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Abstract: The increase in population and the expansion of built-up areas into natural and 

agricultural areas results in more than just loss of open spaces surrounding cities. Reduced 

accessibility to nature, visual intrusion of buildings into natural viewsheds, and changes in 

runoff requires us to assess these impacts on open spaces. Our aim in this paper was to 

examine and demonstrate how topography can be incorporated into modeling and 

analyzing environmental impacts of cities. Taking Hong Kong Island as a case study, we 

used historical topographic maps to map changes in the built-up areas between 1930 and 

2006. We analyzed changes in three variables representing different kinds of human 

impacts: landscape continuity, visibility of built-up areas, and runoff from built-up areas. 

We show that consideration of topography (both natural and artificial) is critical to 

understand spatial patterns of land use and of human impacts on open spaces. The methods 

employed here can be applied to examine and visualize the potential effects of future and 

proposed development plans. 
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1. Introduction 

Expansion of built-up areas due to ongoing growth in the world’s population leads to conflicts 

between urban development pressures and conservation planning, and presents challenges for planners, 

landscape ecologists and conservation biologists around the world [1]. We define open areas or open 

spaces as areas that are not comprised of permanent structures such as roads or buildings. Open areas 

provide ecosystems services and values [2], and human impacts in these spaces may be reversible and 

are usually less intensive than in built-up areas. Built-up areas (e.g., cities, roads, villages, or industrial 

parks) affect their surroundings in various ways, including: air and water pollution [3], noise  

nuisance [4], the fragmentation and contraction of natural habitats [5], the construction of obstacles for 

the migration of wildlife [6], climate modification (e.g., urban heat island effect, [7]), an increase in 

floods and runoff [8], night-time light pollution [9], and finally, visual effects on the way people 

perceive their surroundings and their chances of having a wilderness experience [10]. 

Landscape continuity may be envisioned as the degree to which open landscape features are 

connected between themselves (which is important for animal movement and accessibility), and the 

degree at which open spaces are free from the impacts of adjacent built-up areas (as in [6,11]). The 

impact of built-up areas and roads on landscape continuity depends on both structural and functional 

factors that relate to: (1) built-up area characteristics, e.g., urban, suburban, village or industrial; (2) the 

surrounding land cover type, e.g., planted or natural forests, orchards or agricultural fields; (3) the type 

of activity under consideration, e.g., vehicle traffic, light or heavy industry; (4) the environmental 

variable under consideration, e.g., air, water or soil pollution; and (5) the scale relevant to an organism, 

e.g., plant, insect, or large mammal [6]. Different variables may be used to classify the impact of  

built-up areas, such as: population density, building height and density, type of land use (e.g., 

residential, commercial, or industrial) [12]. Additional variables relevant to roads may be traffic 

magnitude and speed, the width of the road and the presence of a safety fence along the edges or 

median strip, as all these factors affect the ability of animals to cross roads, and the amount of 

pollution, which is generated from roads. All these parameters may affect not only environmental 

attributes, but also anthropogenic variables such as property prices in urban environments, as modeled 

by Lake, Lovett, Bateman, and Langford [13].  

A number of methods have been developed to measure the impact of built-up areas on open spaces. 

To characterize landscape structure and to calculate landscape metrics, landscape ecology uses the 

patch-corridor-matrix model [14]. Landscape metrics may be derived from remote sensing, maps, or 

fieldwork, and may describe the landscape as composed of discrete elements (as in [15]), or using 

continuous and gradient variables (as reviewed by [16]). Extensive research in the field of conservation 

biology has aimed to develop indices that quantify the ecological effects of landscape fragmentation 

(or connectivity) [17–20]. However, these approaches focus on the identification of core areas with 

high ecological significance and the corridors connecting them, thus, neglecting other important 

characteristics of open landscapes, such as visual effects caused by urban spread and the formation of 

mega-cities. Corridors have variable conservation values for different animal species, according to 

their ability to move through corridors in real landscapes [21]. In addition, while many land uses of 

open landscapes (e.g., agriculture, forestation, or deforestation) may change over time and are 

reversible, once an area is built-up it will likely stay so for years to come [6]. 
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Another approach for modeling human impact uses GIS tools and takes for its starting point of 

analysis the built-up areas rather than ecological core areas. Stein, Stein, and Nix, [22] applied this 

idea to analyze anthropogenic river disturbance, while Sanderson et al. [1] used this to study the 

human footprint on a global scale. Krisp [23] implemented this approach to visualize ecological 

barriers in three dimensions. While these studies present final maps, which show categories of 

disturbance, Levin et al. [6] developed an approach (used also by [24]) to evaluate open landscapes as 

a gradient, thus maintaining a continuum of the quantitative variable of landscape continuity, rather 

than reducing it to categories. Their landscape continuity value expresses the shortest distance from an 

area of interest to built-up areas in its vicinity, while taking into account that different categories of 

built-up areas exert different influences on their surroundings and on the environmental aspect under 

consideration. In addition, there are variations in the way in which urban influences may react with 

distance. Some impacts may decay at a uniform rate with distance from built-up areas [25], while the 

distance decay function of other impacts may change its rate as distance increases [26]. Finally, certain 

impacts are time and direction dependent. Consequently, the landscape continuity value can be 

described as a growth function, whose values rise with distance from built-up areas [6]. 

However, the decay rate of different impacts is not only a function of the category of the built-up 

area, the environmental aspect analyzed or the distance from the built-up area. The impact an urban 

area may have on its surroundings differs according to topography as well. It has been noted that 

elevation (the third spatial dimension) has been largely neglected and cannot be analyzed using 

standard landscape metrics [27]. However, topography is of great importance since it may have 

multiple effects on different environmental aspects. One major impact of topography is on pollution 

dispersal. For example, pollutants in runoff water tend to concentrate in rivers, while air and noise 

related pollutants disperse by wind in various directions [28]. Another aspect of topography relates to 

issues of visibility. This aspect includes what is seen from the built-up area, but more importantly it 

also includes the amount of built-up areas visible from an open area, which in turn affects the 

wilderness recreation experience (sensu [29,30], i.e., the degree that a person can experience being in 

nature away from built-up areas) at a specific location [31]. In addition, topographic relief, such as 

steep slopes, impedes accessibility to open areas and in this regard has been used for modeling human 

impact and as a predictor for landscape changes, e.g., [32].  

Finally, the built environment is comprised of dynamic processes (e.g., changes in urban land uses, 

in densities, and in cultural preferences), which impact not only the urban fabric but also its 

surroundings. Thus, the impact an urban area has on its surroundings changes over time. Longitudinal 

studies are commonly used to study changes in land cover over time. Sanderson and Brown [33] used 

historical maps and descriptions in order to map Manhattan’s ecosystem as it was during the 17th 

century and give a retrospective land cover analysis of over 400 years, while Radeloff, Hammer, and 

Stewart, [34] quantified temporal and spatial patterns of urban growth in the US Midwest between 

1940 and 2000, and Orenstein et al. [12] analyzed changes in built-up areas in Israel. 
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2. Aims 

Our aim was, therefore, to expand the landscape continuity analysis [6] in two additional 

dimensions—the third dimension of topography, and the fourth dimension of time, for the reasons 

outlined below. 

2.1. Incorporating Topography in Landscape Continuity Analysis (with/without Buildings) 

Recent years have seen an increase in the use of computerized 3D modeling in conservation and 

environmental planning (e.g., environmental impact assessments). However, these studies use this 

technology mainly for visualization purposes, e.g., [35]. Topography is commonly used in ecological 

studies as a factor affecting animal mobility through the landscape, e.g., [36]. Hence, the first aim of 

this paper was to incorporate topography into the landscape continuity analysis.  

Furthermore, as this paper deals with the impact built-up areas have on their surroundings, it was 

important to incorporate, not only the shape of the land surface (i.e., the topography), but also the 

height of the built-up area (i.e., buildings). This is relevant for assessing visibility as it is important to 

know what parts of the built-up area can be seen from which areas of the open landscape to show 

where the wilderness recreation experience will be least affected. In addition, building height may 

serve as a proxy for the number of people inhabiting different buildings, and may thus be used to 

quantify the amount of disturbance that different buildings exert on their surroundings. Within this 

paper we use two types of topographic information (a digital elevation model and building heights) to 

demonstrate three ways to model human impacts on open areas: (1) landscape continuity combined 

with the least-cost distance based on surface slope; (2) runoff analysis; and (3) visibility analysis. 

2.2. Analyze Land Cover Changes in the 20th Century  

The expansion of the built environment (i.e., urban sprawl) and the construction of new roads may 

all affect landscape continuity values. As these changes occur over time, the second aim of this paper 

was to incorporate a temporal aspect into the landscape continuity analysis. This analysis will enable 

us to follow the manner in which the landscape continuity value has changed over time with respect to 

changes in the built environment.  

3. Methods 

3.1. Study Area—Hong Kong Island 

We demonstrate our approach using Hong Kong Island as an example. Hong Kong Island is one of 

the world’s economic centers, where high-density population is adjacent to non-built-up natural areas 

of rugged terrain. Although human settlements in Hong Kong can be dated back to the Neolithic  

Era [37], modern urban development on Hong Kong Island began in the late 1840s, following the first 

Opium War and the Treaty of Nanking in 1842. The Kowloon Peninsula and the New Territories were 

developed later, following the Convention of Peking in 1860 and the Second Convention of Peking in 

1898, respectively [38]. Hong Kong’s population has grown steadily since the 1840s, reaching 

1.6 million in 1939. The Second World War set back the population to 600,000 in the early 1940s.  
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The population grew rapidly after the war and returned to the prewar population in just a couple of 

years [39]. Today, the Hong Kong Special Administrative Region is home to over seven million, 

making it one of the most densely populated places in the world (6,488 people/km
2
; [40]). The rapid 

growth of population and built-up areas during the 1960s raised the need for conservation of the 

countryside. In 1972, the Hong Kong Country Parks Program allocated nearly 40% of the Territory’s 

lands for conservation. These lands comprised mainly of mountainous landscape unsuited for urban 

development ([41]; Figure 1). A strong gradient in the intensity of human activity and of human impact 

on the environment takes place over very short distance in Hong Kong, due to its small land area, 

highly concentrated urban population, and rugged topography (as evident from the light pollution  

map; [42]; Figure 1). 

Figure 1. Hong Kong Island study area (a). The bottom image (b) shows night-lights (an 

indicator for human activity) over the entire Special Administrative Region of Hong Kong 

as photographed from the International Space Station on 10 March 2003. 
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3.2. Historical Sources 

To study changes in the built-up areas over time, we used historical topographic maps of Hong 

Kong Island, at the scale of 1:20,000, between 1930 and 2003/6 (Table 1; Figure 2). The maps  

were obtained from the Survey and Mapping Office of the Hong Kong Lands Department). They were 

first scanned and then georeferenced to the respective coordinate system used in each of the maps, as 

specified in Table 1. For the georeferencing process, several grid points were used, based on map 

graticules. The older maps (from 1930, 1945, and 1952) were georeferenced based on control points 

common to each of those dates and more recent maps. The root mean squared error in the 

georeferencing of the maps was below 0.5 mm (equivalent to less than 10 m on the ground) for most of 

the maps (Table 1). To correspond with the scale of the historical maps, all raster analyses reported 

below were performed at a spatial resolution of 10 m (i.e., 0.5 mm at a scale of 1:20,000). 

Table 1. Historical maps (1:20,000) used in this study. 

Georeferencing Parameters 
Sheet 

Historical Map 

Datum Projection Name RMS Error (m) Year 

D Clarke 1866 World Polyconic Grid HK 13.05 Sheets 19 and 23 1930 

D Clarke 1866 World Polyconic Grid HK 7.46 Northern Sheet-Sht. 19 1945 

D Clarke 1866 World Polyconic Grid HK 6.36 Southern Sheet-Sht. 23 1945 

D Clarke 1866 World Polyconic Grid HK 9.90 Northern Sheet-Sht. 19 1952 

D Clarke 1866 World Polyconic Grid HK 4.35 Southern Sheet-Sht. 23 1952 

D International 1967 UTM50 International 3.81 Northern Sheet-Sht. 11 1975 

D International 1967 UTM50 International 3.46 Southern Sheet-Sht. 15 1975 

D Hong Kong 1980 Hong Kong 1980 UTM Zone 50N 2.98 Northern Sheet-Sht. 11 1984 

D Hong Kong 1980 Hong Kong 1980 UTM Zone_50N 3.07 Southern Sheet-Sht. 15 1984 

D Hong Kong 1980 Hong Kong 1980 Grid 3.29 Northern Sheet-Sht. 11 1995 

D Hong Kong 1980 Hong Kong 1980 Grid 2.99 Southern Sheet-Sht. 15 1993 

D Hong Kong 1980 Hong Kong 1980 Grid 2.84 Northern Sheet-Sht. 11 2003 

D Hong Kong 1980 Hong Kong 1980 Grid 2.76 Southern Sheet-Sht. 15 2006 

3.3. Reconstructing Historical GIS Layers of Built-Up Areas 

We used 1:20,000 GIS vector layers (for the year 2006) of the roads, the buildings, the coastline 

and elevation contours, which were purchased from the Hong Kong Survey and Mapping Office as the 

base layers upon which we based our reconstruction of past GIS layers of built-up areas and roads. The 

process of editing the GIS layers was as follows. First, the GIS layers were fitted to the rectified maps 

of 2003/6, thus representing the state of the region for that period of time. Next, new layers were 

created by overlaying existing layers on maps from the previous period and modifying their attributes 

and geometry according to the details on those maps. For example, we laid the building layer of 2003/6 

over the rectified maps of 1993/5 and created a new building layer for 1993/5 by changing the 

classification of each building according to the relevant maps (as in [12]). Thus, a building that existed 

in 2003/6 but did not exist in 1993/5 was marked as nonexistent in the 1993/5 layer, a building that 

appeared on the maps of 1993/5 but not on the 2003/6 layer was marked as destroyed and a building that 

exists both on the layer and on the map was marked in the 1993/5 as existent. This process was applied 
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for each year on different layers of buildings, roads and the coastline. While individual buildings are not 

captured on the 1:20,000 Hong-Kong vector layers nor on the 1:20,000 topographic maps, these sources 

do show blocks of buildings, and that was the scale at which we mapped the built-up areas. 

Figure 2. The historical 1:20,000 maps used for reconstructing the development stages of 

the Island of Hong Kong (showing the area of Wan Chai, in the north of Hong Kong 

Island): 1930 (a), 1945 (b), 1952 (c), 1975 (d), 1984 (e), 1993/5 (f), 2003/6 (g), location 

map (h). The maps reproduced with permission of the Director of Lands. © The 

Government of Hong Kong SAR. Licence No. 75/2013. 
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3.4. Landscape Continuity Analysis 

We calculated landscape continuity using the approach developed by Levin et al. [6]. The landscape 

continuity value (LCV) at a certain pixel can be expressed by the following equation: 

             
 

     
 

 

     
   

 

     
  (1) 

where LCV is the landscape continuity value, Wn the weight (Table 2) assigned to the category n of a 

built-up area and Dn is the distance of a certain pixel from the nearest feature belonging to the 

category n of a built-up area. The units of LCV are therefore termed as a weighted distance or as an 

effective distance, and are given in meters or kilometers. The LCV can be summed over an area  

(to examine the total amount of landscape continuity; see [6]). Landscape continuity was calculated for 

each year separately so that changes over time could be examined. The weights of built-up area 

categories used are given in Table 2, based on expert estimation of relative environmental and 

ecological impacts of built-up areas categories (following the weights used by Levin et al., [6]). In 

addition, we had access to data on building height (i.e., approximate level of the top of a building in 

meters above the Hong Kong Principal Datum, SMO Geo-Reference Database, 2011 [43]. In some of 

our calculations we used building height values to assign weights for the categories of built-up areas. 

Higher buildings, indicating a larger number of people within a building, were assigned greater 

weights than lower buildings (Table 2). We further developed the landscape continuity model of 

Levin et al. [6] by assuming that the slope of the distance decay function of built-up areas depends not 

only on the type of built-up area, but also takes into consideration the topography of the area. This was 

done by applying a cost-distance analysis, in which the slope of the digital elevation model represented 

the cost of access, i.e., how difficult it is for people or domestic animals to gain access into open areas 

(as in [44]). 

Table 2. Weights for different built-up areas and infrastructure categories, as applied in the 

landscape continuity value analysis. 

Built-up Area Type Weight 
Equivalent Distance of 1 km from a Large City 

(km) = Reciprocal of the Respective Weight 

Expressway 100% 1 

Main road 75% 1.333 

Secondary road (double width) 50% 2 

Secondary road (single width) 25% 4 

Built-up areas (without building height information) 100% 1 

Building height less than 7.5 m 75% 1.333 

Building height 7.5–15 m 100% 1 

Buildings height 15–50 m 125% 0.8 

Building height greater than 50 m 150% 0.666 

3.5. Modeling Topographic Effects on the Landscape 

Two classical topographic analyses in GIS include runoff and visibility. Runoff analysis is usually 

used either to generate the river network from a digital elevation model (DEM) (as in [45]), or to 
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model runoff given specific rainfall, infiltration and land cover maps (as in [46]). We generated a 

DEM from contours (at vertical intervals of 20 m) at a spatial resolution of 10 m, using Idrisi GIS 

software [47]. Runoff originating from built-up areas and from roads may add pollutants to soil, 

wetlands, and water sources (as in [48]), thus impacting on biodiversity. We applied the runoff tool in 

Idrisi Taiga to model pollutants originating from built-up areas [47]. A runoff analysis calculates the 

accumulation of rainfall units per pixel based on topography. A simple runoff analysis accumulates 

rainfall on a per pixel basis as if one unit of rainfall was dropped on every location. We also assumed 

no drainage system was in place so each built-up pixel was used as a source of one unit of sewage. 

When incorporating building heights, the higher the building, the more sewage it would generate. 

While we acknowledge that Hong Kong does have high quality sewage and drainage systems, our aim 

in this model was to demonstrate this methodology. This particular parameter may be better suited to 

squatter communities than to proper cities or towns ([49]). 

Visibility analyses are usually done for several applications, including military and environmental [44]. 

Our visibility analysis employed the VIEWSHED tool [47], using the proportional output option. The 

proportional output option produces an image in which the seen pixels are not assigned a boolean 

value of 1, but rather the value of the proportion of the viewpoints from which the pixel is seen. A 

pixel that is seen from only 1 of 10 input viewpoint pixels will have the value 0.1, for example, while a 

pixel seen from all 10 input viewpoints will have the value 1.0. We placed potential viewers in two 

settings: (1) in all buildings, to examine which open landscape areas are visible from the built-up 

areas? (2) Everywhere, i.e., if we randomly position viewers (n = 44,000, i.e., about 5 viewers/ha) 

throughout Hong Kong Island, to identify which areas would be the most visible, and which areas 

would be blocked (either by natural topography or by high buildings). In both settings, we analyzed the 

visibility with and without information about building heights, so as to demonstrate the effect that 

high-rise buildings have on the visibility of open areas (see [50]). 

3.6. Case Study of Parkview Residential Project 

As presented in Levin et al. [6], landscape continuity value maps can be used to estimate the 

potential impact of planned built-up areas, by calculating and mapping landscape continuity with and 

without a planned built-up area. Hong Kong Parkview is a residential project and a luxury tourist resort 

established in 1989 at the heart of Hong Kong Island, surrounded by the Tai Tam Country Park in the 

north, east, and south (Figures 3a and 4). It consists of 18 blocks of residential buildings  

built on a ridge, 290–320 m above sea level. As described online [51], it is “Set on a hilltop separating 

the north and south side of the island, just inside 3,250 acres of the protected Tai Tam Country Park”. 

To demonstrate the use of the methods developed in this paper that incorporate topography for 

evaluating the effects of different planning scenarios, we calculated human impacts on the non-built-up 

areas with and without Parkview residential buildings (this was done for both the runoff and visibility 

analyses). We then subtracted the two layers of our modeled impacts with and without Parkview (as 

in [6]) to show which areas were affected by the construction of Parkview (in the results we will show 

this for the visibility and runoff analyses). 
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Figure 3. The reconstructed development stages of the Island of Hong Kong (between 

1930 to the mid-2000s): Landsat false color image (a); land reclamation from the sea (b); 

development of the road network (c); and the development of built-up areas (d). The red 

rectangle in Figure 2a shows the location of Parkview residential project. 

 

Figure 4. Parkview residential project (photo taken by PC Lai, May 2013). 
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4. Results 

4.1. Temporal Changes in the Developed Areas 

Based on the georeferenced historical maps we reconstructed the development stages of the Island 

of Hong Kong, examining three themes: land reclamation from the sea (Figure 3b), the development of 

the road network (Figure 3c), and the development of built-up areas (Figure 3d), between 1930 to the 

mid-2000s. As seen in these maps, the development of Hong Kong Island was constrained by the 

rugged topography on the one hand, and by the sea on the other hand. Land reclamation has been more 

extensive in the northern parts of the island, where the population density is high and suitable building 

land is scarce (Figure 3b). The built-up areas increased from 12,856 ha in 1930 to 56,012 ha in 2003/6, 

the percentage of the built-up areas increased from 1.7% in 1930 to 7% in 2006, while the total 

distance from roads and built-up areas has decreased (Table 3). Interestingly, the population size of 

Hong Kong Island has not changed much since the 1970s (Table 3). The development of new roads 

and built-up areas led to a decrease in landscape continuity, most notable in the southern and eastern 

parts of the Hong Kong Island, where landscape continuity values in some places in the 2000s 

decreased to less than 5% of their 1930 values, mostly due to the development of new towns and roads 

in the eastern and southern parts of Hong Kong Island (Figure 5). 

Table 3. Time series of selected variables analyzed in this study. 

Year (as in Table 1) 1930 1945 1952 1975 1984 1993/5 2003/6 

Land area (ha), HK Island 747,120 755,992 755,603 772,264 786,044 797,393 801,371 

Built-up area (ha), HK Island 12,856 18,559 21,301 47,855 52,142 51,618 56,012 

Built-up area (%), HK Island 1.7% 2.5% 2.8% 6.2% 6.6% 6.5% 7.0% 

Sum distance from roads/ 

built-up (km), HK Island 
335.0 215.5 162.8 101.6 100.1 91.9 89.2 

Sum weighted distance from 

roads/built-up (km), HK Island 
344.6 243.2 200.8 151.5 147.6 124.6 120.0 

Population, HK Island  
409,203 

(1931) 
No data No data 1,089,500 1,179,000 1,312,637 1,268,112 

Population, HK total 
840,473 

(1931) 
750,000 2,250,000 4,360,000 5,397,900 6,035,400 

6,935,900 

(2005) 

As in the landscape continuity analysis different weights are assigned to distance from built-up area 

classes, the resulting distances are higher than when a Euclidian distance surface is calculated 

(compare Figure 6a,b). Incorporating topography in landscape continuity analysis can be done by using 

slopes as a friction factor, decreasing the accessibility from roads and built-up areas. By incorporating 

topography as a friction, distance values are increased (compare Figure 6b,c). 
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Figure 5. Changes in landscape continuity on Hong Kong Island. Five panels show 

landscape continuity values calculated based on the roads network and buildings (1930, 

1952, 1975, 1993/5, 2003/6); the lower-right panel presents changes in landscape 

continuity between 1930 and 2003/6, with warm hues (positive values) signifying a 

decrease in landscape continuity over time (calculated by subtracting the 2003/6 effective 

distances layer from the 1930 effective distances layer). 
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Figure 6. Comparing three distance surfaces from built-up areas and roads: weighted 

distance (landscape continuity values) (a), Euclidian distance (b), Euclidian cost-distance 

using slope as the friction surface (c). 

  

(a) (b) 

 

 

(c) (d) 

4.2. Viewshed Analysis 

Examining changes in the visibility of built-up areas (i.e., to what degree are buildings seen from 

open spaces), we used the layers of the buildings (Figure 3d), and calculated the amount of the built-up 

areas visible from each pixel. In this analysis, information about the height of individual buildings was 

not incorporated (not available for past decades), and we assumed no obstructions by vegetation. As 

can be seen in Figure 7, visibility is mostly limited by watersheds and ridge lines. While in the 

northern part of HK Island, buildings command most of the view, in the southern part of the island, 

there are many areas where hardly any buildings were seen. However, this situation has changed over 

the past 80 years, due to the development of new towns and suburbs, and there are now hardly any 

areas from which no building can be seen (the grey areas in Figure 7). With time, there has been a 

decrease in the amount of areas in which people can experience wilderness (seeing no built-up areas), 

and there has been an increase in the total amount of built-up areas that are visible from the open 

landscape areas (Figure 7). 
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Figure 7. Changes in the visibility of built-up areas between 1930 and 2003/6. Values 

represent the amount of built-up areas visible from each 10 × 10 m grid cell (100 m
2
). In 

this analysis information about the height of individual buildings was not incorporated. 

Grey areas indicate areas from which no buildings were visible. 

 

A more realistic approach to analyze visibility is to include information about the heights of the 

buildings themselves. Two options exist to analyze the impact of building heights on visibility and on 

a “wilderness” experience, where views were not obstructed by tall buildings. First, we located 44,000 

random observers, and calculated the percent area of Hong Kong Island visible from each pixel  

(Figure 8a); in this map, high values of observability are mostly found in the southern part of the 
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island. Low values either result from obstruction by high buildings (as in the northern part of the 

island), or in peninsulas facing the sea, so that only small portions of the island can be seen from them. 

When the hypothetical observers are located on top of the roof of each building (Figure 8b), the 

analysis reveals in which areas a person is least likely to observe buildings, and can thus have a better 

“wilderness” experience; note that low values may be found also in low lying areas surrounded by 

buildings. Such an analysis can be used to demonstrate how development projects might change the 

visibility of open spaces. This can be done by calculating the visibility with and without a specific set 

of buildings, as in the case of the Parkview residential project, located in the middle of Hong Kong 

Island (Figure 9). Centrally located on a ridge line, the Parkview residential project can be seen from 

many places, and has therefore reduced the visibility of open spaces and has reduced the wilderness 

recreation experience in certain areas (Figure 9). 

Figure 8. Visibility analysis taking into account building heights. In the upper map  

(a) visibility was calculated from a random sample of 44,000 points, and the map 

represents the percent area of Hong Kong Island visible from each pixel. In the lower map 

(b) visibility was calculated from the building roofs, and the map represents the percent of 

the buildings visible from each pixel. 
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Figure 9. Changes in the visibility resulting from the construction of the Parkview 

residential project (in the middle of the island, in the blue circle). Areas where visibility of 

open spaces has decreased due to obstruction by the Parkview residential project are shown 

in orange-red colours. 

 

4.3. Runoff Analysis 

A runoff analysis is commonly used to identify the natural drainage river network (Figure 10). Here 

we used this approach to model and visualize the cumulative runoff from buildings (assuming no urban 

drainage system for this demonstration, although the drainage system in Hong Kong is very extensive). 

With the development of new towns and suburbs on Hong Kong Island, more and more areas may be 

subject to runoff from built-up areas (Figure 10). The development of the Parkview residential project 

mostly affects runoff into the southern part of Hong Kong Island, but its impacts on runoff are spatially 

localized and limited to the riparian areas (Figure 11). 

Figure 10. Runoff analysis—natural runoff assuming no buildings (upper left panel; values 

log transformed). Temporal changes in runoff from buildings, assuming no urban drainage 

systems, for the years 1930, 1952, 1975, 1993/5, and 2003/6. The values indicate the 

accumulated number of pixels contributing runoff to each pixel, based on the digital 

elevation model, and on the distribution of built-up areas. 
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Figure 11. Changes in urban runoff due to the development of the Parkview residential 

project. The values indicate the accumulated number of pixels contributing runoff to each 

pixel, based on the digital elevation model, and on the distribution of built-up areas. Values 

were log transformed. 
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5. Discussion 

The development of new roads, buildings and neighborhoods affects open spaces surrounding these 

built-up areas in various ways. In this paper we aimed to demonstrate how human impacts on open 

spaces can be quantified and visualized, adding two additional dimensions to the commonly used 

planimetric analysis (x, y): the third dimension of height (z), and the fourth dimension of time (t). We 

quantified the development of built-up areas from historical topographic maps, and then analyzed how 

these temporal changes affected three human related variables: accessibility (modeled through the 

analysis of landscape continuity); [6]); visibility (i.e., the wilderness recreation experience, see [52]); 

and runoff. Quoting the ancient Greek philosopher Heraclitus, “Change is the only constant”, this is 

true not only for human life, but also for geographic phenomena. We used Hong Kong Island as a case 

study in this paper for three main reasons: the rapid transformations it went through during the 20th 

century, its varied topography, and the concentration of high-rise buildings adjacent to protected areas. 

The way human activity and its impacts travel through space differ as a function of the type of 

human activity under consideration [6]. Building upon the three examples used here, we can classify 

human impacts based on three main dimensions: 

1. Dispersion-concentration. While runoff tends to concentrate in rivers that converge, 

other impacts (e.g., air pollution, not analyzed here) tend to disperse with distance 

from the source. 

2. Adjacency-remoteness. While runoff can only be transferred along continuous path 

ways, other impacts, e.g., visibility, may affect non adjacent areas, as a function of the 

topographic structure of the land. 

3. Smoothness-steepness. While accessibility (as modeled through the landscape 

continuity analysis) tends to change gradually, other impacts, e.g., visibility, change 

their values abruptly, due to obstruction by ridge lines and high rise buildings. 

A time series of maps showing the development of built-up areas enables the public to understand 

land cover changes. As some of our basic perceptions of nature and the environment are shaped in 

childhood, a phenomenon known as “environmental generational amnesia” [53,54] emerges, in which 

our baselines of what is natural shift with time as the environment undergoes degradation processes. 
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We believe that maps such as we constructed in this paper may be instrumental in educating the public 

about the way our world looked before it became mostly urban. To this end we used historical maps 

that enable us to go back in time to decades when there were no aerial photos or satellite images 

available (as in [5,33]). 

While we live in a three dimensional world, most of the maps we use portray it as two-dimensional, 

as we are mostly limited to the ground in our daily movement through space. Great efforts are invested 

in portraying topography on topographic maps [55]. However, not only is the natural environment 

topographically complex, the buildings we construct, most of all in the cities, create a new topography, 

ever breaking new heights [56]. While traditional landscape metrics assume that the underlying terrain 

is flat, there is in recent years an increasing recognition that to model landscape structure more 

realistically, the three dimensional nature of the world should be incorporated into landscape metrics, 

both in the patch-corridor-matrix model, e.g., [57] and in gradient representations of the surface 

roughness [58]. Using the approaches we demonstrated in this paper, we show that incorporating 

topography in our modeling of the impacts of built-up areas on open spaces, some areas may become 

less accessible to reach, but may still be susceptible to other types of human impact (e.g., visual 

intrusiveness, the disruption of a wilderness recreation experience by the visibility of built-up areas 

from open spaces [59]). 

6. Conclusions 

Using Hong Kong Island as a case study, a dynamic world city, where development is rapid, and 

where high-rise buildings are adjacent to country parks, we demonstrated how the environmental 

implications of development plans on their surrounding open spaces can be examined in the third 

dimension of height, and in the fourth dimension of time (using historical maps). In order to apply the 

methods demonstrated in this paper for urban planning issues, we recommend that information about 

building heights be incorporated to analyze the impacts of urban development projects on the 

surrounding open spaces. While, in the past, such information was not available, developments in 

remote sensing technologies and methodologies now make it easy to generate information on building 

heights (when not available as GIS layers), using diverse methods ranging from LiDAR [60], high 

spatial resolution sensors (as in [61] or aerial photogrammetry [62]. For future development plans, 

buildings’ heights may be extracted from town and architects’ plans. The analysis of the historical 

development of urban areas is now becoming easier to accomplish with developments in the field of 

historical GIS [63]. The Atlas of Urban Expansions is one such example of a database offering historic 

maps of the development of cities in the past 200 years [64,65].While it is important to understand 

landscape values and wilderness experiences using questionnaires and in-depth interviews (as 

in [59,66]), the methods developed here enable to quantify, model, and map the impacts of built-up 

areas on their surrounding open spaces, offering a powerful tool to inform people about present and 

future impacts. Through the examples in this paper we wish to encourage urban and environmental 

planners to incorporate topography (both natural and artificial) and historical perspectives, into their 

environmental impact analyses.  
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