Rangeland Conditions and Grazing Capacities on Livestock Farms During and After Drought in Three Biomes in South Africa
Abstract
1. Introduction
Theoretical Framework
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection
2.2.1. Farmer Surveys
2.2.2. Rangeland Condition Assessment
2.2.3. Grazing Capacity
- (i)
- Perceived Grazing Capacity (GC) = the farmer’s own perception of the farm’s grazing capacity based on his local ecological and farming knowledge. This was performed using a semi-structured questionnaire.
- (ii)
- Actual stocking rate of the land = the stocking rate the farmer is applying on the farm. This was determined through the questionnaire by considering the number of livestock the famers owned and the size of the farm/farming area.
- (iii)
- Assessed GC = the grazing capacity derived from the rangeland condition assessment (see above for formulas used).
- (iv)
2.3. Data Analysis
3. Results
3.1. Farmers’ Perceptions of Rangeland Conditions
3.2. Plant Species Composition
3.3. Rangeland Condition Scores for the Biomes and Different Tenure Systems
3.4. Grazing Capacities for the Different Tenure Systems and Comparisons of the Grazing Capacities for the Different Biomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cevher, C.; Ataseven, Y.; Coskun-Cevher, S. Farmers’ Desire to Make Changes in Their Agricultural Branches in the First Wave of COVID-19 Pandemic Restrictions: The Example of Türkiye. Tarim. Bilim. Derg. 2025, 31, 110–125. [Google Scholar] [CrossRef]
- Nondlazi, B.X.; Mantlana, B.K.; Naidoo, S.; Ramoelo, A. Unveiling the Power Duo: Agriculture and Social Science Take Center Stage in the Evolution of Climate Change Adaptation Research in South Africa. Oxf. Open Clim. Change 2025, 5, kgaf001. [Google Scholar] [CrossRef]
- Ziervogel, G.; New, M.; Archer van Garderen, E.; Midgley, G.; Taylor, A.; Hamann, R.; Stuart-Hill, S.; Myers, J.; Warburton, M. Climate Change Impacts and Adaptation in South Africa. Wiley Interdiscip. Rev. Clim. Change 2014, 5, 605–620. [Google Scholar] [CrossRef]
- Vetter, S.; Goodall, V.L.; Alcock, R. Effect of Drought on Communal Livestock Farmers in KwaZulu-Natal, South Africa. Afr. J. Range Forage Sci. 2020, 37, 93–106. [Google Scholar] [CrossRef]
- Irob, K.; Blaum, N.; Weiss-Aparicio, A.; Hauptfleisch, M.; Hering, R.; Uiseb, K.; Tietjen, B. Savanna Resilience to Droughts Increases with the Proportion of Browsing Wild Herbivores and Plant Functional Diversity. J. Appl. Ecol. 2023, 60, 251–262. [Google Scholar] [CrossRef]
- Mbatha, K.R.; Ward, D. Using Faecal Profiling to Assess the Effects of Different Management Types on Diet Quality in Semi-Arid Savanna. Afr. J. Range Forage Sci. 2006, 23, 29–38. [Google Scholar] [CrossRef]
- du Toit, J.C.O.; Ramaswiela, T.; Pauw, M.J.; O’Connor, T.G. Interactions of Grazing and Rainfall on Vegetation at Grootfontein in the Eastern Karoo. Afr. J. Range Forage Sci. 2018, 35, 267–276. [Google Scholar] [CrossRef]
- Palmer, A.R.; Ainslie, A. Arid Rangeland Production Systems of Southern Africa; JLE: Arcueil, France, 2006. [Google Scholar]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. Geospatial Analysis of Meteorological Drought Impact on Southern Africa Biomes. Int. J. Remote Sens. 2021, 42, 2155–2173. [Google Scholar] [CrossRef]
- Archer, E.; du Toit, J.; Engelbrecht, C.; Hoffman, M.T.; Landman, W.; Malherbe, J.; Stern, M. The 2015-19 Multi Year Drought in the Eastern Cape, South Africa: It’s Evolution and Impacts on Agriculture. J. Arid. Environ. 2022, 196, 104630. [Google Scholar] [CrossRef]
- Masupha, T.E.; Moeletsi, M.E.; Tsubo, M. Prospects of an Agricultural Drought Early Warning System in South Africa. Int. J. Disaster Risk Reduct. 2021, 66, 102615. [Google Scholar] [CrossRef]
- Alary, V.; Lasseur, J.; Frija, A.; Gautier, D. Assessing the Sustainability of Livestock Socio-Ecosystems in the Drylands through a Set of Indicators. Agric. Syst. 2022, 198, 103389. [Google Scholar] [CrossRef]
- Nkuba, M.R.; Chanda, R.; Mmopelwa, G.; Mangheni, M.N.; Lesolle, D.; Adedoyin, A.; Mujuni, G. Determinants of Pastoralists’ Use of Indigenous Knowledge and Scientific Forecasts in Rwenzori Region, Western Uganda. Clim. Serv. 2021, 23, 100242. [Google Scholar] [CrossRef]
- Motsumi, M.M.; Nemakonde, L.D. Indigenous Early Warning Indicators for Improving Natural Hazard Predictions. Jàmbá J. Disaster Risk Stud. 2025, 17, 1754. [Google Scholar] [CrossRef] [PubMed]
- Tenza, A.; Martínez-Fernández, J.; Pérez-Ibarra, I.; Giménez, A. Sustainability of Small-Scale Social-Ecological Systems in Arid Environments: Trade-off and Synergies of Global and Regional Changes. Sustain. Sci. 2019, 14, 791–807. [Google Scholar] [CrossRef]
- Reed, M.S.; Dougill, A.J.; Baker, T.R. Participatory Indicator Development: What Can Ecologists and Local Communities Learn from Each Other? Ecol. Appl. 2008, 18, 1253–1269. [Google Scholar] [CrossRef]
- Breshears, D.D.; Knapp, A.K.; Law, D.J.; Smith, M.D.; Twidwell, D.; Wonkka, C.L. Rangeland Responses to Predicted Increases in Drought Extremity. Rangelands 2016, 38, 191–196. [Google Scholar] [CrossRef]
- Letsoalo, N.; Samuels, I.; Cupido, C.; Ntombela, K.; Finca, A.; Foster, J.; Tjelele, J.; Knight, R. Coping and Adapting to Drought in Semi-Arid Karoo Rangelands: Key Lessons from Livestock Farmers. J. Arid. Environ. 2023, 219, 105070. [Google Scholar] [CrossRef]
- Department of Agriculture, Forestry and Fisheries (DAFF). (Daff) Draft Policy on the Preservation and Development of Agricultural Land; Department of Agriculture: Arcadia, South Africa, 2017. [Google Scholar]
- Accatino, F.; Ward, D.; Wiegand, K.; De Michele, C. Carrying Capacity in Arid Rangelands during Droughts: The Role of Temporal and Spatial Thresholds. Animal 2017, 11, 309–317. [Google Scholar] [CrossRef]
- Mokhesengoane, T.E.; Van der Westhuizen, H.C.; Van Niekerk, J.A. Stocking Rate of Extensive Land-Reform Livestock Farmers during 2018/2019 Drought: Bloemfontein Grassland Biome Case Study. S. Afr. J. Agric. Ext. 2021, 49, 15–25. [Google Scholar] [CrossRef]
- Place, F. Land Tenure and Agricultural Productivity in Africa: A Comparative Analysis of the Economics Literature and Recent Policy Strategies and Reforms. World Dev. 2009, 37, 1326–1336. [Google Scholar] [CrossRef]
- Toulmin, C. Securing Land and Property Rights in Sub-Saharan Africa: The Role of Local Institutions. Land Use Policy 2009, 26, 10–19. [Google Scholar] [CrossRef]
- Reed, M.S.; Stringer, L.C.; Dougill, A.J.; Perkins, J.S.; Atlhopheng, J.R.; Mulale, K.; Favretto, N. Reorienting Land Degradation towards Sustainable Land Management: Linking Sustainable Livelihoods with Ecosystem Services in Rangeland Systems. J. Environ. Manag. 2015, 151, 472–485. [Google Scholar] [CrossRef]
- RSchatzki, T.; Knorr Cetina, K.; von Savigny, E. The Practice Turn in Contemporary Theory; Routledge: Oxfordshire, UK, 2001. [Google Scholar]
- Derner, J.D.; Augustine, D.J. Adaptive Management for Drought on Rangelands. Rangelands 2016, 38, 211–215. [Google Scholar] [CrossRef]
- Dougill, A.J.; Fraser, E.D.G.; Reed, M.S. Anticipating Vulnerability to Climate Change in Dryland Pastoral Systems: Using Dynamic Systems Models for the Kalahari. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Piperca, S.; Floricel, S. Understanding Project Resilience: Designed, Cultivated or Emergent? Int. J. Proj. Manag. 2023, 41, 102453. [Google Scholar] [CrossRef]
- Meza, I.; Eyshi Rezaei, E.; Siebert, S.; Ghazaryan, G.; Nouri, H.; Dubovyk, O.; Gerdener, H.; Herbert, C.; Kusche, J.; Popat, E.; et al. Drought Risk for Agricultural Systems in South Africa: Drivers, Spatial Patterns, and Implications for Drought Risk Management. Sci. Total Environ. 2021, 799, 149505. [Google Scholar] [CrossRef]
- Thavhana, M.P.; Hickler, T.; Urban, M.; Heckel, K.; Forrest, M. Dynamics and Drivers of Net Primary Production (NPP) in Southern Africa Based on Estimates from Earth Observation and Process-Based Dynamic Vegetation Modelling; Springer: Berlin/Heidelberg, Germany, 2024; pp. 759–786. [Google Scholar]
- Letsoalo, N.L.; Samuels, I.M.; Tjelele, J.T.; Ntombela, K.P.; Clement, C.F.; Foster, J.; Zondani, T.; Finca, A.; Engelbrecht, A. Understanding the Attributes and Knowledge to Achieve Sustainable Farming in South African Rangelands: Learning from “Champion” Livestock Farmers. J. Agric. Ext. Rural. Dev. 2025, 17, 10–20. [Google Scholar]
- Milton, S.J.; Richard Dean, W.J.; Ellis, R.P. Rangeland health assessment: A practical guide for ranchers in arid Karoo shrublands. J. Arid. Environ. 1998, 39, 253–265. [Google Scholar] [CrossRef]
- Kirkman, K.P. Guide to Grasses of southern Africa. S. Afr. J. Bot. 2012, 80, 122–123. [Google Scholar] [CrossRef]
- Snyman, H.A.; Fouche, H.J. Production and Water-Use Efficiency of Semi-Arid Grasslands of South Africa as Affected by Veld Condition and Rainfall. Water SA 1991, 17, 263–268. [Google Scholar]
- SAS. SAS Statistical Analysis System, Statistical Methods; SAS Institute Inc.: Cary, NC, USA, 1999. [Google Scholar]
- Scheiter, S.; Kumar, D.; Pfeiffer, M.; Langan, L. Modeling Drought Mortality and Resilience of Savannas and Forests in Tropical Asia. Ecol. Model. 2024, 494, 110783. [Google Scholar] [CrossRef]
- Milton, S.J.; Petersen, H.; Nampa, G.; van der Merwe, H.; Henschel, J.R. Drought as a Driver of Vegetation Change in Succulent Karoo Rangelands, South Africa. Afr. J. Range Forage Sci. 2023, 40, 181–195. [Google Scholar] [CrossRef]
- Pili, O.; Ncube, B. Smallholder Farmer Coping and Adaptation Strategies for Agricultural Water Use during Drought Periods in the Overberg and West Coast Districts, Western Cape, South Africa. Water SA 2022, 48, 97–109. [Google Scholar] [CrossRef]
- Geißler, K.; Blaum, N.; von Maltitz, G.P.; Smith, T.; Bookhagen, B.; Wanke, H.; Hipondoka, M.; Hamunyelae, E.; Lohmann, D.; Lüdtke, D.U.; et al. Biodiversity and Ecosystem Functions in Southern African Savanna Rangelands: Threats, Impacts and Solutions; Springer: Berlin/Heidelberg, Germany, 2024; pp. 407–438. [Google Scholar]
- Pillay, T.; Ward, D. Experimental Drought Suppresses Grass Productivity and Passive Warming Promotes Tree Sapling Performance: Insights from African Savanna Species. Acta Oecologica 2022, 114, 103813. [Google Scholar] [CrossRef]
- O’Connor, T.G. Long-Term Response of an Herbaceous Sward to Reduced Grazing Pressure and Rainfall Variability in a Semi-Arid South African Savanna. Afr. J. Range Forage Sci. 2015, 32, 261–270. [Google Scholar] [CrossRef]
- Hardin, G. The Tragedy of the Commons, 1st ed.; Routledge: Oxford, UK, 2000. [Google Scholar]
- Behnke, H.; Scoones, I. Rethinking Range Ecology: Implications for Rangeland Management in Africa; International Institute for Environment and Development: London, UK, 1992. [Google Scholar]
- Milton, S.J.; Dean, W.R.J. Anthropogenic Impacts and Implications for Ecological Restoration in the Karoo, South Africa. Anthropocene 2021, 36, 100307. [Google Scholar] [CrossRef]
- Sandhage-Hofmann, A.; Kotzé, E.; van Delden, L.; Dominiak, M.; Fouché, H.J.; van der Westhuizen, H.C.; Oomen, R.J.; du Preez, C.C.; Amelung, W. Rangeland Management Effects on Soil Properties in the Savanna Biome, South Africa: A Case Study along Grazing Gradients in Communal and Commercial Farms. J. Arid. Environ. 2015, 120, 14–25. [Google Scholar] [CrossRef]
- Allsopp, N.; Laurent, C.; Debeaudoin, L.M.C.; Igshaan Samuels, M. Environmental Perceptions and Practices of Livestock Keepers on the Namaqualand Commons Challenge Conventional Rangeland Management. J. Arid. Environ. 2007, 70, 740–754. [Google Scholar] [CrossRef]
- Mark, D.; Smith, S.; Mckeon, G.M.; Watson, I.W.; Henry, B.K.; Stone, G.S.; Hall, W.B.; Howden, S.M. Learning from Episodes of Degradation and Recovery in Variable Australian Rangelands. Proc. Natl. Acad. Sci. USA 2007, 104, 20690–20695. [Google Scholar]
- Paruelo, J.M.; Jobbágy, E.G.; Sala, O.E.; Lauenroth, W.K.; Burke, I.C. Functional and Structural Convergence of Temperate Grassland and Shrubland Ecosystems. Ecol. Appl. 1998, 8, 194–206. [Google Scholar] [CrossRef]
Parameter | Grassland (n = 20) | Savanna (n = 35) | Nama-Karoo (n = 30) |
---|---|---|---|
Perceptions of Rangeland Condition | |||
Good (%) | 50.0 | 28.6 | 10.0 |
Moderate (%) | 15.0 | 57.1 | 23.33 |
Bad (%) | 35.0 | 14.3 | 66.67 |
Agreement with Long-term Grazing Capacity Norms | |||
Yes (%) | 75.0 | 71.43 | 60.0 |
No (%) | 25.0 | 28.57 | 40.0 |
Type of Land Degradation | |||
Soil erosion (%) | 25.0 | 5.71 | 33.33 |
Loss of vegetation cover (%) | 90.0 | 28.57 | 83.33 |
Bush encroachment (%) | 25.0 | 57.14 | 16.67 |
Plant species change (%) | 50.0 | 51.43 | 60.0 |
Biomass decline (%) | 75.0 | 71.43 | 51.43 |
Biome | Plant Species | Life Form | Family | Palatability | Abundance (%) |
---|---|---|---|---|---|
Grassland | Eragrostis chloromelasSteud. | Grass | Poaceae | Moderate | 30.37 |
Themeda triandra Forssk. | Grass | Poaceae | High | 20.73 | |
Eragrostis plana Nees | Grass | Poaceae | Low | 12.10 | |
Eragrostis curvula (Schrad.) Nees | Grass | Poaceae | High | 8.41 | |
Cynodon dactylon (L.) Pers. | Grass | Poaceae | High | 7.12 | |
Tristachya leucothrix Trin. ex Nees | Grass | Poaceae | Moderate | 6.92 | |
Elionurus muticus (Spreng.) Kunth | Grass | Poaceae | Low | 5.68 | |
Setaria sphacelata (Schumach.) Stapf & C.E.Hubb. var. sphacelata | Grass | Poaceae | High | 5.51 | |
Heteropogon contortus (L.) Roem. & Schult. | Grass | Poaceae | Moderate | 4.25 | |
Aristida congesta Roem. & Schult. subsp. congesta | Grass | Poaceae | Low | 1.65 | |
Savanna | Digitaria eriantha Steud. | Grass | Poaceae | High | 30.00 |
Melinis repens (Willd.) Zizka subsp. repens | Grass | Poaceae | Low | 24.80 | |
Aristida congesta Roem. & Schult. subsp. congesta | Grass | Poaceae | Low | 21.40 | |
Themeda triandra Forssk. | Grass | Poaceae | High | 15.60 | |
Cynodon dactylon (L.) Pers. | Grass | Poaceae | High | 14.80 | |
Megathyrsus maximus (Jacq.) | Grass | Poaceae | High | 10.21 | |
Hyparrhenia hirta (L.) Stapf | Grass | Poaceae | Low | 8.80 | |
Cymbopogon pospischilii (K.Schum.) C.E.Hubb | Grass | Poaceae | Low | 7.52 | |
Heteropogon contortus (L.) Roem. & Schult. | Grass | Poaceae | Moderate | 6.90 | |
Trachypogon spicatus (L.f.) Kuntze | Grass | Poaceae | Low | 5.41 | |
Nama- Karoo | Stipagrostis obtusa (Delile) Nees | Grass | Poaceae | High | 34.6 |
Pentzia incana (Thunb.) Kuntze | Shrub | Asteraceae | Moderate | 27.6 | |
Eragrostis chloromelas Steud. | Grass | Poaceae | Moderate | 15.2 | |
Ruschia spinosa (L.) Dehn. | Shrub | Aizoaceae | Moderate | 10.8 | |
Tragus berteronianus Schult. | Grass | Poaceae | Low | 7.8 | |
Aristida congesta Roem. & Schult. subsp. congesta | Grass | Poaceae | Low | 6.9 | |
Eragrostis curvula (Schrad.) Nees | Grass | Poaceae | High | 6.4 | |
Asparagus burchellii Baker | Shrub | Asparagaceae | Low | 5.6 | |
Stipagrostis ciliata (Desf.) De Winter var. capensis (Thunb.) De Winter | Grass | Poaceae | High | 4.5 | |
Galenia fruticosa (L.f.) Sond. | Shrub | Aizoaceae | Moderate | 3.9 |
Biome | Farmer GC | Current SR | Assessed GC | Department GC |
---|---|---|---|---|
Grassland | 5.26 ± 0.37 a | 4.87 ± 0.47 a | 6.53 ± 0.97 a | 10.15 ± 0.79 a |
Savanna | 6.35 ± 0.77 a | 6.37 ± 0.69 a | 9.75 ± 0.95 a | 10.50 ± 0.60 a |
Nama-Karoo | 30.7 ± 2.36 a | 19.90 ± 1.98 a | 116.3 ± 6.13 b | 30.1 ± 0.93 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letsoalo, N.L.; Samuels, I.M.; Tjelele, J.T.; Pule, H.T.; Cupido, C.F.; Engelbrecht, A. Rangeland Conditions and Grazing Capacities on Livestock Farms During and After Drought in Three Biomes in South Africa. Land 2025, 14, 1836. https://doi.org/10.3390/land14091836
Letsoalo NL, Samuels IM, Tjelele JT, Pule HT, Cupido CF, Engelbrecht A. Rangeland Conditions and Grazing Capacities on Livestock Farms During and After Drought in Three Biomes in South Africa. Land. 2025; 14(9):1836. https://doi.org/10.3390/land14091836
Chicago/Turabian StyleLetsoalo, Ngoako L., Igshaan M. Samuels, Julius T. Tjelele, Hosia T. Pule, Clement F. Cupido, and Adriaan Engelbrecht. 2025. "Rangeland Conditions and Grazing Capacities on Livestock Farms During and After Drought in Three Biomes in South Africa" Land 14, no. 9: 1836. https://doi.org/10.3390/land14091836
APA StyleLetsoalo, N. L., Samuels, I. M., Tjelele, J. T., Pule, H. T., Cupido, C. F., & Engelbrecht, A. (2025). Rangeland Conditions and Grazing Capacities on Livestock Farms During and After Drought in Three Biomes in South Africa. Land, 14(9), 1836. https://doi.org/10.3390/land14091836