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Abstract: A landscape epidemiology modeling framework is presented which integrates the
simulation outputs from an established spatial agent-based model (ABM) of malaria with a
geographic information system (GIS). For a study area in Kenya, five landscape scenarios
are constructed with varying coverage levels of two mosquito-control interventions. For
each scenario, maps are presented to show the average distributions of three output indices
obtained from the results of 750 simulation runs. Hot spot analysis is performed to detect
statistically significant hot spots and cold spots. Additional spatial analysis is conducted
using ordinary kriging with circular semivariograms for all scenarios. The integration of
epidemiological simulation-based results with spatial analyses techniques within a single
modeling framework can be a valuable tool for conducting a variety of disease control
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activities such as exploring new biological insights, monitoring epidemiological landscape
changes, and guiding resource allocation for further investigation.

Keywords: landscape epidemiology; agent-based models; simulation; modeling; spatial
analysis; hot spot analysis; Kriging

1. Introduction

Spatial epidemiology, medical geography, and geographical epidemiology are all effectively
synonymous terms for the study of the geographical distribution of disease spread or population at
risk [1–3]. A closely related research field, landscape epidemiology, studies the patterns, processes, and
risk factors of diseases across time and space. It describes how the spatio-temporal dynamics of host,
vector, and pathogen populations interact within a permissive environment to enable transmission [4–6].
The emergence and spread of infectious diseases in a changing environment require the development
of new methodologies and tools. As such, disease dynamics models on geographic scales ranging from
village to continental levels are increasingly needed for quantitative prediction of epidemic outcomes
and design of practicable strategies for control [7,8].

Understanding a landscape epidemiology system requires more than an understanding of the different
types of individuals (host, vector, and pathogen) that comprise the system. It also requires understanding
how the individuals interact with each other, and how the results can be more than the sum of the
parts. In this regard, agent-based models (ABMs), also known as individual-based models (IBMs),
have become very popular in recent years. ABMs are computational models for simulating the actions
and interactions of autonomous agents with a view to assessing their effects on the system as a whole.
An ABM often exhibits emergent properties arising from the interactions of the agents that cannot be
deduced simply by aggregating the properties of the agents. Thus, an ABM can be a very practical
method of analysis of the dynamic consequences of agents for a landscape epidemiology model.

In recent years, despite the proliferation of spatial models which acknowledge the importance of
spatially explicit processes in determining disease risk, the use of spatial information beyond recording
spatial location and mapping disease risk is rare [9]. Although numerous recent tools have been
developed using geographic information systems (GIS), global positioning systems (GPS), remote
sensing and spatial statistics, there is still a lack of and hence a serious need to develop efficient and
useful tools for research, surveillance, and control programs of vector-borne diseases (VBDs).

In this paper, we present a landscape epidemiology modeling framework by integrating an established
spatial ABM of malaria with a GIS (preliminary results of integrating an earlier version of the ABM
with a GIS were described in a conference paper in [10]). Malaria is one of the largest causes of
global human mortality and morbidity. According to the World Health Organization (WHO), half of
the world’s population (about 3.4 billion people) are currently at risk of malaria, with about 207 million
cases and an estimated 627, 000 deaths in 2012 [11]. The ABM describes the population dynamics
of the malaria-transmitting mosquito species Anopheles gambiae. To account for three output indices
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and five scenarios (that represent two coverage levels of the two interventions being modeled), a total
of 750 simulations are run for two years, and the average results are reported in this paper. Using
spatial statistics tools, hot spot analysis is performed for all scenarios and two output indices in order to
determine the statistical significance of the simulation results. Additionally, we have applied ordinary
kriging with circular semivariograms on all three output indices considering all the scenarios. To allow
the viewers for an improved spatial analysis perspective, the kriged maps are presented along with other
results for a better insight for the unmeasured (i.e., not simulated) locations on the maps.

Besides being useful for simulation modelers in different branches of science and engineering, this
work can provide important insights from the epidemiological perspective, and thus would be valuable
for epidemiologists, disease control managers, and public health officials for research as well as in
practical fields. In particular, we believe that the insights gained through this study can assist these
stakeholders in refining further research questions and surveillance needs, and in guiding control efforts
and field studies. Additionally, although the landscape epidemiology modeling framework described in
this paper utilizes an ABM of malaria-transmitting mosquitoes, it is applicable to a wider range of other
infectious VBDs (e.g., dengue, yellow fever, etc.), and hence may find its use in a much wider scenario.

Although the work presented in this paper builds upon a previous work [10] of a subset of the authors,
is new and different (from the previous work) in a number of dimensions. In particular, the current work
presents the following new features:

• Use of improved models: Although the current paper builds upon the exploratory ideas presented
in [10], much improved versions of both the core model and the spatial agent-based model (ABM)
have been used for this paper. Over the last few years, we have developed several versions of the
core model and the corresponding ABMs. The earlier versions, including the one used for [10],
mostly dealt with exploratory features [12–14]. Many of those results were not tested using the
verification & validation (V&V) and replication features/techniques of the models.
On the other hand, the version described and used in this paper reflects the most recent updates in
an attempt to enrich the models with features that reflect the population dynamics of An. gambiae
in a more comprehensive way, as described in [15,16]. Since the most recent ABM is tested using
the rigorous V&V and replication techniques, the results presented in this paper entail much higher
confidence from both the epidemiological and the simulation perspectives. A summary of major
improvements incorporated in the current ABM used for this paper is presented in Table 1.
• Modeling malaria-control interventions: From an epidemiological point of view, one of the most

important roles of modeling is to quantify the effects of major malaria-control interventions
such as insecticide-treated nets (ITNs) or long-lasting impregnated nets (LLINs), indoor residual
spraying (IRS), larval source management (LSM), etc. Recent malaria control efforts have seen
an unprecedented increase in their coverages. Impact of these interventions, often applied and
assessed in isolation and in combination, is the focus of investigation of numerous recent and
ongoing studies. In this study, the combined impacts of LSM and ITNs have been evaluated.
Notably, the scope of the work in [10] did not cover the study of mosquito control interventions
and hence, naturally, no results thereof were reported therein. To this end, the scope of the current
study is much broader and more meaningful from the epidemiological perspective.
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• Reporting aggregate measures by replicating all simulations: Replicability of the in silico
experiments and simulations performed by various malaria models bear special importance.
Replication is treated as the scientific gold standard to judge scientific claims and allows modelers
to address scientific hypotheses [17,18]. In agent-based modeling and simulation (ABMS),
replication is also known as model-to-model comparison, alignment, or cross-model validation.
It falls under the broader subject of V&V. As highlighted by recent simulation research, most
simulation models (including the one presented in the current paper) that involve substantial
stochasticity should conduct sufficient number of replicated runs, and some form of aggregate
measures of these replicated runs should be reported as results (as opposed to reporting results
from a single run). Sufficient number of replications is required to ensure that, given the same
input, the aggregate response can be treated as a deterministic number, and not as random variation
of the results. This allows modelers to obtain a more complete statistical description of the
model variables.

Table 1. Updated reatures for the models used for this paper. Each row represents a
specific model feature. The second column refers to the exploratory features from the
previous versions [12–14]. The third column refers to the most recent features from [15,16],
which are used for this paper. Resource-seeking includes both host-seeking and oviposition.
For fecundity, N indicates a normal distribution with mean and standard deviation. LSM
and ITNs refer to the two interventions, larval source management and insecticide-treated
nets, respectively.

Feature Previous Versions Current Versions

Combined interventions No Yes
Coverage scheme for ITNs Not applicable Complete coverage

Egg development time Constant Temperature-dependent
Fecundity (eggs per oviposition) Constant N(170, 30)

Interventions modeled None LSM, ITNs
Modeling human population No Yes (static)
Replication of simulations No Yes

Resource-seeking Anytime Only at night
Stage transitions Anytime Only in permitted time-windows

Time step resolution Daily Hourly

Since the spatial ABM involves considerable stochasticity in the forms of probability-based
distributions and equations, performing sufficient number of replicated runs is extremely important
for validation of the results. In the ABM, mosquito agents’ decisions are often simulated using
random draws from certain distributions. These sources of randomness are used to represent the
diversity of model characteristics, and the behaviour uncertainty of the agents’ actions, states, etc.
For example, when a host-seeking mosquito agent searches for a blood meal in a ITN-covered
house, a 20% ITN coverage would mean that it may find a blood meal with a probability of 0.2,
which can be simulated using random draws from a uniform distribution. The randomness has
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significant impact on the results of the simulation, and different simulation runs can therefore
produce significantly different results (due to a different sequence of pseudo-random numbers
drawn from the distributions). As a consequence, in this study, 50 replicated runs for all
simulations are performed, and their averages are reported.
• Kriging analysis: In addition to hot spot analysis, spatial analysis has been conducted using

ordinary kriging with circular semivariograms for all scenarios for all the output indices using
ArcGIS 9.3 [19]. For the entire study area, kriging analysis produces predicted values for
unmeasured (i.e., not simulated) spatial locations, which are derived from the surrounding
weighted measured values. Interpolation (prediction) for spatial data for all the three output indices
is performed by kriging.

These new dimensions allowed us to present new results in this paper, which entail much higher
confidence from both the epidemiological and the simulation perspectives.

2. Experimental Section

2.1. The Core Model

In this section, we present a brief overview of the conceptual biological core model (hereafter referred
to as the core model) from which the spatial agent-based model (ABM) was developed. The core
model describes the population dynamics of An. gambiae, which is regarded as one of the most efficient
mosquito species that transmits malaria. Due to its pivotal role in malaria transmission, modeling its
population dynamics can assist in finding factors in the mosquito life cycle that can be targeted to
decrease malaria transmission to a lower level. The An. gambiae complex, a closely related group of
eight named mosquito species found primarily in Africa, includes three nominal species, An. gambiae,
An. coluzzii, and An. arabiensis that are among the most efficient malaria vectors known (in this paper,
the terms ‘vector’ and ‘mosquito’ are used interchangeably). The model described in this paper has been
designed specifically around the mosquito An. gambiae. While the respective ecologies and involvement
in malaria transmission among other members of the An. gambiae complex differ in important ways,
this model could effectively apply to all three and even to many of the several dozen other major malaria
vectors in the world.

The complete An. gambiae mosquito life cycle consists of aquatic and adult phases, as shown in
Figure 1. The aquatic phase (also known as the immature phase) consists of three aquatic stages: Egg (E),
Larva (L), and Pupa (P). The adult phase consists of five adult stages: Immature Adult (IA), Mate
Seeking (MS), Blood Meal Seeking (BMS), Blood Meal Digesting (BMD), and Gravid (G) (the term
gravid denotes the egg-laying stage). The development and mortality rates in all eight stages of the life
cycle are described in terms of the aquatic and adult mosquito populations.

The core model addresses several important features of the An. gambiae life cycle, including the
development and mortality rates in different stages, the aquatic habitats, oviposition, etc. Another
important feature, vector senescence, is adopted to account for the age-dependent aspects of the mosquito
biology, and implemented using density- and age-dependent larval and adult mortality rates. Further
details about the core model can be found in [16].
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The Anopheles mosquitoes need to access human blood meals (in houses) and aquatic habitats
(various water bodies) to complete their life cycle. Thus, the houses and aquatic habitats can be termed as
important ecological resources for the mosquitoes. These resources have a direct impact on the spatial
heterogeneity of the landscapes being modeled, and their availability has long been recognized as a
crucial determinant for malaria transmission [20].
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Figure 1. Life Cycle of Mosquito Agents. The An. gambiae mosquito life cycle consists
of aquatic and adult phases. The aquatic phase consists of three aquatic stages: Egg (E),
Larva (L), and Pupa (P). The adult phase consists of five adult stages: Immature Adult
(IA), Mate Seeking (MS), Blood Meal Seeking (BMS), Blood Meal Digesting (BMD), and
Gravid (G). Each oval represents a stage in the model. Stages in which agents move through
the landscape are marked in red. The rectangles represent durations for the fixed-duration
stages. The symbol h denotes hour. Permissible time transition windows (from one stage to
another) are shown next to the corresponding stage transition arrows as rounded rectangles.
Note that adult males, once reaching the Mate Seeking stage, remain forever in that stage
until they die; adult females cycle through obtaining blood meals (in Blood Meal Seeking
stage), developing eggs (in Blood Meal Digesting stage), and ovipositing the eggs (in Gravid
stage) until they die. By Arifin et al. [16], used under a Creative Commons Attribution 4.0
International License.

2.2. Aquatic Habitats and Oviposition

The core model assumes simplistic, homogeneous aquatic habitats for all mosquitoes. All habitats
are uniform in size and capacity (this assumption is relaxed for this study by including five different
types of habitats with varying habitat capacities, as described in Table 2), and the water temperature of
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a habitat is assumed to be the same as the air temperature. To account for the combined seasonality
factor, each aquatic habitat is set with a carrying capacity that can be below or above a baseline capacity,
representing low or high precipitation/rainfall, respectively. The carrying capacity essentially represents
the density-dependent oviposition mechanism by regulating an age-adjusted biomass that the habitat
can sustain.

Table 2. Feature types and counts for the ABM. A total of 975 aquatic habitats and
941 houses are used. The last column represents the assigned capacity per feature.

Type Count Assigned Capacity

Pool 4 2000

Puddle 13 1000

Pit latrine 395 500

Borehole 4 300

Wetland 559 10

House 941 5

Oviposition is the process by which gravid female mosquitoes lay new eggs. The oviposition
behavior of An. gambiae mosquitoes can be affected by a variety of factors, as demonstrated by several
studies [21–28]. In the core model, all larvae are categorized into different age groups, or cohorts,
according to the common age of the cohort. The model keeps track of the age-adjusted biomass in each
aquatic habitat, which is defined as the sum of the eggs, the pupae, and the one-day old equivalent larval
population in the habitat (for details, see [16]).

2.3. The Spatial Agent-Based Model (ABM)

The spatial ABM, described in detail in [14,15], simulates the life cycle of the mosquito vector
An. gambiae by tracking attributes relevant to the vector population dynamics for each individual
mosquito. It is developed in the Java [29] object-oriented programming (OOP) language using the
Eclipse Software Development Kit (SDK, Version: 3.5.2, freely available from [30]). In this section,
we present a brief overview.

The three major components of the spatial ABM are the mosquito agents, their environment, and rules.
An. gambiae mosquitoes are modeled as autonomous agents with explicit spatial locations (however,
once within a cell, a mosquito agent’s spatial location does not vary until it moves to another cell).
An agent’s life in the ABM evolves in artificial, well-defined environments modeled as landscape
environments. A landscape environment can be thought of as a medium on which the agents operate
and with which they interact. Agents have internal attributes (states) to store relevant attributes and
data represented by discrete variables. The major attributes of a mosquito agent include its age, life
cycle stage, environment, spatial location, movement counter, id (identifier), sex (gender), available eggs
counter, egg batch identifier, etc. Some attributes (e.g., id, sex) may remain fixed throughout the agent’s
lifespan in the ABM, while others (e.g., age, life cycle stage, spatial location) may change through
interaction with the environment and/or other agents.
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In the ABM, An. gambiae mosquitoes are the only dynamic agents (humans are included as static
agents, i.e., human agents do not move in space). A new mosquito agent begins its life cycle in the
aquatic phase as an egg, and then proceed through larva and pupa stages. When the aquatic phase
completes, the agent emerges as an adult mosquito into the adult phase, and advances through the five
adult stages (see Figure 1). To account for the limited flight ability and perceptual ranges of Anopheles
mosquitoes, the cell resolution in the selected landscape is chosen as 50 m× 50 m, yielding a total area of
≈25 km2 (for this study). Note that at every time step of the BMS and G stages, the agent needs
to search the cell-based landscape by moving from one cell to another until the desired resource is
found (the search event is guided by several flight heuristics, as described in Section 2.5). A male adult
mosquito, after reaching the MS stage, stays in this stage for the rest of its life. The stage transitions
(from one stage to another), development rates, and mortality rates are governed by rules as described
by the core model. The number of eggs that a gravid mosquito agent can lay is governed by the
density-dependent oviposition rules (see [16] for details). New agents, in the form of eggs, possess
the same spatial locations as that of the aquatic habitat in which they are oviposited.

The GIS-processed data layers are synthesized in the spatial ABM with a landscape-based approach,
where each landscape comprises discrete and finite-sized cells (grids). A landscape is used to represent
the coordinate space necessary for the spatial locations of the environments and the adult mosquito
agents. Resources, in the forms of aquatic habitats and houses, are contained within a landscape. Each
cell, with its spatial attributes, may represent a specific habitat environment (human or aquatic), or be
part of the (adult) mosquito environment. Landscapes are topologically modeled as 2D torus spaces with
a non-absorbing (periodic) boundary (with a non-absorbing (periodic) boundary, when mosquitoes hit
an edge of a landscape, they re-enter it from the edge directly opposite of the exiting edge, and thus are
not killed due to hitting the edge).

2.4. Event Action List (EAL) Diagram

In order to capture the major daily events of a simulation for the ABM in a standard, canonical manner,
a new type of descriptive diagram, called the Event Action List (EAL) diagram, is proposed and presented.
It depicts the simulation events (occurring on a daily basis), the corresponding actions triggered by those
events, and the list(s) of agents (data structures) affected by them. In an EAL diagram, each event
represents a biological phenomenon, and the corresponding action represents the programmatic task(s)
performed by the simulation. Optionally, some list(s) of agents may be modified as a direct result of
the performed action. Thus, an EAL diagram summarizes the daily events of the simulation model by
listing all major events, actions, and lists. For example, when the simulation is started, it needs to create
initial adult mosquito agents. The biological phenomenon “create initial adults”, termed as an event,
is realized by the (simulation) action “add agents”; this event-action pair affects the list of adult agents
in the simulation. An EAL diagram for the ABM is shown in Figure 2.

2.5. Flight Heuristics for Mosquito Agents

In the spatial ABM, movement of adult female mosquito agents in a landscape is restricted: they
move only when in BMS and G stages (marked in red in Figure 1) in order to seek for resources.
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Since each landscape comprises discrete and finite-sized (50 m × 50 m) cells, the landscape-based
modeling approach appeared to be especially suitable to capture the details of the resource-seeking
process. In summary, the resource-seeking process is modeled with random non-directional flights with
limited flight ability and perceptual ranges until the agents can perceive resources at close proximity,
at which point, the flight becomes directional.
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represents an event-action pair, in which the event is denoted at the upper-half, and the action
is denoted at the lower-half. Each rectangle represents the list(s) (data structures) of agents
affected by the event-action pair.

A mosquito agent’s neighborhood is modeled as an eight-directional Moore neighborhood.
The maximum distance that an agent may travel in a day is controlled by a movement counter, which
is reset to 5 at the beginning of each day for a moving agent (thus, the counter controls the maximum
daily range of movement, which translates to 250 2

√
2 m). The flight heuristics, depicted in the form of

flow-charts in Figure 3, are described below.
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The host-seeking event starts when a female adult mosquito agent enters the BMS stage and searches
for a human blood meal in a house. If the current cell contains a house, it immediately gets a blood meal,
and enters the BMD stage to digest the meal, rest, generate new eggs, and eventually enter the G stage
to search for an aquatic habitat (if the current cell contains multiple houses, one is chosen at random).
If the current cell does not contain any house, a new search event starts as follows. First, the agent’s
movement counter is checked. If the agent is permitted to move, its Moore neighborhood M is checked.
If M contains multiple cells that have houses, a random cell C (from these cells) is selected, and the
agent moves to cell C. If cell C contains multiple houses, a random house is selected, the agent gets a
blood meal, and continues as before. However, if the current cell and its Moore neighborhood do not
contain any house, the agent starts a random flight and moves randomly into one of the adjacent eight
cells (following a previous study [31], the probability of a random move into a diagonally-adjacent cell
is set as half that of moving into a horizontally- or vertically-adjacent cell).
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Figure 3. Flight heuristics for mosquito agents.

In an oviposition event, an agent searches for an aquatic habitat. If the current cell contains an aquatic
habitat, it’s current capacity is checked to see if it has any remaining capacity for new eggs, in which
case, the agent lay the eggs (again, if the current cell contains multiple aquatic habitats, one is chosen
at random). Once all of the eggs are laid, it goes to the BMS stage, thus initiating a new gonotrophic
cycle. If the current cell does not contain any aquatic habitat, the search continues in the same fashion
as described above.
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As evident from the above, in case of a directional flight, if multiple resources (houses or aquatic
habitats) are found within a single cell, a random resource is selected. Note that this strategy can be
easily extended/modified for future work to select a resource based on some preference criterion, e.g., to
select the house which has the fewest number of mosquitoes visited or to select the aquatic habitat which
has the largest remaining capacity.

As evident from the above, in case of a directional flight, if multiple resources (houses or aquatic
habitats) are found within a single cell, a random resource is selected. Note that this strategy can be
easily extended/modified for future work to select a resource based on some preference criterion, e.g., to
select the house which has the fewest number of mosquitoes visited or to select the aquatic habitat which
has the largest remaining capacity.

2.6. The Study Area

The study area is located within a subsection of the Siaya and Bondo Districts (Rarieda Division,
Nyanza Province) in western Kenya. It comprises a village which is selected from a set of 15 villages
with an area of approximately 70 km2. The greater area is locally known as Asembo, which covers an
area of 200 km2 with a population of approximately 60, 000 persons [32]. It lies on Lake Victoria and
experiences intense, perennial (year-around) malaria transmission [33]. The primary reason for selecting
Asembo is the availability of relevant data from the Asembo Bay Cohort Project [34] and the Asembo
ITN project [32]. In a series of 23 articles, these studies reported important public health findings from
a successful trial of ITNs in western Kenya [35]. The study area is shown in Figure 4: Figure 4A shows
the boundary and administrative units for Kenya, Figure 4B shows the selected data layers within the
village cluster, and Figure 4C shows the selected village cluster in Asembo, Kenya.

The ABM, without explicit parallelization or multiple runs, can handle a landscape with finite
maximum dimensions. Hence, a subset of villages with 95 × 96 cell dimensions is selected for all
simulation runs in this study, as outlined by the polygons in Figure 4B,C.

2.7. GIS Processing of Data Layers

ArcGIS Desktop 10 [36] is used to produce, process, and analyze the relevant data layers. Different
types of water features and villages (including houses) are identified, extracted and projected to the
Arc 1950 UTM Zone 36S projection system for all over Kenya. The selected water features include
rivers, lakes, wetlands, wells/springs, falls/rapids, lagoons, etc. Each water feature type is assigned a
unique ID.

The selected features are scaled down to a village cluster around Asembo. Water features for different
types of aquatic sites are included. Since the spatial ABM deals with spatial features at the habitat levels,
the study area is further scaled down to village and household levels, and then to subsets of villages levels.
Some of the water features are ranked by precedence by sub-grouping the water source data layers based
on their attributes. Similar types of water features in the same data layer are combined.

The selected data layers are then converted to the raster format, with a cell resolution of 50 m× 50 m.
All point shapefiles for aquatic habitats and houses are converted using the Point to Raster tool. Since pit
latrines are usually found inside the household boundaries, the shapefile for pit latrines is created from
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the shapefile for houses. It is possible to have more than one feature type within a single cell. In these
cases, to calculate the number of features (of each type) in each cell, the summation of value fields of
the corresponding data features is used. Finally, the raster files are converted to the ASCII format, and
are ready to be used as input to the spatial ABM.
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Figure 4. The Study Area. (A) Kenya Boundary and Administrative Units (Provinces);
(B) Study Area with Selected Data Layers; the outlined polygon represents a subset of
villages selected for the simulation runs in this study; (C) Village Cluster in Asembo;
(D) Legends.

2.8. Feature Counts

A total of 975 aquatic habitats, categorized into five different types, are identified in the selected
area as follows: (1) pools (large); (2) puddles (small); (3) pit latrines; (4) boreholes; and (5) wetland.
Boreholes, also known as borrow pits, have significant potential as breeding sites in the area. They
represent man-made holes or pits in the ground when local people use clay or soil for building houses,
making pots, etc., thereby leaving depressions in the ground that easily get filled with rain water.
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Pit latrines are very common to the households in the area. The wetland represents a stretch of marsh
lying to the northwest corner of the area which is dominated by herbaceous plant species.

As mentioned before, each aquatic habitat is set with a predefined carrying capacity (CC),
which regulates the aquatic mosquito population that the habitat can sustain, and reflects the habitat
heterogeneity (e.g., in terms of productivity) to some degree (see [15] for details). A total of 941 houses,
each having a mean of five occupants, are also identified. These feature counts and their assigned values
are summarized in Table 2. Note that for wetland, which covers multiple cells in the northwest corner of
the study area, the same CC value is assigned to each cell.

2.9. Vector Control Interventions

The last decade (2000–2010) of worldwide malaria control efforts has seen an unprecedented increase
in the coverage of vector (mosquito) control interventions for malaria, with ITNs/LLINs, IRS, and LSM
as the front-line vector control tools [37]. These interventions are often applied in isolation and in
combination, and their impacts have been investigated by numerous early and recent studies [38–45]. In
addition to these time-tested, established tools, new and novel intervention tactics and strategies such as
new drugs, vaccines, insecticides, improved surveillance methods, etc., are also being investigated [46].
Some of the promising approaches include genetically engineered mosquitoes through sterile insect
technique (SIT) or release of insects containing a dominant lethal [47,48], fungal biopesticides that
increase the rate of adult mosquito mortality [49], the development of genetically modified mosquitoes
(GMMs) or transgenic mosquitoes manipulated for resistance to malaria parasites [50], transmission
blocking vaccines (TBVs) which are intended to induce immunity against the malaria parasites [51], etc.

As mentioned before, the combined impacts of two vector control interventions (LSM and ITNs)
are evaluated for this study. Both interventions have been extensively used as intervention tactics
to reduce and control malaria in sub-Saharan Africa, as reported by numerous early and recent
studies [37,39,41,43]. LSM (also known as source reduction) is one of the oldest tools in the fight
against malaria. It refers to the management of aquatic habitats in order to restrict the completion
of immature stages of mosquito development. ITNs, particularly LLINs, are considered among the
most effective vector control strategies currently in use [39,52]. ITNs offer direct personal protection
to users as well as indirect community protection to non-users (through insecticidal and/or repellent
effects). For this study, LSM refers to the permanent elimination of targeted aquatic habitats. For ITNs,
the household-level complete coverage scheme is used, which ensures that if a house is covered, all
persons in the house are protected by bed nets; the two other relevant variables, killing effectiveness
and repellence, are both fixed at 50%. Killing effectiveness refers to an increased mortality (increased
probability of death of a mosquito), toxicity, or killing efficiency due to the insecticidal killing effects of
the ITNs; the insecticide kills the mosquitoes that come into contact with the ITNs. Repellence refers to
the insecticidal excito-repellent properties of the ITNs which repel the blood meal seeking mosquitoes;
it adds a chemical barrier to the physical one, further reducing human-mosquito contact and increasing
the protective efficacy of the ITNs (see [15,16] for details).

Four different scenarios are constructed by using two coverage (C) levels of low (20%) and
high (80%). For a specific coverage, aquatic habitats and houses which will be covered by the



Land 2015, 4 391

corresponding intervention are selected by using random sampling. The actual numbers of objects
covered approximate the desired coverage levels. A baseline scenario (with no intervention) is also
added for comparison. The scenarios are summarized in Table 3.

Table 3. Scenarios obtained by applying the two vector control interventions LSM and ITNs.
A total of 975 aquatic habitats and 941 houses are used to calculate the desired coverage (C)
levels of low (20%) and high (80%). The first column denotes the scenario (interventions
applied). The actual coverage (C) levels are given in the last two columns for aquatic habitats
and houses covered in the landscape, respectively.

Scenario
Coverage (C) %

% Aquatic Habitats Covered % Houses Covered

Baseline 0 0

LSMLow − ITNsLow 208/975 = 0.21 204/941 = 0.22

LSMLow − ITNsHigh 215/975 = 0.22 751/941 = 0.8

LSMHigh − ITNsLow 774/975 = 0.79 195/941 = 0.21

LSMHigh − ITNsHigh 781/975 = 0.8 736/941 = 0.78

2.10. Simulations

For each of the five scenarios (Baseline, LSMLow − ITNsLow, LSMLow − ITNsHigh,
LSMHigh − ITNsLow, and LSMHigh − ITNsHigh), 50 replicated simulation runs are performed and
the average results are reported (in order to rule out any stochasticity effects). Each simulation runs for
730 days (2 years) (in this paper, all time units related to the simulation runs refer to simulated time as
opposed to physical time or wall clock time; thus, a 2 years run indicates a virtual simulation run within
the computer which represents an imitation of operations in the real-world for the same time duration),
and reaches a steady state (equilibrium) at around day 50. Interventions are applied on day 100 and
continued up to the end of the simulation.

Initially, all simulations start with 1000 female adult mosquito agents (no male agents). Each female
agent is assigned to a randomly-selected aquatic habitat. The maximum daily range of movement for
mosquito agents is set to 5 cells per day, which translates to 250 2

√
2 m. Biological aging (senescence) of

the mosquitoes is assumed. The ABM implements age-specific mortality rates for the adult mosquitoes
and the larvae (i.e., the probability of death for mosquito agents increases with their age).

2.11. Output Indices

Mosquito abundance is the primary output index of the ABM. However, the spatial model also allows
us to explore some spatial indices by overlaying these on the entire landscape. These indices capture the
spatial heterogeneity of various objects (aquatic habitats and houses) in the landscape. Some of these
indices are generated as cumulative aggregates at the end of each simulation run, and represent measures
on a per object basis. The output indices are listed below:
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1. Mosquito Abundance: represents a spatial snapshot of the female adult mosquito population
distribution at the end of simulations (see Figures 5 and 6)

2. Oviposition Count per Aquatic Habitat: for each aquatic habitat x, it represents the cumulative
number of female adult mosquitoes which have oviposited (laid eggs) in x; depicted spatially at
the end of simulations by overlaying on top of the aquatic habitats (see Figures 7 and 8)

3. Blood Meal Count per House: for each house y, it represents the cumulative number of blood meals
successfully obtained by female adult mosquitoes in y; depicted spatially at the end of simulations
by overlaying on top of the houses (see Figures 9 and 10)

Note that for all output indices, the average measures of 50 replicated simulation runs are reported
(in order to rule out any stochasticity effects). The spatial indices are sampled across all daily time steps
throughout the entire simulations. The output maps are produced by overlaying the averaged indices on
top of the relevant data layers.

All output indices are mapped using the graduated symbology. The graduated symbol renderer is one
of the common renderer types used to represent quantitative information. Using a graduated symbols
renderer, the quantitative values for the output indices are separately grouped into ordered classes, so
that higher values cover larger areas on the map. Within a class, all features are drawn with the same
symbol. Each class is assigned a graduated symbol from the smallest to the largest.

2.12. Hot Spot Analysis

Using spatial statistics tools, hot spot analysis (spatial cluster analysis) is performed for all scenarios
for the last two indices (oviposition count per aquatic habitat and blood meal count per house) in order to
determine whether a specific value is statistically significant or not [53]. In hot spot analysis, if a higher
value is surrounded by similar magnitude of other higher values, it is considered a hot spot (with 95%

or 99% confidence intervals). The cold spots are determined using the same principle. The values (or
cluster of values) between the statistically significant hot spots and cold spots are considered as random
samples of a distribution. The hot spot analysis tool calculates the Getis-Ord Gi* statistic (z-scores and
p-values) for each feature in a dataset [36]. Z-scores are measures of standard deviations, and define
the confidence intervals (in this case, 95%–99%). A p-value represents the probability that the observed
spatial pattern was created by some random process.

The null hypothesis for pattern analysis essentially states that the expected pattern is just one of the
many possible versions of complete spatial randomness. If the z-score is within the 95%–99% confidence
interval or beyond, the exhibited pattern is probably too unusual to be of random chance, and the p-value
will be subsequently small to reflect this. In this case, it is possible to reject the null hypothesis and
proceed to determine the cause of the statistically significant spatial pattern. On the other hand, if the
z-score lies below the 95% confidence interval, the p-value will be larger, the null hypothesis cannot be
rejected, and the pattern exhibited is more likely to indicate a random pattern. Thus, a high z-score and
small p-value for a feature indicates a significant hot spot. Conversely, a low negative z-score and small
p-value indicates a significant cold spot.
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2.13. Kriging Analysis

Kriging, also known as Gaussian process regression, is a popular method of interpolation (prediction)
for spatial data. It is an interpolation technique in which the surrounding measured values are weighted
to derive a predicted value for an unmeasured location. Weights for the measured values depend on
the distance between the measured points, the prediction locations, and the overall spatial arrangement
among the measured points [54]. Various kriging techniques provide a framework for predicting values
of a variable of interest at unobserved locations given a set of spatially distributed data, incorporating
spatial autocorrelation and computing uncertainty measures around model predictions [55,56].

In recent years, kriging has been extensively used in public heath and epidemiology modeling
for variable mapping to interpolate estimates of occurrence of a variable or risk of disease [57–59].
For example, de Carvalho Alves and Pozza characterized the spatial variability of common bean
anthracnose using kriging and nonlinear regression models [60]. Alexeeff et al. evaluated the accuracy of
epidemiological health effect estimates in linear and logistic regression when using spatial air pollution
predictions from kriging and land use regression models [61]. For malaria modeling, the Malaria Atlas
Project (MAP) [62] developed several Bayesian geostatistical kriging models for spatial prediction
of Plasmodium falciparum prevalence, estimated human populations at risk, vector distribution, etc.,
generating malaria maps of many endemic countries in sub-Saharan Africa [63–65].

The basic idea of kriging is to predict the value of a function at a given point by computing a weighted
average of the known values of the function in the neighborhood of the point. To this end, kriging is
closely related to the method of regression analysis. The data represent a set of observations of some
variable(s) of interest, with some spatial correlation. Usually, the result of kriging is the expected value,
referred to as the kriging mean and the kriging variance computed for every point within a region of
interest. If kriging is done with a known mean, it is then called simple kriging. On the other hand,
in ordinary kriging, estimating the mean and applying (simple) kriging are performed simultaneously.

Kriging uses semivariogram functions to describe the structure of spatial variability. A semivariogram
is one of the significant functions to indicate spatial correlation in observations measured at sample
locations, and plays a central role in the analysis of geostatistical data using kriging. The effect
of different semivariograms on kriging has also been a focus of interest in different branches of the
literature (e.g., [66]). In this paper, spatial analysis is conducted using ordinary kriging with circular
semivariograms for all scenarios for all the output indices using ArcGIS 9.3 [19]. We note that similar
analyses have also been conducted for other insects in the literature (e.g., for fig fly [67]).

3. Results

In this section, we describe the results by categorizing them according to the output indices. For the
output indices and scenarios (see Table 3), simulation results are presented along with hot spot analysis
and kriging results. For clarity, houses and pit latrines are not shown in the output maps. Each scenario
(in the output maps) represents the average results of 50 replicated simulations.
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3.1. Mosquito Abundance

The mosquito abundance maps are shown in Figure 5. These maps depict the mosquito abundances
index, which represent a spatial snapshot of the female adult mosquito population distribution at the
end of simulations. Figure 5A shows the abundance map for the baseline scenario (in which no
intervention was applied). Figure 5B depicts the symbols used in the maps: it shows the village
boundary, different types of aquatic habitats, and the graduated symbols for abundances. Note that for
the aquatic habitats, the symbol sizes vary according to the assigned carrying capacities of the habitats
(see Table 2). The symbol sizes for abundances also vary depending on the magnitudes. Figure 5C–F
show the abundance maps for the four different scenarios with control interventions LSM and ITNs
having two coverage levels: LSMLow − ITNsLow, LSMLow − ITNsHigh, LSMHigh − ITNsLow,
and LSMHigh − ITNsHigh, respectively. The corresponding kriged maps for mosquito abundance are
illustrated in Figure 6.

As shown in Figure 5, with increasing coverage levels of both interventions, the mosquito abundances
are significantly reduced, as evident from the progressively lower number of “Above 40” symbols (which
denote the highest abundances) in the series of figures. The changes are more clear and evident from the
kriged maps (Figure 6).

It is interesting to note that ITNs are more effective in reducing abundances than LSM (compare
Figure 5D,E as well as the kriged maps in Figure 6D,E): covering 80% of the houses has more impact
than removing a total of 80% different types of the aquatic habitats. This is partially due to the fact
that the household-level complete coverage scheme (used for ITNs, see Experimental Section) prohibits
a blood meal-seeking female mosquito to obtain a blood meal from any person in any house which is
covered by ITNs. As coverage of ITNs increases, more houses fall within the range of coverage, and
the probability of finding an unprotected human in another house (during the blood meal-seeking stage)
decreases. Thus, with increasing coverage of ITNs, abundances are reduced more effectively.

The low (20%) coverage levels for both interventions do not produce significant reduction in
abundances, as evident from the baseline and LSMLow − ITNsLow maps (compare Figure 5A,C).
In general, higher abundances are observed near the pools (which have the highest carrying capacities)
and in the north east and the south east portions of the map.

When either of the interventions has a high (80%) coverage level, abundances are significantly
reduced, as evident from the LSMLow − ITNsHigh and LSMHigh − ITNsLow maps. For these
two scenarios, the highest abundances observed are significantly lower than the baseline (compare
Figure 5D,E with Figure 5A). However, for the LSMLow − ITNsHigh scenario higher abundances do
not always coincide with the spatial locations of aquatic habitats with higher carrying capacities, while
for the other scenario this expected trend is observed for some cases.

Not surprisingly, when both interventions have high (80%) coverage levels, abundances are reduced
to the lowest level, as evident from the LSMHigh−ITNsHigh map shown in Figure 5F. For this scenario
very few higher abundances are observed; these occur at greater distances from the spatial locations of
aquatic habitats with higher carrying capacities, since most of them are eliminated by LSM.
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Figure 5. Maps for all scenarios for the mosquito abundances index. Each scenario
represents the average results of 50 replicated simulations. (A) Abundance map for
baseline; (B) Legends: symbol sizes are proportional to the carrying capacities of the
aquatic habitats (see Table 2); graduated symbol sizes are proportional to the magnitudes
of abundances. For clarity, houses and pit latrines are not shown; (C) Abundance map for
LSMLow − ITNsLow; (D) Abundance map for LSMLow − ITNsHigh; (E) Abundance map
for LSMHigh − ITNsLow; (F) Abundance map for LSMHigh − ITNsHigh.
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(A) Baseline (B) Legends

(C) LSMLow - ITNsLow (D) LSMLow - ITNsHigh

(E) LSMHigh - ITNsLow (F) LSMHigh - ITNsHigh

Figure 6. Kriged maps for all scenarios for the mosquito abundances index. (A) Kriged
abundance map for baseline; (B) Legends; (C–F) The four intervention scenarios.
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3.2. Oviposition Count per Aquatic Habitat

Results for the oviposition count per aquatic habitat index are shown in Figure 7. These maps depict
the cumulative number of female adult mosquitoes which have oviposited (laid eggs) in the aquatic
habitats, as well as the predicted hot spots and cold spots identified by hot spot analysis. For the five
scenarios, oviposition counts for the aquatic habitats are placed into three ordered classes of 1–20, 000,
20, 001–50, 000 and above 50, 000 using the same quantitative scale, and are shown using graduated
symbols. Hot spots and cold spots are spatially clustered using two confidence interval (CI) levels of 95%
and 99%. The legends denote the color-coding for the classes, the hot spots, the cold spots, and the CIs.

Figure 7A shows a higher frequency of higher values for the oviposition count per aquatic habitat
index in the baseline map. Significant number of these appear to be statistically significant, and hence
considered as hot spots. Notable clustering of lower values can also be seen over the wetland area (where
each cell is assigned a tiny CC), which are categorized as cold spots.

Figure 7C shows a drop in frequency of higher values in the LSMLow − ITNsLow map for the
same index, about half of which are considered as hot spots. In addition, more cold spots can be seen
over the wetland area. Both of these results can be explained as the effects of low coverage levels for
both interventions.

When either of the interventions has a high coverage level, frequencies of higher values are further
reduced, as evident from the LSMLow − ITNsHigh and LSMHigh − ITNsLow maps in Figure 7D,E,
respectively. For the LSMLow − ITNsHigh scenario, some moderate oviposition counts become
statistically significant, fewer hot spots are detected, and most of the cold spots are eliminated from
the wetland area. On the other hand, the LSMHigh − ITNsLow scenario has higher frequencies of
higher oviposition counts, hot spots, and cold spots. These observations confirm to our previous results
(for abundances) that ITNs are more effective in reducing oviposition counts than LSM. As before,
when both interventions have high coverage levels, frequencies of higher oviposition counts, hot spots,
and cold spots are reduced to the lowest level, as evident from the LSMHigh − ITNsHigh map shown
in Figure 7F.

Similar deductions can be made from the kriged maps presented in Figure 8. For example, when
both interventions are applied with higher coverages (Figure 8F), areas with the light blue and green
colors representing the two highest levels of oviposition counts are simply non-existent from the map,
and the third one (light brown) is greatly diminished. This illustrates the drastic reductions in the
oviposition counts.

3.3. Blood Meal Count per House

Results for the blood meal count per house index are shown in Figure 9. These maps depict the
cumulative number of blood meals obtained by female adult mosquitoes in the houses, as well as the
predicted hot spots and cold spots identified by hot spot analysis. For the five scenarios, blood meal
counts for the houses are placed into three ordered classes of 1–3000, 3001–9000, and above 9000 using
the same quantitative scale, and are shown using graduated symbols. Hot spots and cold spots are
spatially clustered using two confidence interval (CI) levels of 95% and 99%. The legends denote the
color-coding for the classes, the hot spots, the cold spots, and the CIs.
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Figure 7. Maps for all scenarios for the oviposition count per aquatic habitat index. Each
scenario represents the average results of 50 replicated simulations. Oviposition counts are
categorized using the same quantitative scale, and are shown using graduated symbols which
are proportional to the magnitudes. For clarity, houses and pit latrines are not shown. Hot
spots and cold spots are spatially clustered using two confidence intervals (CIs) of 95% and
99%. (A) Baseline; (B) Legends; (C–F) The four intervention scenarios.
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(A) Baseline (B) Legends

(C) LSMLow - ITNsLow (D) LSMLow - ITNsHigh

(E) LSMHigh - ITNsLow (F) LSMHigh - ITNsHigh

Figure 8. Kriged maps for all scenarios for the oviposition count per aquatic habitat index.
(A) Baseline; (B) Legends; (C–F) The four intervention scenarios.
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Figure 9. Maps for all scenarios for the blood meal count per house index. Each
scenario represents the average results of 50 replicated simulations. Blood meal counts are
categorized using the same quantitative scale, and are shown using graduated symbols which
are proportional to the magnitudes. For clarity, houses and pit latrines are not shown. Hot
spots and cold spots are spatially clustered using two confidence intervals (CIs) of 95% and
99%. (A) Baseline; (B) Legends; (C–F) The four intervention scenarios.
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(A) Baseline (B) Legends

(C) LSMLow - ITNsLow (D) LSMLow - ITNsHigh

(E) LSMHigh - ITNsLow (F) LSMHigh - ITNsHigh

Figure 10. Kriged maps for all scenarios for the blood meal count per house index.
(A) Baseline; (B) Legends; (C–F) The four intervention scenarios.
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The blood meal count per house index results show similar trends as observed for the oviposition
count per aquatic habitat index results. Similar trends are also noticed from the kriged maps presented
in Figure 10. The baseline map possesses the highest frequencies of higher values, hot spots, and cold
spots (Figure 9A), all frequencies are reduced (with the introduction of a few cold spots in the lower-left
area) when both interventions have low coverage levels (Figure 9C), ITNs (high coverage level) are
more effective than LSM with further reduction in frequencies of higher values (Figure 9D,E), and very
few higher values, hot spots, and cold spots remain when both interventions have high coverage levels
(Figure 9F). Interestingly, the LSMLow − ITNsHigh map shows some cold spots in an area where a few
aquatic habitats with higher carrying capacities exist, and the LSMHigh− ITNsLow map possesses very
few cold spots. Similar trends are also observed in the corresponding kriged maps (Figure 10).

In general, statistically significant higher values are detected over the north east and the south east
portions of the maps, as these portions contain more number of houses (hence more blood meal counts
per house). This is also evident from the kriged maps. The central portions depict mostly random
distribution of values which are not detected as hot spots.

4. Discussion

This study has presented a landscape epidemiology modeling framework to integrate the simulation
results from a spatial ABM of malaria-transmitting mosquitoes with a GIS and then to apply spatial
statistics techniques on the model outputs. Some of the key features, characteristics, and limitations of
the framework are highlighted below.

4.1. Stochasticity and Initial Conditions

The ABM involves substantial stochasticity in the forms of probability-based distributions and
equations. The mosquito agents’ decisions and actions are often simulated using random draws
from certain distributions. These sources of randomness are used to represent the diversity of
model characteristics. To rule out any stochasticity effects introduced by these probabilistic events,
50 replicated simulation runs are performed for each simulation in each of the five scenarios, and their
aggregate measures are reported in the form of averages.

To verify whether 50 replicated runs are enough for each simulation, we ran as many as 120 replicates
of each simulation (using the versions of the ABM available at that point in time) in the earlier phases
of model development (to be specific, during the verification, validation, and replication phases). After
analyzing the results, it became apparent that roughly 30 replicates were enough to rule out most issues
regarding stochasticity, initial seed bias, bifurcation, and other chaos factors. We also verified that the
average could be treated as a deterministic measure for the mosquito abundance outputs of the ABM.
In addition, the replication study also helped in model-to-model comparison and cross-model validation
of the different versions (developed by individual authors) of the ABMs. Some of these results were
presented in [14,15,68,69].

The initial uniform random assignment of female agents to arbitrary aquatic habitats does not affect
the current emerging outcomes of the ABM. This was previously ensured as part of the verification and
validation (V&V) studies of the ABMs by considering longer running times and with multiple initial
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random seeds to check for robustness [13,14,68,69]. In fact, this holds true for both cases of with and
without the landscape approach, i.e., when the simulations are run in spatial and non-spatial modes,
respectively (these results are not included in the current paper).

4.2. Emergence

In general, an important characteristic of an ABM is its capability to capture emergent phenomena
resulting from the interactions of the individual agents from the bottom up (after the simulation reaches
equilibrium or steady state). To this regard, our ABM exhibits the emerging spatial distribution of
mosquito agents once the simulations reach equilibrium on or after day 50. The emergence is primarily
governed by two factors: (1) the assigned carrying capacities of the aquatic habitats; and (2) the spatial
heterogeneity of the landscapes, which translates to the distributions and densities of houses and aquatic
habitats. In the simulations, the 50-days warm-up period ensures that the model has reached steady state,
and should not be treated as an absolute value. Each generation of the mosquitoes requires ≈15 days to
become mature, and it takes≈2–3 generations for the initial model to reach equilibrium. Thus, a 50-days
warm-up period would have been sufficient in most cases. Note that the interventions (LSM and ITNs)
are applied after day 100, and continued up to the end of the simulation. This longer period (100-days)
also guards against oscillatory spikes in the abundance, which may occur due to several factors such
as generation-to-generation oscillation tendency, density-dependence and skip-oviposition effects, short
hiatus in egg-laying, etc. [15,16].

4.3. Complexity

In many complex systems, cause and effect relationships are usually not proportional to each other;
as a result, manipulation attempts are often resisted, which may lead to an unexpected systemic shift or
phase transition (the so-called tipping points or critical points) [70]. In the spatial ABM, such tipping
points may occur with certain combinations of the intervention parameters. For this study, the coverage
levels of 0.2 and 0.8 were used for both interventions. They should be treated as representative sample
points which resemble two points closer to the opposite ends of the 0.0–1.0 coverage continuum (hence,
representing coverage levels on the two extremes of low and high, respectively). Earlier, we tested the
ABM by running simulations with varying levels of coverages including 0.2, 0.4, 0.6, 0.8, etc. (along
with varying levels of repellence and mortality/insecticidal effect for the ITNs) [15]. Within these ranges
and parameter settings, the simulations approached several tipping points with specific combinations
of the three parameters. For example, in a landscape with high density of houses, 90% reductions
in mosquito abundance were achieved with LSM coverage of 0.6, ITNs coverage of 0.87, and ITNs
mortality of 0.5 [15].

4.4. Data Resolution (Granularity)

The choice of spatial, temporal, and spectral resolutions determines the degree of precision, realism,
and general applicability of the models [7]. Even with the recent rapid advances in computing power,
these factors cannot always be maximized simultaneously. Although the resolution of the co-ordinates
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recorded in a modern GIS may now be of the order of only a few metres, the modeled resolution must
be carefully decided so that it reflects the specific study, its objectives, and the objects being mapped:
it should be sufficiently high to allow meaningful inferences to be made from the results, but not too
high to include irrelevant details. For this study, the spatial resolution (granularity) of the landscapes is
chosen as 50 m × 50 m. This selection is based on several factors, some of which include the spatial
GIS data availability, the number of maximum cells which can be practically processed by the ABM
(within bounded run-time), the limited flight ability and perceptual ranges of mosquitoes, etc. The
selected granularity may seem to be low (with a cell-size of 50 m × 50 m), particularly given the other
assumptions on the distances that a mosquito agent can fly. However, in the future, with the availability
of higher resolution spatial data and an advanced version of the current ABM capable of processing
multiple spatial nodes in parallel (e.g., by using the message passing interface (MPI) technique), we plan
to simulate landscapes with higher spatial resolution.

Due to the lack of detailed spatial data for aquatic habitats and demographic data for human
populations and houses, arbitrary carrying capacities and occupants are assigned to the habitats and
houses, respectively. However, the current study does ensure that the relative magnitudes of aquatic
capacities follow the biological reality of the environment being modeled; for example, a pool cell
possesses higher CC than a wetland cell, as described in Table 2. The flexible architecture of the
modeling framework also provides an easy plug-in mechanism of such data from relevant future studies
into the models.

4.5. Spatial Analysis

In hot spot analysis, the higher frequency of cold spots for the oviposition counts and blood meal
counts along the wetland may seem counter-intuitive (see Figures 7 and 9). However, this anomaly can be
explained by considering two primary factors: (1) the distributions of and the relative distances between
the two types of resources (houses and aquatic habitats) along the wetland; and (2) the tiny carrying
capacities assigned to each wetland cell (10 per cell, see Table 2). Both these indices (oviposition and
blood meal counts) will have higher values depending on the successful completion of the cycles of
alternate feeding and laying of eggs by adult female mosquito agents (the gonotrophic cycle). However,
along the wetland (more noticeably along the western edge of the wetland where a larger density of cold
spots are present), despite the presence of a few nearby houses, the lack of any nearby higher-capacity
water bodies and the collective lower capacity (of the wetland cells and a few pit latrine cells, see
Figure 4B) prevent the female mosquitoes to complete their gonotrophic cycles. As a result, higher
frequencies of cold spots are generated along the wetland for both indices. Also, in most cases, cold spots
are absent along the south east portion of the wetland since it is closer to both types of resources (in this
case, large pools and houses). Eventually, this translates to the degree of ease with which adult female
mosquitoes may find resources, and can also be quantitatively measured by considering the average
travel time (ATT) required by a female mosquito to complete each gonotrophic cycle (ATT is inversely
proportional to resource-densities; for more details, see, e.g., [13]).

As the spatial distribution results show, there is a strong correlation between the a priori distribution
of houses and aquatic habitats and the emerging distribution of hot and cold spots. Thus, in general,
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the hot spots of our output indices occur near the clusters of houses and aquatic habitats. Since there are
395 pit latrines distributed almost all over the study area (in fact, covering almost all the house clusters),
in effect, there are indeed some aquatic habitats near almost every house-habitat cluster. Recall that the
flight heuristics do not distinguish among the types of aquatic habitats (i.e., mosquito agents select the
habitats randomly), and the agents do not engage in a directional flight during the simulations until and
unless the aquatic habitats are found in the neighboring cells (see Section 2.5).

The strong spatial correlation, although not quantitatively measured in this study, is evident at some
portions of the study area where there are some houses with no aquatic habitat in the vicinity (i.e., without
enough pit latrines nearby). For example, as shown in Figure 4B, both the eastern portion of the
south-west quadrant and most of the eastern edge of the wetlands portray two house clusters with very
few or no aquatic habitats (including pit latrines) in the vicinity. As a consequence, these areas contain
almost no hot spots, as depicted in the hot spot analysis results (see Figures 5, 7, and 9), which hold true
for both cases of with and without the mosquito control interventions.

For the entire study area, kriging analysis produces predicted values for unmeasured spatial locations,
which are derived from the surrounding weighted measured values. Most of the spatial trends observed
by the hot spot analysis are also visible in the kriging analysis results.

4.6. Habitat-Based Interventions

In this study, habitats and houses were selected using random sampling for the vector control
interventions. However, given the power of ABMs, other sophisticated, habitat-based strategies for
interventions are also equally applicable. For example, latrines and boreholes for LSM, or a firewall of
ITNs at the village boundary can be excellent choices to target first or in a limited-resource setting.

Some of the habitat-based strategies were investigated by using targeted and non-targeted LSM in a
previous work [15]. The targeted interventions removed the aquatic habitats within 100, 200, and 300 m
of surrounding houses, while the corresponding non-targeted interventions randomly removed the same
numbers of habitats. In general, with LSM applied in isolation, the results agreed with the findings of
previous research that LSM coverage of 300 m surrounding all houses can lead to significant reductions
in abundance, and, while targeting aquatic habitats to apply LSM, distance to the nearest houses can
be an important measure. Similar research questions are also being investigated with spatial repellents
(e.g., mosquito coils). However, given the constraints, we did not include the results of habitat-targeted
interventions in this paper.

4.7. Miscellaneous Issues

In the ABM, the human population is modeled as static (i.e., humans do not move in space), all
humans are assumed to be identical, and human mortality is not implemented. This may be one of the
reasons for the unusually high blood meal counts per house (in the range of thousands). In the future,
with the inclusion of explicit parasite population (as agents) and the availability of detailed demographic
data of human populations and houses in Asembo, we plan to parameterize and calibrate the model to
reflect a more realistic scenario for the specific region.
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The oviposition count per aquatic habitat output index is designed to reflect the aquatic habitat
heterogeneity in the landscapes. In this regard, alternative choices are available (e.g., eggs count
per aquatic habitat). However, the former is a better representative of habitat heterogeneity, because
it intrinsically considers the degree of ease with which mosquitoes can find the aquatic habitats
(distance-based foraging), rather than merely focusing on the size or carrying capacity of a habitat.

Although the modeling framework described in this paper utilizes an ABM of malaria-transmitting
mosquitoes, the approach is generally applicable to a wider range of other infectious vector-borne
diseases (VBD) including dengue, yellow fever, etc., provided that the disease epidemiology has already
been modeled using some standard mechanisms (e.g., mathematical, agent-based, etc.). In addition
to the three output indices used in this study, other widely used disease epidemiology variables
such as incidence, prevalence or mortality can also be mapped and spatially analyzed using the
current framework.

In general, robustness of a modeling framework depends on several factors, including the choices for
model parameters. For the current model, these may include the flight ability and perceptual ranges
of mosquitoes, the carrying capacity of aquatic habitats, the detailed demographic data for human
populations and houses, etc. In the future, once the models are fully calibrated, we envisage the modeling
framework to become more robust.

5. Conclusions

In this paper, a landscape epidemiology modeling framework is presented which integrates the
outputs of simulation runs from an established spatial malaria ABM with a GIS. For a study area in
Kenya, five landscape scenarios are constructed with varying coverage levels of two mosquito-control
interventions. For each scenario, maps are presented to show the average distributions of three
output indices obtained from the results of 750 simulation runs. Hot spot analysis detects statistically
significant hot spots and cold spots, and kriging analysis produces predicted values for unmeasured
spatial locations for the entire study area. The integration of epidemiological simulation-based results
with the GIS-based spatial analyses techniques within a single modeling framework can be a valuable
tool for simulation modelers, epidemiologists, disease control managers, and public health officials by
assisting these stakeholders in refining research questions and surveillance needs, and in guiding control
efforts and field studies. The integrated modeling framework combines expert knowledge bases from
entomological, epidemiological, simulation-based, and geo-spatial domains. Although it utilizes an
ABM of malaria-transmitting mosquitoes, the approach is generally applicable to a wider range of other
infectious vector-borne diseases.
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