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Abstract: Long-term intensive land use/cover changes (LUCCs) of the Yellow River Delta (YRD)
have been happening since the 1960s. The land use patterns of the LUCCs are crucial for bio-diversity
conservation and/or sustainable development. This study quantified patterns of the LUCCs, explored
the systematic transitions, and identified wetland change trajectory for the period 1976–2014 in the
YRD. Landsat imageries of 1976, 1984, 1995, 2006, and 2014 were used to derive nine land use classes.
Post classification change detection analysis based on enhanced transition matrix was applied to
identify land use dynamics and trajectory of wetland change. The five cartographic outputs for
changes in land use underlined major decreases in natural wetland areas and increases in artificial
wetland and non-wetland, especially aquafarms, salt pans and construction lands. The systematic
transitions in the YRD were wetland degradation, wetland artificialization, and urbanization. Wetland
change trajectory results demonstrated that the main wetland changes were wetland degradation and
wetland artificialization. Coastline change is the subordinate reason for natural wetland degradation
in comparison with human activities. The results of this study allowed for an improvement in the
understanding of the LUCC processes and enabled researchers and planners to focus on the most
important signals of systematic landscape transitions while also allowing for a better understanding
of the proximate causes of changes.

Keywords: land use dynamic; systematic transition; wetland change trajectory; imagery analysis;
enhanced transition matrix; Yellow River Delta

1. Introduction

Land use/cover change (LUCC) is considered to be one of the most important components and
driving factors of global environmental change [1–4], and it is one of the most important indicators in
understanding the interactions between human activities and the environment [5,6]. Understanding
the reorganization of land in order to adapt its use and spatial structure to social demands has become
crucial to management and represents a major challenge to land use planning and public policies [7–9].

LUCC is defined as the transformation of the physical or biotic nature of a site, whereas
land use change involves a modification in the way in which land is being used by humans [10].
These transitions can be random or systematic [11,12], with random transitions representing those
characterized by abrupt changes or episodic processes of change and systematic transitions those
marked by consistency and stable processes [13]. Land use transitions can be detected by statistical
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evaluation by comparing different temporal pattern maps. A common method employs the use
of a land use/cover transition matrix, which provides a cross-tabulation matrix including change
quantities and directions, and allows identification of differences between random and systematic
land use transitions [14–17]. However, matrix-based land use studies mainly focus on overall gains
and losses, and tend to ignore the spatial locations and swap changes of land use transitions [10,18].
Furthermore, the maps or databases of these studies are sampled or classed at discrete intervals,
and the analysis tends to focus on the adjacent periods, but ignore successive process of land use
transitions [19,20]. Therefore, establishing a better understanding of the fundamental processes of land
use transitions requires the detection of dominant systematic land cover transitions and an illustration
of the trajectory of the interest objects (land use types).

The Yellow River Delta (YRD)—located in the estuary of the Yellow River, with resource–rich
territory of coastal wetlands—is the only habitat for several species of rare migratory birds and
preserves natural vegetation near several big cities [21]. As the key economic development area of
Shandong province and one of the most important regions of petroleum production in China, the
YRD has been subject to increasing human disturbance (e.g., petroleum exploitation and production,
agricultural development, and urbanization) since the early 1960s [22,23]. Moreover, the runoff and
sediment discharge from the Yellow River has decreased considerably since the 1950s, resulting in
frequent and prolonged channel drying in the downstream area since the 1970s [24–26]. These two
stressors led to dramatic land use changes, so the detection of LUCCs and the identification of the
trajectory of wetland change are fundamental for bio-diversity conservation and/or sustainable
development of the YRD. In recent years, LUCCs in the YRD have received considerable attention
in China, and researchers at home and abroad have conducted numerous studies surrounding the
aspects of land use change [27–29], landscape dynamics [30], wetland evolution [31–33], and impacts
of anthropogenic activities [34] based on qualitative, quantitative, and modeling methods. However,
these studies mainly focused on the concentration of land use status before 2009 and covered much
less the land use situation after 2010. More importantly, these studies paid more attention to the area
changes and driving forces, but ignored the systematic transitions of LUCCs and the trajectory of
wetland change.

This study aimed at the detection of LUCCs and the identification of the trajectory of wetland
changes due to their importance for bio-diversity conservation and/or sustainable development of
the YRD. Therefore, three specific objectives of this article were to (1) analyze spatial and temporal
dynamics of land use patterns from 1976 to 2014; (2) explore the systematic transitions of land use of
the YRD; and (3) illustrate the trajectory of wetland change and the driving factors. The following
sections of the paper are organized in the following ways: the study area and methods section provides
details on case study area, data sources, and methods to quantify land use change, and trajectories of
wetland change; the results section presents the accuracy of our analysis, land use pattern detected, and
the wetland changes; the discussion section provides insights regarding the comparison of our study
and existing studies, the implication of our results, and ultimately this is followed by the conclusion of
this study.

2. Study Area and Methods

2.1. Study Area

The YRD is the newly-formed fan-shaped delta of the Yellow River estuary area after the Yellow
River was diverted into the Bohai Sea in 1855. The delta (located in 118◦33′ E to 119◦18′ E and from
37◦26′ N to 38◦09′ N) takes Ninghai as the vertex, starts from the Taoer Estuary in the north, and
reaches the ZhimaiGou river in the south and Tuhai River in the west (Figure 1). It has a warm
temperate continental monsoon climate with distinctive seasonality. The annual temperatures and
precipitation is 11.7–12.6 ◦C and 530–630 mm, respectively [35]. However, average annual evaporation
is almost 3.5 times the average yearly precipitation. Approximately 10.5 million tons of sand and
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soil discharged by the river is deposited in the delta annually, forming a vast floodplain and special
wetland landscape [36]. The soil of the YRD is mainly composed of fine sand and is characteristically
young, with a high groundwater table, low fertility, and a tendency towards secondary salinization
and desertification [37]. The average groundwater table is generally 2–3 m, and only 0.5–1.5 m along
the coastline. The natural vegetation is composed of broadleaf deciduous forest (mainly Hankow
willow and weeping willow), shrubbery (mainly Chinese tamarisk), and shore coppice [38]. The YRD
is one of six of the most beautiful wetlands in China and an important energy base with more than
5 × 109 t petroleum and 2.3 × 1011 m natural gas [23,39].
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Figure 1. Location of the modern Yellow River Delta (YRD).

2.2. Data Preparation and Acquisition

2.2.1. Satellite Image Selection and Pre-Processing

Generally, the selection of Landsat images was mainly based on availability, cloud cover
percentage, and correspondence [40]. However, the image features of land use types in the YRD
are more likely to be affected by seasonal aspects and tidal conditions. The duration of seasonal tidal
flows in YRD was always from January to April [41,42]. Therefore, the remotely sensed imageries
selected in this paper (Table 1) were not only cloud–free but also during the appropriate period. All the
imageries were acquired from Earth Observation and Digital Earth Science Center of Chinese Academy
of Sciences. The satellite images were corrected in order to remove atmospheric effects by subtracting
the radiance of a “dark pixel” within each band image [43], and then the images were geo-referenced
using between 15 and 30 ground control points distributed across each image. After geo-reference,
the images had a Gaussian–Krueger projection and a Root Mean Squared Error (RMSE) of less than
one pixel.
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Table 1. List of satellite images used in this study.

Platform Sensor Path/Row Resolution(m) AcquisitionDate

Landsat 2 Multispectral Scanner 130–134 90 2 June 1976
Landsat 5 Thematic Mapper 121–134 30 5 November 1984
Landsat 5 Thematic Mapper 121–134 30 18 September 1995
Landsat 5 Enhanced Thematic Mapper 121–134 15 2 November 2006
Landsat 8 Operational Land Imager 121–134 30 11 May 2014

2.2.2. Region Definition, Land Use Classification, and Accuracy Assessment

The YRD experiences erosion and deposition, so its scope and area is constantly changing.
In this paper, the coastlines of each period were extracted to defined the YRD’s scope, and an
interactive interpretation technique combining an automatic boundary detection algorithm with human
supervision was used to detect the land–ocean shoreline boundaries in satellite images. The coastline
types of the YRD are muddy coastlines and artificial coastlines, and artificial coastlines were acquired
by interpreting the construction edges manually. The muddy coastlines were established using an
automatic boundary detection algorithm following the process of Tasseled Cap Transformation [44],
binary converting, edge enhancement, and edge detection [26].

The detection of time intervals in land use changes required a pre-classification image analysis
process (image to image comparison) of land use. Visual interpretation of land use types based
on elements such as color, tone, texture, form, size, presence of shadows, and the location of
infrastructures [45,46] has been the main approach for identifying land use changes because it can
provide more accurate land use maps compared with automatic classification [47,48]. In this study,
the land use data series were acquired by interpreting the basic land use map in 2010 and detecting
the changing parts between adjacent time periods of Landsat images manually. The whole process is
supported by six main stages: field investigation, establishment of land use classification, interpretation
of basic map, change detection, field test and corrections, and accuracy assessment. Field investigation
was conducted in May 2013 covering the entire study area to get a priori knowledge of the study area as
a whole, including landform, soil, vegetation, ponds, rivers, salt fields, agriculture fields, and built-up
areas. A classification system including three land use types and nine classes (Table 2) was established
based on the national land classification system and the regional characteristics of the YRD while
referring to wetland classification principles of previous studies [49–51]. In the process of interpretation,
interpreters used ArcGIS software to identify land use types based on their understanding about the
object’s spectral reflectance, structure, and other ancillary information with the smallest patch of land
use bigger than 25 pixels (2.25 ha) and the shortest edge longer than 3 pixels (90 m). A second round of
field surveys/tests was conducted on August–September 2014 after finish detecting land use changes
and from the land use maps from the five periods. Subsequently, the corrections were implemented on
the land use maps from the five periods based on samples of the two field surveys, land use maps from
local governments, and high resolution aerial photographs. Discrete multivariate analytical techniques
were used to statistically evaluate the accuracy of the classified maps [52] and a variety of indices such
as overall accuracy, producer’s accuracy, user’s accuracy, and kappa analysis were calculated [53].



Land 2017, 6, 20 5 of 20

Table 2. The classification key used in the present study.

Land Use Type Land Use Class Description Code

Natural
wetland

Beach Mucky, sandy, and gravel beach located between the estuary and tidal zone BC

Grassland Reeds, cattails (Typha orientalis), and other water-loving plant community
members located in rivers and estuaries, reservoirs, and lakes of flood land GL

Bushland Mainly Tamarix bush combined with the alkaline meadows such as Suaeda
heteroptera, Salicornia, and Suaeda sals BL

River Permanent and seasonal rivers including their floodplains RV

Artificial
wetland

Ditch and
ponds

A natural or artificial pond or lake used for the storage and regulation of water,
including lake, reservoirs, and ponds DP

Aquafarm and
salt pan

Artificial built around shrimp, crabs and other aquatic ponds, etc.; Salt field in
coastal areas and near estuaries AS

Non-wetland

Woodland Woodland composed of Populus, Salix, Black locust (Robinia pseudoacacia) and
Salix (Salix integra) WL

Cultivated land Arable land that is worked by plowing and sowing and raising crops CL

Construction
land

Man-made impervious surface such as roads, urban, and rural residential land,
industrial land, oil field infrastructure, etc. AL

2.3. Quantification of LUCC Based on Transition Matrix

In order to quantify the land use/cover dynamics, post classifications (map to map comparisons)
were generated involving the successive sets of images cross-referenced to define land use transition
matrixes and a series of evaluation indexes. In the process of generating land use transition matrixes,
the union scope of five periods with an area of 6398 km2 was taken as the analysis scope and a new
land use type of sea surface (SF) was added to represent the land that disappeared as a result of
coastline erosion.

2.3.1. Land Use Transition Matrix

The land use transition matrix comes from system analysis aiming at quantitative description
of the system state and state transition, and it is the most common approach used to compare maps
of different sources, as it provides detailed “from-to” change class information [40]. The traditional
area cross-tabulation matrix (transition matrix) was computed using overlay functions in ArcGIS 9.3
software. The computed transition matrix consists of rows that display categories at time T1 and
columns that display categories at time T2 (Table 3). The notation Aij is the area of the land that
experiences transition from category i to category j. The diagonal elements (i.e., Aii) indicate the area
of the landscape that shows persistence of category i. Entries off the diagonal indicate a transition
from category i to a different category j. The area of the landscape in category i in time T1 (Ai+) is the
sum of Aij over all j. Similarly, the area of the landscape in category j in time T2 (A+j) is the sum of Aij

over all i. The losses (Ai+ − Aii) were calculated as the differences between row totals and persistence.
The gains (A+i − Aii) were calculated as the differences between the column totals and persistence.

Table 3. A sample of land use transition matrix.

T2
Ai+ Loss

L1 L2 . . . Ln

T1

L1 A11 A12 . . . A1n A1+ A1+ − A11
L2 A21 A22 . . . A2n A2+ A2+ − A22
.
.

.
.

.
.

.
.

.
.

.
.

.
.

Ln An1 An2 . . . Ann An+ An+ − Ann
A+i A+1 A+2 . . . A+n

Gain A+1 − A11 A+2 − A22 . . . A+n − Ann
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2.3.2. Annual Rate of Change

The annual rate of change (RCi) for each land cover category i was calculated as [5,54]:

RCi = ((A+i/Ai+)
1

T2−T1 − 1)× 100% (1)

where Ai+ and A+i are the areas (in ha) of a cover class at years T1 (initial time) and T2 (next time
step), respectively.

2.3.3. Stability Grade

To expresses the proportion of the landscape category i that had not experienced a transition to
any different category of land use, the indicator stability grade (SGi) was defined as Equation (2) and
the total stability grade of the region (SG) was defined as Equation (3) [11]:

SGi =
2× Aii

A+i + Ai+
× 100% (2)

SG =
n

∑
i=1

Aii/
n

∑
i=1

A+i × 100% (3)

2.3.4. Swap Change (SW) Percentage

Swap was a component of change which implied that a given area of a category was lost at one
location, while the same area was gained at a different location. The amount of swap was calculated as
two times the minimum of the gain and loss [53]. The total change for each land class was calculated
as either the sum of the net change and the swap or the sum of the gains and losses. The percentage of
swap change (Rsw) was calculated as follow [11,40]:

Rsw =
2×Min(A+j − Ajj, Aj+ − Ajj)

A+j + Aj+ − 2Ajj
× 100 (4)

2.3.5. Selection of Main Transition

Main transitions were identified as dominant conversions with bigger proportions of the total
change. The proportion of the land (Pij) that experiences transition from category i to category j
was calculated, and the transitions with the proportion values larger than the average values were
selected as the main transition. The proportion of the transition and the comparison with the average
proportion were defined as follows in Equation (5): Pij = Aij/

n
∑

i=1
Aij × 100% i 6= j

Pij >
100%

n×(n−1)

(5)

in which n represents the number of land types.

2.4. Trajectories of Wetland Change

Swetnam [55] presented a method to explore land use change characteristics or trajectory using
the combinations of the three spatial indices (similarity, turnover, and diversity) to classify the land
use change into six groups: stepped, cyclical, dynamic, no constant trend (NCT), and (stable) [56].
In this study, trajectory analysis was made for natural wetland, artificial wetland, and non-wetland
classes because of their ecological importance. Additionally, the original six groups were clustered and
reclassified in the aspect of wetland landscape change. With three land cover classes (natural wetland,
artificial wetland, and non-wetland classes) and five temporal image dates (1976, 1984, 1995, 2006,
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and 2014), 61 out of 243 possible wetland land cover change trajectories were found. Finally, similar
trajectories were clustered, resulting in six classes (Figure 2 and Table 4).Land 2017, 6, 20  7 of 20 
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(e) 2014.

Table 4. Wetland change trajectories between 1976 and 2014.

No. Description Trajectories *

1 Stable wetland WWWWW, RRRRR

2 wetland
formation/restoration

NNNNR, NNNNW, NNNRR, NNNWW, NNRRR, NNWWW, NRRRR,
NWWWW, NWNNW, NWNWW, NWWNW, NWWWW, RRNWW,
WNNWW, WNWNW, WNWWW, WWNNW, WWNRR, WWRNR

3 Wetland
artificialization

NNNWR, NNWRR, NWNWR, NWRRR, NWWRR, NWWWR, WNNWR,
WNRRR, WRRRR, WWNWR, WWRRR, WWWNR, WWWRR, WWWWR

4 Old degradation NRNNN, NWNNN, RRNNN, WNNNN, WRNNN, WWNNN

5 Recent degradation
NNWNN, NNWRN, NNWWN, NRRNN, NRWNN, NRWWN, NWNWN,

NWWNN, NWWWN, RRRNN, RRWWN, WNNWN, WNWNN, WNWWN,
WWNWN, WWRNN, WWRRN, WWWNN, WWWRN, WWWWN

6 Non-wetland NNNN

* The sequence represents the time periods 1976, 1984, 1995, 2006, and 2014. “W” stands for natural wetland class,
“R” stands for artificial wetland, and “N” stands for non-wetland class.
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3. Results

3.1. Accuracy Assessment

Figure 2 depicts the classified maps for 1976, 1984, 1995, 2006, and 2014. According to the
confusion matrix report (Table 5), 90.62% overall accuracy and a Kappa Coefficient (KC) value of 0.89
were attained for the 2014 classified map. Similarly, overall classification accuracy levels achieved
were 91.63% (with a KC of 0.90) for the 2006, 94.74% (with KC of 0.94) for the 1995, 91.43% (with KC of
0.89) for the 1984, and 93.16% (with KC of 0.91) for the 1976 image classifications. In general, the maps
met the minimum accuracy requirements to be used for the subsequent post-classification operations.

Table 5. Confusion matrix (error matrix) for the 2014 classification map.

Classified Data BC GL BL RV DP AS CL WL AL Row
Total

User’s
Accuracy

BC 40 2 2 2 46 87%
GL 28 2 2 32 88%
BL 2 27 1 30 90%
RV 20 2 22 91%
DP 1 18 19 95%
AS 1 2 1 56 60 93%
CL 1 3 2 1 87 94 93%
WL 2 1 23 26 88%
AL 2 2 1 39 44 89%

Column total 44 37 36 21 22 57 90 23 43 373
Producer‘s accuracy 87% 88% 90% 91% 95% 93% 93% 88% 89% 91%

Overall accuracy = 90.62%, KC =0.89.

3.2. Temporal Patterns for Changes in Land Use

Figure 2 presents the land use classification for the five years/moments of image analysis
(1976, 1984, 1995, 2006, and 2014). The cartographic outputs show a large change in different sectors of
the YRD, with diverse trajectories. The analysis indicates some systematic transitions involving great
changes of coastline shapes, as well as an increase in artificial wetland and construction land with
urbanization and wetland artificialization characteristics. A more detailed observation emphasizes
that the landscape change is relevant, involving a significant decrease in the natural wetland area,
in particular the beach, grassland, and bushland, an increase in construction areas, and a large
transformation from natural wetland to artificial wetland.

Table 6 shows the evolution of land use and occupation in the YRD, as represented by the
landscape patterns for the period analyzed. In analyzing areas of land use, certain systematic transitions
were observed, namely: an increase in artificial wetland with ditch, pond, aquafarm, and salt pan
units; an increase in artificial land involving artificial wetland and non-wetland; a decrease of natural
wetland, in particular the areas and percentages of beach, grassland, and bushland. For natural
wetland, the area and percentage of beach, grassland, and bushland kept decreasing from 1976 to
2014, while the river increased slightly. The total area of natural wetland decreased from 3488.2 km2 in
1976 to 1120.9 km2 in 2014, with the annual decreasing rate of 62.3 km2/year. In contrast, both ditch
and ponds (DP) and aquafarm and salt plains (AS) of artificial wetland kept increasing and showed
a relative growth of 15 times of the original state. The areas of cultivated land and woodland both
increased from 1976 to 2014 in spite of experiencing a decrease in the period 1995–2006. The area of
construction land kept increasing from 1976 to 2014, and showed a relative growth of 274% from the
original state.
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Table 6. Area (A) and percentage (P) changes from 1976 to 2014.

Classes
1976 1984 1995 2006 2014

A
(km2)

P
(%)

A
(km2)

P
(%)

A
(km2)

P
(%)

A
(km2)

P
(%)

A
(km2)

P
(%)

Beach 1991.5 34.2 1402.6 23.5 852.9 14.2 813.6 13.7 480.6 8.1
Grassland 639.9 11.0 724.2 12.2 903.7 15.1 612.1 10.3 342.2 5.8
Bushland 747.4 12.8 891.2 15.0 362.3 6.0 238.0 4.0 169.6 2.9

River 109.4 1.9 136.8 2.3 129.3 2.2 129.4 2.2 128.5 2.2
Natural wetland 3488.2 59.9 3154.9 53.0 2248.2 37.5 1792.9 30.2 1120.9 18.9
Ditch and pond 75.6 1.3 112.6 1.9 194.1 3.2 238.8 4.0 250.1 4.2

Aquafarm and salt pan 17.7 0.3 37.7 0.6 364.3 6.1 717.8 12.1 1261.3 21.3
Artificial wetland 93.3 1.6 150.3 2.5 558.3 9.3 956.6 16.1 1511.4 25.5
Cultivated land 2030.2 34.9 2351.4 39.5 2636.1 44.0 2481.6 41.8 2499.7 42.1

Woodland 14.8 0.3 36.9 0.6 85.0 1.4 77.5 1.3 81.8 1.4
Construction land 192.8 3.3 264.8 4.4 467.2 7.8 628.9 10.6 722.6 12.2

Non-wetland 2237.9 38.5 2653.1 44.5 3188.2 53.2 3188.0 53.7 3304.2 55.7
YRD Area 5819.3 100.0 5958.2 100.0 5994.7 100.0 5937.5 100.0 5936.5 100.0

The analysis of land use areas also shows an abrupt or limited temporal transitional process where
cultivated land and woodland decreased in the period 1995–2006. This is likely because of a lack of
suitable lands for the development of agriculture and forest planting. Furthermore, the acceleration of
construction expansion occupied more cultivated land and woodland in this period.

Figure 3 shows the annual changing rate of each category, revealing a diverse changing process
for each land use category in different periods, thereby showing the systematic transitions in more
detail: natural wetland increased in the former stages (1976–1984 and 1984–1995) and decreased in
the recent stages (1995–2006, 2006–2015), while non-wetland and artificial wetland kept increasing
from 1976 to 2014. Only the periods 1995–2006 and 1976–1984 have different trajectories, marked by a
decrease in the percentage of woodland and cultivated land in the period 1995–2006, and a decrease in
the percentage of beach in the period 1976–1984.
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Although the increase of non-wetland and artificial wetland (on the left-hand side) in contrast to
natural wetland areas (on the right-hand side) was clear, the annual changing rates appeared different
in different periods from 1976 to 2014. During the period 1976–1984, woodland, cultivated land, and
ditch and ponds had the biggest annual increasing rate, while the river, bushland, and grassland
classifications all had a positive annual increasing rate. During the 1984–1995 period, construction
land and aquafarm and salt pans had the biggest annual increasing rates, while bushland had the
biggest annual decreasing rate, and grassland had a positive annual increasing rate. During the
period 1995–2006, none of the categories had the biggest annual increasing or increasing rate, but the
woodland and cultivated land annual changing rates were negative, showing a an opposite changing
trend. During 2006–2014, beach land and grassland had the biggest annual increasing rate.

3.3. Dynamic Analysis of Changes in Land Use

3.3.1. Stability Grade

The transformation matrices for 1976–1984, 1984–1995, 1995–2006, and 2006–2014 subsequently
made possible a detailed study of the dynamics of land use and occupation in five periods of analysis.
The stability grade (SG) of the land cover was calculated for each transformation matrix to show the
percentage of landscape that remained unchanged. About 73.2%, 62.3%, 81.2%, and 82.8% of the
landscape persisted or 28.0%, 39.3%, 18.8%, and 17.2% of the landscape has changed during the period
1976–1984, 1984–1995, 1995–2006, and 2006–2014, respectively, indicating that persistence dominates
in all periods. However, the stability during the period 1976–2014 was only 38.0%, and 62.1% of the
YRD experienced transition from one category to a different category. The stability grade values for
each land use type were calculated and are shown in Figure 4. There was a relative small stability
grade in the period 1984–1995 for all the land use types in comparison with the other three periods.
The stability grade values were bigger than 50% except those of grassland, bushland, woodland, and
aquafarm and salt pans in the period 1984–1995, which also indicated that persistence dominates in all
periods. Nevertheless, only cultivated land and river had stability grade values bigger than 60% in
the whole period of 1976–2014. Therefore, the cumulative process of LUCC has resulted in the YRD
having undergone significant land use/cover alterations over the 38 years considered. The analysis
also showed that the land use class transfer does not take place all at once, but in a set of small
sequential steps.
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3.3.2. Swap Change

Percentages of swap change for each land use type in different periods and the whole YRD were
calculated and are shown in Figures 4 and 5. Swap change accounted for 57.6%, 53.4%, 46.0%, and
34.8% of total change during the periods 1976–1984, 1984–1995, 1995–2006, and 2006–2014, respectively,
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showing a LUCC evolution process from the change attributable to location to the change attributable
to quantity. Swap change is greater than net change in the period before 1995, suggesting that the
importance of the swapping component and common methods of land use/cover change study
would miss these dynamics. During the period 1976–2014, changes in construction land experienced
net change dynamics, whereas the changes in all other categories consisted of both swap and net
changes. The river and sea surface both had relatively larger percentages of swap change, reflecting
the transforming effects on the trail channels by the Yellow River Mouth and the coastline change
caused by the accumulation of sediment and erosion. The type of change that each land use/cover
experienced differs from period to period, but landscape types of natural wetland tend to have bigger
swap changes than artificial land types such as aquafarms, salt pans, and construction lands.
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3.3.3. Main Transitions

The landscapes of wetland, cultivated land, and construction land are closely related to ecology
protection and human's survival and production depends. Based on the increase or decrease of these
three landscapes, the main transitions were reclassified into seven categories, namely cultivated land
to wetland, construction land expansion, wetland to cultivated land, internal transformation of natural
wetland, natural wetland formation, artificialization of natural wetland, and coastline erosion.

Figure 6 shows the distributions of the main transition categories in different period from 1976
to 2014, and Table 7 shows the percentages and detailed compositions of theses main transitions.
The transitions between sea surface and beach land were included in the main transitions in the
four periods, showing that the YRD has been experiencing the process of erosion and sediment
accumulation. The main transition categories of land use dynamics from 1976 to 2014 were the
artificialization of natural wetland, transition from wetland to cultivated land, and construction
land expansion, with the percentages of 32.6%, 20.3%, and 12.9%, respectively. During the periods
1976–1984 and 1984–1995, the main transition categories were characterized by internal transformation
of natural wetland, transition from wetland to cultivated land, and natural wetland’s formation and
erosion. However, the main transition categories are predominantly natural wetland artificialization
and construction expansion in the periods 1995–2006 and 2006–2014. The change of main transition
category also revealed a continuous increase in artificial areas, indicating that land use trajectories
were veering towards artificial surfaces.
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Table 7. The percentages (P/%) and detail compositions of main transitions in different period from 1976 to 2014.

Main TransitionType 1976–1984 1984–1995 1995–2006 2006–2014 1976–2014

P Details P Details P Details P Details P Details

Cultivated
land to wetland 1.4 CL-DP (1.4) 1.2 CL-DP (1.2) 6.5

CL-DP (3.2)
CL-GL (1.8)
CL-AS (1.5)

2.6 CL-GL (1.5)
CL-AS (1.1) 1.4 CL-DP (1.4)

Construction
land expansion 3.0 CL-AL (3.0) 6.2 CL-AL (3.9)

BC-AL (2.3) 13.1 CL-AL (11.6)
BC-AL (1.5) 8.1

CL-AL (3.1)
GL-AL (2.6)
BC-AL (2.4)

12.9

CL-AL (6.9)
BC-AL (2.1)
GL-AL (1.5)
SF-AL (1.3)
BL-AL (1.2)

Wetland to
cultivated land 23.3

BC-CL (17.4)
GL-CL (3.3)
BL-CL (2.6)

17.9
GL-CL (8.6)
BL-CL (8.0)
DP-CL (1.3)

4.1 GL-CL (4.1) 9.4 GL-CL (7.9)
AS-CL (1.5) 20.3

BC-CL (8.4)
GL-CL (6.7)
BL-CL (5.2)

Internal
transformation of
natural wetland

35.7

BC-BL (14.1)
BC-GL (7.0)
BL-GL (6.0)
GL-BL (4.0)
BL-GL (3.1)
BC-RV (1.5)

33.0

BL-GL (13.6)
BC-BL (10.5)
BC-GL (7.1)
BL-BC (1.8)

24.0

BL-BC (7.3)
GL-BC (6.7)
BC-BL (3.6)
BL-GL (3.5)
GL-BL (2.9)

5.1
BL-BC (2.0)
BC-BL (1.8)
BC-GL (1.3)

4.7 BC-GL (2.9)
BL-GL (1.8)

Natural wetland
formation 18.1

SF-BC (14.4)
SF-BL (2.4)
SF-GL (1.3)

6.2 SF-BC (6.2) 5.3 SF-BC (5.3) 5.0 SF-BC (3.9)
SF-BL (1.1) 8.5

SF-BC (5.0)
SF-BL (2.3)
SF-GL (1.2)

Artificialization of
natural
wetland

17.8

BL-AS (5.8)
BC-AS (5.5)
GL-AS (2.8)
BL-DP (2.5)
GL-DP (1.2)

29.4
GL-AS (15.5)
BC-AS (7.9)
BL-AS (6.0)

52.9
BC-AS (27.6)
GL-AS (16.1)
BL-AS (9.2)

32.6

BC-AS (19.1)
BL-AS (8.0)
GL-AS (3.5)
BC-DP (2.0)

Coastline erosion 10.1 BC-SF (10.1) 5.6 BC-SF (5.6) 11.4 BC-SF (11.4) 5.9 BC-SF (5.9) 8.0 BC-SF (8.0)
Total 91.6 87.9 93.8 89.0 88.4
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Although the main transition categories were characterized by artificialization, the composition
details of main transition categories appeared different in different periods from 1976 to 2014.
During 1976–2014, the form of natural wetland artificialization was mainly aquafarm and salt pan.
The form of the transition from cultivated land to wetland was ditches and ponds in the period
1976–1984 and 1984–1995, The transitions of cultivated land to wetland were mainly in the form
of the building of ditches and ponds in the periods 1976–1984 and 1984–1995, and there were
small percentages of transitions from cultivated land to grassland and aquafarm land in the periods
1995–2006 and 2006–2014 which were caused by the policy of returning farmland to wetland and a
new agriculture-fishery mode. The main source of construction land expansion was cultivated land
in the four periods, but beach land and grassland also became part of the main sources in the last
three periods. Both the composition types and percentages of natural wetland internal transformation
decreased from early periods to late periods. The composition types only included the transition from
beach to grassland and the transition from bushland to grassland. These results revealed that natural
wetland internal transformation was the medium process of transition from the natural wetland to
artificial land. The transitions from the beach, grassland, and bushland to cultivated land were the
main transitions in the four periods, showing that the YRD had continuous agricultural development
process from 1976 to 2014. The main land use types for the transitions from natural wetland to artificial
wetland were aquafarm and salt pan which occurred in the last three periods. The main occupation
land of construction land was cultivated land in the former periods (1976–1984 and 1984–1995), while
grassland became the other main occupation source in the last period (2006–2014). The irrigation and
water conservancy construction in the period 1995–2006 was one of the major types of transfer.

3.4. Trajectory of Wetland Change

The maps of six wetland trajectory types were shown in Figure 5, and areas and percentages of
land use type in 1976 and 2014 for each wetland trajectory types were shown in Table 6. The results
show that the classes of wetland changed greatly, even for the area percentages of wetland classes of
stable wetland. The area of stable wetland was 746.7 km2, accounting for 28.4% of the total wetland
area in 2014. Wetland artificialization was mainly distributed beside stable wetland had an area of
1361.4km2 and the main destination class was aquafarm and salt pan, accounting for 89.2%. Old
degradation mainly distributed along the Yellow River and its old course was in the north (Diaokou
Ditch). Recent degradations displayed scattered distribution except for a concentrated distribution
outside the mouth of the Yellow River in the east. The area percentages for the old degraded and
recently degraded wetlands were caused by coastline change (percentage to sea surface in 2014) which
were 23.3% and 42.5%, respectively, which indicated that human activities other than coastline change
were the main driving forces of wetland degradation. Wetland formation/restoration mainly came
from the result of estuarine deposits in the mouth of the Yellow River (70.6%), followed by reservoir
construction in the cultivated lands (13.2%).

During 1976–2014, the wetland change in the YRD included wetland formation/restoration,
wetland degradation, and wetland artificialization, but the main wetland changes were wetland
degradation and wetland artificialization (Figure 7 and Table 8). The areas of wetland degradation
(1645.1 km2) and wetland artificialization (1361.4 km2) were much greater than that of the wetland
formation/ restoration (524.1 km2).
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Table 8. Areas and percentages of land use type in 1976 and 2014 for each wetland change type.

Change Type Time
Area
(km2)

Percentage (%)

BC GL BL RV DP AS CL WL AL SF

Non-wetland
1976

2120.5
90.2 0.6 9.1 0.1

2014 77.4 1.0 21.7 0.0

Stable wetland
1976

746.7
49.5 16.7 17.1 9.8 5.7 1.2

2014 37.5 33.8 9.2 12.5 5.9 1.0

Old degradation 1976
1234.4

51.9 20.0 16.7 2.2 2.5 0.7 0.7 5.4
2014 0.0 59.1 3.6 14.1 23.2

Recent degradation 1976
410.6

32.3 21.8 13.0 0.5 0.6 0.1 1.1 30.5
2014 31.7 4.1 21.7 42.5

Wetland
formation/restoration

1976
524.1

2.4 2.5 4.7 19.5 0.3 70.6
2014 38.3 17.1 19.2 6.7 13.2 5.5

Wetland
artificialization

1976
1361.4

61.4 12.2 24.7 0.5 0.2 1.0
2014 10.0 90.0

4. Discussion

The five cartographic outputs for changes in land use underline the major decrease in natural
wetland areas, the increase in artificial wetland and non-wetland, especially in regards to the aquafarms,
salt pans, and construction lands. The land use dynamics from 1976 to 2014 are similar with the
observations before 2009 made by Zong [27], Zhang et al. [30], Sun et al. [28], Chen et al. [57], and
Wang et al. [58]. About 28.0%, 39.3%, 18.8%, and 17.2% of the landscape in the YRD had experienced
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transition from one category to another category of land use/cover during the periods 1976–1984,
1984–1995, 1995–2006, and 2006–2014, respectively, indicating that persistence dominates in each
period. However, the cumulative process of LUCCs had made the YRD undergo significant land
use/cover alterations, and about 62.1% of the YRD experienced transition from one category to a
different category of land use/cover over the 38 years considered. Therefore, the analysis also showed
that the land use class transfer does not take place all at once, but in a set of small sequential steps.

Although an increase in all artificial land types (artificial wetland and non-wetland) was observed
from 1976 to 2014, the aquafarm and salt pan land classification had the highest annual increasing
area and rate, followed by construction land. The ditches and ponds, woodland, and cultivated land
classifications mainly increased in the former two periods (1976–1984 and 1984 to 1995), and woodland
and cultivated land decreased in the period 1995–2006, which was mainly caused by the occupation of
construction land.

Swap change accounted for 57.6%, 53.4%, 46.0%, and 34.8% of total change during the period
1976–1984, 1984–1995, 1995–2006, and 2006–2014, respectively, showing a LUCC evolution process
from the change attributable to location to that attributable to quantity. Swap change is greater than
net change in the period before the 1995, demonstrating the importance of the swapping component
and suggesting that common methods of land use/cover change study would miss these dynamics.
The type of change that each land use/cover experienced differs from period to period, but landscape
types of natural wetland tend to have bigger swap changes than artificial land types such as aquafarm,
salt pan, and construction land classifications.

During the periods 1976–1984 and 1984–1995, the main transitions were characterized by
internal transformation of natural wetland, transition from wetland to cultivated land, and natural
wetland’s formation and erosion. However, the main transitions are predominantly natural wetland
artificialization and construction expansion in the period 1995–2006 and 2006–2014. The main transition
valuation also revealed a continuous increase in artificial areas, indicating that land use trajectories
were veering towards artificial surfaces. During 1976–2014, the destination of natural wetland
artificialization was mainly aquafarm and salt pan, which will have likely exacerbated land subsidence,
sea water invasion, and salinization [34,42,59].

Wetland change trajectory results demonstrate that the main wetland changes were wetland
degradation and wetland artificialization. The percentages of old degradation and recent degradation
transferred to sea surface were 23.2% and 42.5%, respectively. Meanwhile, the overlay analysis of
wetland change trajectory map and coastline evaluation map shows 73.3% of old degradation wetland
and 53.8% of recent degradation wetland are distributed in the stable land from 1976 to 2014. Therefore,
coastline change is the subordinate effect for natural wetland degradation in comparison with human
activities. The transitions of cultivated land to wetland were mainly a result of the building of ditches
and ponds in the periods 1976–1984 and 1984–1995, and there were small percentages of transitions
from cultivated land to grassland and aquafarm land in the periods 1995–2006 and 2006–2014, which
were caused by the policy of returning farmland to wetland and a new agriculture-fishery mode.

The footprint of human disturbance on the YRD is becoming larger and larger, and the
artificialization rate of the YRD increased from 40.1% in 1976 to 81.1% in 2014. The wetlands in
the YRD are experiencing a continuous development and evolution process under the combined effects
of natural factors and human factors. It is certain that the degree of human disturbance tended to
increase with time, and the degree of influence has become deeper and deeper. Currently, the YRD is in
a period of rapid development, and large-scale development and construction activities are inevitable.
Although the establishment of Binzhou Shell Islands and Wetland Nature Reserve and the Yellow
River Delta Nature Reserve and implementation of wetland restoration projects for the protection of
coastal wetlands plays important role in preventing wetlands from loss and degradation, the overall
loss and degradation trend is unlikely to change in the short-term. As such, the protection of coastal
wetland ecological environment remains very difficult and long-term.
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5. Conclusions

This research quantified the LUCC process, explored the systematic transitions of land cover,
and identified wetland change trajectory for the period 1976–2014 in the Yellow River Delta through
enhanced transition matrix and relevant quantitative indicators. This study provides reliable LUCC
data, which is useful for the detection and refinement of conservation policies aimed at protecting
estuarine wetland. The main wetland changes were wetland degradation and wetland artificialization,
and anthropogenic activities were the major driving forces of wetland degradation. Our findings
suggest that development of salt pan industry and the construction of built spaces occupying natural
wetland needs to be controlled and well managed in order to help maintain the natural habits and
mitigate seawater intrusion and soil salinization. Finally, this study highlighted that the identification of
systematic transitions and their spatial statistical modeling under GIS environment enable researchers
and planners to focus on the most important signals of systematic landscape transitions and allow a
better understanding of the proximate causes of changes.
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