agricultural areas including irrigated command 
areas were left fallow. 

3. Results  

This section discusses LULC areas including major croplands, changes in irrigated area, water 
stress areas and accuracy assessment based on ground survey data and a comparison of irrigated 
areas from the present study and national statistics. 
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3.1. Spatial Distribution of LULC 

The 16-day time series NDVI stack and the spectral signatures (temporal signatures) generated 
from it for sampled locations and class signatures obtained after classification were used to identify 
LULC. Nine LULC classes were mapped for the normal year (2013–2014; Figure 4 and Table 2) and 
water-deficit years (2015–2016; Figure 5 and Table 2). Classes identified were based on spectral 
matching techniques along with ground survey data include GPS referenced digital images and field 
observations. The cropland areas in the Krishna River Basin for 2013–2014 are shown in Table 2. 
Rainfed croplands were 4.8 Mha of full pixel area, which is dominated by rainfed croplands mixed 
with other land cover areas. In Class 1, the actual rainfed agriculture area was 4.1 Mha, and remaining 
0.7 Mha was mixed with other LULC areas. The total irrigated area was 9.5 Mha which includes 
groundwater, tank irrigation, and major canal irrigation during 2013–2014. Groundwater irrigated 
areas alone covered 5.1 Mha, mainly located across the Krishna River Basin and major command 
areas. 

 

Figure 4. Spatial distribution of land use/land cover (LULC) (derived from 2013–2014 MODIS 
composite). (Note: GW = groundwater; SW = surface water; DC = double crop). 
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Table 2. Irrigated, rainfed, and other LULC areas. 

LULC  
Full Pixel Area (FPA) 

(000′ha) 
Crop Area Fraction (%) 

Actual Cropland Area 
(000′ha) 

2013–2014 2015–2016 2013–2014 2015–2016 2013–2014 2015–2016
01. Rainfed croplands 4853.5 3972.9 84.2 70.5 4087.4 2801.7 
02. Irrigated-Tanks/GW-DC-croplands 5896.8 5112.9 86.5 76.3 5102.3 3900.5 
03. Irrigated-conjunctive-croplands 3196.9 2795.2 89.2 83.6 2852.1 2335.9 
04. Irrigated-SW-DC-croplands 1726.5 1477.1 92.6 86.1 1598.7 1271.8 
05. Rangelands mixed with fallows 2678.2 5730.9 21.5 12.5 576.9 713.8 
06. Shrublands mixed with rangelands 5587.8 4886.8 8.5 9.1 472.6 444.7 
07. Water bodies 458.2 440.7 - - 458.2 440.7 
08. Forests/shrublands 1949.1 1940.8 - - 1949.1 1940.8 
09. Built-up areas 305.6 298.5 - - 305.6 298.5 
Net irrigated area - - - - 9553.1 7508.2 
Net agriculture area - - - - 14,690.0 11,468.5 

Note: GW = groundwater; SW = surface water; DC = double crop. 

 
Figure 5. Spatial distribution of LULC (derived from 2015–2016 MODIS composite). 

The spatial extent of LULC in the Krishna River Basin for 2015–2016 is shown in Figure 5 and 
areas shown in Table 2. Altogether nine classes were delineated, of which four were croplands and 
five were other LULC. Rainfed croplands covered 2.8 Mha while total irrigated area was 7.6 Mha, 
which included groundwater irrigated, tank irrigated and major canal irrigated areas during 2015–
2016. Groundwater irrigated area alone covered 4.0 Mha which was spatially distributed across the 
Krishna River Basin including major command areas. 

The results show a significant decrease in total irrigated area (including surface and 
groundwater areas) in the Krishna Basin between 2013–2014 (9.5 Mha) and 2015–2016 (7.6 Mha) as 
well as a decrease in groundwater irrigated area between 2013–2014 (5.1 Mha) and 2015–2016 (4.0 
Mha). However, due to low inflows and low rainfall during the rainy season of 2015, a significant 
decrease in the rainfed cropped area between 2013–2014 (4.1 Mha) and 2015–2016 (3.1 Mha) was 
observed. The area irrigated by canals decreased during 2013–2014 (1.6 Mha) and 2015–2016 (1.3 Mha) 
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due to lower water storage in the reservoir during 2015–2016. Figure 6 shows the spatial extent of 
crop land changes from crop lands converted to fallows due water stress. 

 
Figure 6. Land use changes from 2013–2014 to 2015–2016.  

3.2. Water Scarcity and Cropland Changes 

Agricultural land uses decreased from 14.7 Mh in a normal year (2013–2014) to 11.5 Mha during 
the water stress year (2015–2016) (Figure 7 and Table 3). These changes are mainly due to reduced 
cropping intensity and conversion of crop lands to fallow due to water scarcity. Rainfed croplands in 
the Krishna Basin were reduced to half of the normal year to 2.8 Mha, and there was significant 
reduction in the irrigated croplands. Overall, 7.6 Mha of croplands were affected by water scarcity, 
including rainfed and irrigated croplands, and 7.1 Mha were not affected (Table 3). 

 

Figure 7. Spatial distribution of water stress during 2015–2016 (derived from 2015–2016 MODIS 
composite). 
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Table 3. MODIS-derived water stress areas across the Krishna River Basin. The table shows full-pixel 
area (FPA), crop area fraction (CAF), and sub-pixel area (SPA) or actual area. SPA = FPA × CAF. 

Water Stress Class Full Pixel Area (FPA) (000′ha) Cropland Fraction (%) Actual Cropland Area (000′ha)
01. Mild water stress 5209.8 81.1 4226 
02. Moderate water stress 3013.2 78.1 2355 
03. Severe water stress 1125.1 88.1 991 
04. No water stress 8409.9 84.7 7120 
05. Other LULC 9013.2 - 9013 
Total water stress area - - 7572 

There were some visible changes in cropping patterns in 2015–2016 (Table 4). Long-duration 
irrigated cropland under sugarcane was converted to crops such as rice and maize (Figure 7, class 2). 
The area under double crop (monsoon rice + winter rice) also fell, with pulses included in the system. 
Intensively irrigated areas, which include groundwater irrigated areas, in 2013–2014 were under 
fallows in 2015–2016. Water scarcity in minor irrigation systems forced farmers to drill bore wells to 
irrigate. 

A sudden reduction in food production could lead to unforeseen consequences in the market, 
leading to food insecurity. These results are especially relevant in a changing climate scenario and 
underline the need for appropriate adaptation strategies like growing water efficient crops during a 
water deficit year. Water scarcity is a frequent reality faced by farmers in the semi-arid tropics, even 
in the basin command areas. This leads to a chain of events affecting crop production, cropping 
pattern changes and eventually reduced in incomes to farmers. To maintain food security 
sustainably, large river basins like the Krishna should adopt new adaptation strategies such as the 
use of climate smart varieties, best bet management practices along with institutional mechanisms to 
remunerate the crops during such times. 

Table 4. Changes in irrigated agricultural cropland from 2013–2014 (a normal year) to 2015–2016 (a 
water-deficit year) as a response to water stress, where FPA = full-pixel area; CAF = crop area fraction; 
SPA= and sub-pixel area or actual area. SPA = FPA × CAF. 

Water Stress Class  
01. Mild Water 

Stress 
02. Moderate Water 

Stress 
03. Severe Water 

Stress 

Full pixel area 
(FPA) (000′ha) 

01. Rainfed-croplands 1327 1030 482 
02. Irrigated-Tanks/GW-DC-croplands 1968 1092 355 
03. Irrigated-conjunctive-croplands 1160 580 183 
04. Irrigated-SW-DC-croplands 755 310 105 

Cropland Fraction (%) 81.1 78.1 88.1

Actual Cropland 
area (000′ha) 

01. Rainfed-croplands 1076 805 425 
02. Irrigated-Tanks/GW-DC-croplands 1596 854 313 
03. Irrigated-conjunctive-croplands 941 454 161 
04. Irrigated-SW-DC-croplands 612 242 93 

Note: GW = groundwater; SW = surface water; and DC = double crop. 

3.3. Accuracy Assessment and Comparison with Other Published Data Sets 

A quantitative accuracy assessment was done through error matrix [44] to examine whether a 
known LULC was identified as the same LULC or not. The ground survey data was based on an 
extensive field campaign conducted throughout the Krishna Basin during the kharif season for the 
crop years 2013–2014 and 2014–2015. Accuracy was performed on classified three products (LULC 
maps of 2013–2014 and 2015–2016). The 363 points that were not used in the classification were used 
to assess classification accuracy. Accuracy assessment was performed with independent datasets. 

Tables 5–7 show the error matrix of each product. In LULC 2013–2014 of the first class (01. 
Rainfed croplands), ten ground survey reference points of the 14 matched with rainfed croplands; 
three points matched with 02. Irrigated-tanks/GW-croplands and one point matched with other 
LULC class. The same assessment was carried out for all the classes shown in Table 5. For all the six 
classes, 125 points out of 152 matched with the same class of reference data. Accuracy for the final six 
classes of 2013–2014 was 82.4% with a Kappa value of 0.78 (Table 5). Table 6 shows the accuracy 
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assessment for the six LULC classes for the year 2015–2016. Classification accuracy was performed 
with 162 sample points, of which 138 matched correctly with the present classification. The overall 
accuracy was 85% with a kappa value was 0.82 (Table 6). 

The final MODIS-derived cropland areas statistics of the Krishna Basin districts were compared 
with district-wise statistics obtained from the Directorate of Economics and Statistics (DES), Andhra 
Pradesh and Telangana; Directorate of Economics and Statistics, Karnataka; and the Department of 
Agriculture, Maharashtra. This data was fractionalized based on the district-wise area covered in the 
Krishna Basin for a comparative study with the MODIS derived data. It revealed that most of the 
district level statistics from DES matched with the MODIS derived statistics. Difference in the 
statistical data and MODIS data varied between −35% and +35% (Figure 8) and R2 value was 0.8686. 
Figure 9 illustrates the decrease in rainfall percentage from 17 years of normal rainfall to 2015 rainfall 
for monsoon and post-monsoon seasons (from June to November). Also, basin level inflows/outflows 
are a good indicator of water availability during crop production. Figure 10 clearly indicates that the 
inflows into and outflows from the sub-basins were at a very low level during 2015–2016 due to low 
rainfall [45,46]. The changes in land use due to low rainfall and inflows are explained in Section 3.2. 

 
Figure 8. A comparison of district-wise cropland area from the MODIS classification and national 
statistics. 
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Table 5. Accuracy assessments done using error matrix for LULC classes of 2013–2014. 

LULC  
Reference Data Reference Classified Number Producers Users

Kappa 
01. 02. 03. 04. 05. 06. Totals Totals Correct Accuracy Accuracy

MODIS-derived 
classification 

01. Rainfed croplands 10 3 0 0 0 1 15 14 10 67% 71% 68% 
02. Irrigated-Tanks/GW-DC-croplands 1 23 3 1 1 0 31 29 23 74% 79% 74% 
03. Irrigated-conjunctive-croplands 1 2 28 1 0 0 35 32 28 80% 88% 84% 
04. Irrigated-SW-DC-croplands 0 0 1 19 0 0 23 20 19 83% 95% 94% 
05. Rangelands mixed with fallows 2 1 2 1 10 0 12 16 10 83% 63% 59% 
06. Other LULC 1 2 1 1 1 35 36 41 35 97% 85% 81% 

Total 15 31 35 23 12 36 152 152 125    
 Overall Classification Accuracy = 82.24%   Overall Kappa Statistics = 0.7811  

Table 6. Accuracy assessments done using error matrix for LULC classes of 2015–2016. 

LULC  
Reference Data Reference Classified Number Producers Users

Kappa 
01. 02. 03. 04. 05. 06. Totals Totals Correct Accuracy Accuracy

MODIS-derived 
classification 

01. Rainfed croplands 19 0 0 0 1 0 28 20 19 68% 95% 94% 
02. Irrigated-Tanks/GW-DC-croplands 2 22 0 0 1 0 26 25 22 85% 88% 86% 
03. Irrigated-conjunctive-croplands 0 0 29 0 1 1 30 31 29 97% 94% 92% 
04. Irrigated-SW-DC-croplands 0 0 0 25 0 0 31 25 25 81% 100% 100% 
05. Rangelands mixed with fallows 4 1 1 6 20 0 23 32 20 87% 63% 56% 
06. Other LULC 3 3 0 0 0 23 24 29 23 96% 79% 76% 

Total 28 26 30 31 23 24 162 162 138    
 Overall Classification Accuracy = 85.19%      Overall Kappa Statistics = 0.8224  

Table 7. Accuracy assessments done using error matrix for water stress classes of 2015–2016. 

LULC  
Reference Data Reference Classified Number Producers Users

Kappa 
01. 02. 03. 04. 05. Totals Totals Correct Accuracy Accuracy

MODIS-derived 
classification 

01. Mild water stress 31 3 3 20 0 39 57 31 79% 54% 44% 
02. Moderate water stress 7 18 5 2 0 21 32 18 86% 56% 51% 
03. Severe water stress 0 0 46 0 0 54 46 46 85% 100% 100% 
04. No water stress 1 0 0 57 1 83 59 57 69% 95% 92% 
05. Other LULC 0 0 0 4 10 11 14 10 91% 71% 70% 

Total 39 21 54 83 11 208 209 162    
 Overall Classification Accuracy = 77.51%   Overall Kappa Statistics = 0.7038  
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Figure 9. Decrease in rainfall percentage from 2013 to 2015 using the tropical rainfall measuring 
mission (TRMM) 0.25 degree rainfall grid. 

 
Figure 10. Inflows into and outflows from the Krishna Basin between 2013 and 2016 [47]. 

4. Discussion 

This study identified the changes in irrigated areas including other cropland areas in a large 
river basin due to water scarcity. First, a baseline irrigated area map of the study area was produced 
for 2013–2014 with an estimation of cropland area under different classes. Accuracy was determined 
by correlating the MODIS-derived land use/land cover areas with field-plot information and sub-
national statistics obtained from the Ministry of Agriculture. MODIS imagery plays an important role 
in this type of study, where time series (composites of every 16 days) imagery not only helps in 
identifying a land use type by crop, based on its specific growing season, but also monitors the 
dynamics of such land use over time and space. The compositing of daily data to 16-day imagery has 
the advantage of minimal cloud contamination since the best of 16 days imagery is retained for 
analysis (MVC). The spectral matching technique used in this study is a very useful method to 
identify a specific land use where the spectral profile follows the phenology (Thenkabail et al., 2007). 
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This study applied spectral matching techniques introduced in the seminal paper by Thenkabail 
et al. (2007) for mapping irrigated areas using AVHRR time-series imagery along with intensive field-
plot information. The purpose, focus, and advance in this paper is to map changes in cropping 
patterns in a region with two crop seasons per year. Mapping that spatial and temporal complexity 
in land use changes due to water stress is a significant new information. The methodology starts with 
unsupervised classification of NDVI MVCs. In the class identification and labeling process, we used 
16-day as well as monthly MVCs. The main advantage of this approach during classification is the 
usage of monthly cloud-free or near-cloud-free images with consideration of maximum value 
composites. In addition, MODIS 16-day temporal resolution data easily identified cropping systems 
across different cropping pattern and changes (irrigated, rainfed, etc.). Spectral matching techniques 
were particularly successful in differentiating cropping patterns such as mild-water stress, moderate 
water-stress, severe water-stress areas. 

5. Conclusions 

The study highlighted the significant changes in agricultural land use that took place as a result 
of water stress during 2015–2016. Rainfed and irrigated areas were mapped with classification 
accuracy between 77–85% using MODIS 250 m time series images and spectral matching techniques 
(SMTs). The MODIS-based irrigated cropland statistics for the districts were highly correlated (R2 
value of 0.86) with the figures reported by the Directorate of Economics and Statistics. Though the 
current study focused on a large river basin, these methods and approaches are also applicable for 
large areas, such as countries and continents. 

Estimates of the basin-level water inflow and outflow are useful in understanding the water 
balance in the basin. It also provides a realistic picture of the effects of water scarcity during a low 
rainfall year on crop production, and in turn on the food security of the population in the basin. The 
outcome of this research highlights the value of using MODIS time series 250 m data and advanced 
methods such as spectral matching to study changes in the agricultural cropland in large river basins. 
It also contributes significantly to the knowledge base of earth observation groups involved in 
monitoring irrigated areas. 
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