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Abstract

While technologies like renewable energy and low-carbon transportation are known to
mitigate carbon emissions from urban expansion, achieving carbon neutrality during
this process remains a critical unresolved challenge. This issue is particularly pressing
for developing countries striving to balance urbanization with carbon reduction. Taking
Qionglai City as a case study, this study simulated the territorial spatial functional patterns
(TSFPs) and carbon emission distribution for 2025 and 2030. Based on the key drivers of
carbon emissions from urban expansion identified through the Geographical and Temporal
Weighted Regression (GTWR) model, carbon-neutral pathways were designed for two
scenarios: urban expansion scenarios under historical evolution patterns (Scenario I) and
urban expansion scenarios optimized under carbon neutrality targets (Scenario II). The
results indicate that (1) urban space is projected to expand from 6094.73 hm2 in 2020 to
6249.77 hm2 in 2025 and 6385.75 hm2 in 2030; (2) total carbon emissions are forecasted to
reach 1.25 × 106 t (metric tons) and 1.40 × 106 t in 2025 and 2030, respectively, exhibiting
a spatial pattern of “high in the central-eastern regions, low in the west”; (3) GDP, Net
Primary Productivity (NPP), and the number of fuel vehicles are the dominant drivers of
carbon emissions from urban expansion; and (4) a four-pronged strategy, optimizing urban
green space vegetation types, replacing fuel vehicles with new energy vehicles, controlling
carbon emissions per GDP, and purchasing carbon credits, proves effective. Scenario II
presents the optimal pathway: carbon neutrality in the expansion zone can be achieved by
2025 using the first three measures (e.g., optimizing 66.73 hm2 of green space, replacing
800 fuel vehicles, and maintaining emissions at 0.21 t/104 CNY per GDP). By 2030, carbon
neutrality can be achieved by implementing all four measures (e.g., optimizing 67.57 hm2

of green space, replacing 1470 fuel vehicles, and achieving 0.15 t/104 CNY per GDP).
This study provides a methodological basis for local governments to promote low-carbon
urban development and offers practical insights for developing nations to reconcile urban
expansion with carbon neutrality goals.

Keywords: urban expansion; carbon neutrality; emission reduction pathway; territorial
space; scenario analysis
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1. Introduction
Global warming has intensified in recent years, with extreme weather, rising sea levels,

and biodiversity loss threatening sustainable development [1]. As the primary greenhouse
gas, carbon dioxide (CO2) accounts for approximately 66% of radiative forcing and directly
drives roughly 76% of global warming [2]. Accelerated urbanization, marked by population
influx and construction land expansion, has further fueled CO2 emissions [3]. Research
indicates that land use change, increased energy consumption, population agglomeration,
and shifting economic patterns driven by urbanization are key contributors to rising
emissions [3]. Over the past four decades, China has undergone rapid urbanization, with
a continuously increasing proportion of its urban population and significant expansion
of urban scales leading to substantial changes in land use [4]. Since the launch of the
reform and opening-up policy in 1978, China’s urbanization rate has surged from 20%
to approximately 64% by 2020. This process has been accompanied by a rapid increase
in carbon emissions, making China one of the world’s largest CO2 emitters, accounting
for about 27% of the global total [2,5]. Rapid urbanization also leads to ecological land
loss, further accelerating emissions [6]. In response, China proposed dual carbon targets:
peaking by 2030 and neutrality by 2060 [7]. However, as a developing country, China
must avoid both restricting urbanization at the cost of growth and allowing unchecked
expansion [8,9]. Therefore, balancing urbanization with carbon emission control and
exploring low-carbon pathways during urban expansion is not only crucial for guiding
China towards its “dual carbon” strategic goals but can also offer valuable lessons for
global urban development and climate governance.

As the core manifestation of the global urbanization process, urban expansion, with
its spatiotemporal patterns, driving mechanisms, and environmental effects, has become
a research hotspot in geography, ecology, and urban planning [10,11]. Currently, numer-
ous methods or models are available for simulating urban expansion, such as traditional
Cellular Automata (CA), Land Use and Cover Change (LUCC) models, and the emerging
Patch-generating Land Use Simulation (PLUS) model [12–14]. Among these, the PLUS
model, by integrating a random forest algorithm to identify drivers of land use change and
combining it with a multi-type cellular automaton to simulate the patch generation process,
offers significant advantages in capturing the spatial self-organization characteristics of
urban expansion and the non-linear relationships among multiple driving factors [14]. For
example, Li et al. [15] employed a Genetic Algorithm (GA) and the PLUS model to optimize
the quantitative structure and spatial layout of Production–Living–Ecological Land (PLEL)
in Ningbo City, respectively. This provided technical support for decision-makers in formu-
lating targeted territorial spatial plans and achieving regional sustainable development.
Compared to traditional models, the PLUS model demonstrates superior performance in
multi-scenario simulation, dynamic response, and complex system interaction analysis. It is
particularly well-suited for synergistic research on urban expansion and carbon neutrality
goals, showing broad application prospects.

Current carbon emission accounting methods mainly include direct measurement, ma-
terial balance, factor decomposition, life cycle assessment, and the emission factor method
recommended by the IPCC [16–19]. Among these, the emission factor method, proposed
by the IPCC Greenhouse Gas Inventory Guidelines, has become the most widely applied
approach due to its complete methodological framework and standardized parameters,
which support analyses at both global and regional scales. However, this method involves
a complex calculation process, has high data quality requirements, and possesses limited
regional applicability [5,20,21]. In contrast, the land use carbon emission coefficient method
is better suited for carbon emission accounting in regions with limited data resources or at
smaller study scales, owing to its simpler data requirements and ease of spatial distribution
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expression [20]. A key limitation, however, is that its fixed coefficients cannot account for
the spatiotemporal differences in carbon emissions or ecosystem interactions [22]. Cur-
rently, carbon emission accounting is predominantly focused on administrative units, such
as provinces, cities, and counties [23,24]. A few studies have extended this work to the
level of urban agglomerations [25,26], yet these approaches still struggle to capture the
fine-scale spatial heterogeneity of emissions. In contrast, grid-based accounting offers
a high-resolution depiction of carbon emission distributions at the sub-city scale [22]. It
is noteworthy that existing grid-based spatial simulations of carbon emissions are mostly
based on land use/land cover (LULC) classification, with few simulations conducted from
the perspective of territorial spatial function (TSF) utilization [27]. Accordingly, by inte-
grating the IPCC inventory method with the carbon emission coefficient approach—and
fully accounting for local industrial structure, energy consumption patterns, and data
availability—we conducted grid-cell carbon emission spatial distribution simulations. This
framework overcomes the limitations of traditional administrative- or regional-scale ac-
counting, which cannot capture fine-scale spatial heterogeneity, and achieves high-precision
modeling of carbon emissions in both space and time.

The main drivers of carbon emission changes include the energy mix, industrial struc-
ture, territorial development intensity, functional land use structure, economic development
level, and population size [28–30]. Mainstream methods for analyzing carbon emission
drivers include the Logarithmic Mean Divisia Index (LMDI) decomposition method, En-
vironmental Input–Output Structural Decomposition Analysis (EIO-SDA), the Structural
Path Decomposition (SPD) method, Gray Relational Analysis, the SPNN-GNNWR model,
Geodetector, and Geographically and Temporally Weighted Regression (GTWR) [24,31–36].
Although the LMDI method is widely used for decomposing carbon emission drivers due
to its operational simplicity, it neglects the spatiotemporal heterogeneity of these drivers,
making it difficult to reveal their varying impacts across time and space [37]. In contrast,
the GTWR model can capture both spatial and temporal variability and has been widely
used in land use carbon emission studies [38,39]. For example, Shi et al. [40] employed
the GTWR model to study the spatiotemporal impacts of urban form on CO2 emissions
and found significant spatiotemporal heterogeneity in this relationship. It is noteworthy
that existing research has primarily focused on analyzing the impacts of carbon emis-
sion changes across entire regions, while studies specifically addressing the influencing
factors of carbon emissions during the urban expansion process remain relatively scarce.
Although significant progress has been made in understanding the interaction mechanisms
between urbanization and carbon emissions in recent years, for instance, Wu et al. [41],
after analyzing territorial carbon sink conflicts in the Yangtze River Delta urban agglom-
eration, pointed out that urban expansion leads to the conversion of ecological land and
a reduction in carbon storage. Vasenev et al. [42] further noted that the disruption of
biogeochemical processes in peri-urban areas leads to a decrease in soil organic carbon
content, exacerbating carbon emissions. Due to the significant impact of urbanization on
carbon emissions, controlling the scale of urban expansion has become a common practice
for achieving carbon neutrality. However, this has a huge impact on the economies of
developing countries, which are accelerating their urbanization process, and is not in line
with the actual situation in developing countries [43]. While some studies emphasize that
low-carbon or even zero-emission urbanization may be achievable through measures such
as urban greening, energy-efficient buildings, and green transportation [44,45], existing
research has not conducted a systematic quantitative analysis [46,47] and thus has not
truly addressed how to achieve zero emissions in the process of urban expansion. Further
in-depth investigation is urgently needed.
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Despite progress in urban expansion simulation, carbon accounting, and driver iden-
tification, three main gaps remain. First, most carbon emission spatial simulations focus
on administrative units (provinces, cities, and counties), with few fine-grained grid-based
studies combined with TSFs, limiting accurate spatial heterogeneity characterization. Sec-
ond, research mainly examines emissions and drivers at a broad scale, lacking detailed
spatiotemporal analysis of drivers during urban expansion, causing policies to rely on
linear extrapolation, which is inadequate for complex carbon-neutral scenarios. Third,
while some low-carbon pathways address greening, energy saving, and green transport,
a systematic zero-emission strategy specifically for urban expansion is missing. Therefore,
achieving net-zero carbon during urban expansion by optimizing TSFs’ layout, regulat-
ing drivers, and designing emission reduction strategies remains a critical challenge for
developing countries that are in the process of balancing carbon control and growth.

To address these issues, this study first constructs an urban expansion driver index
system and uses the PLUS model to simulate the urban spatial distribution of Qionglai
City for 2025 and 2030. Second, we develop a TSF-based carbon emission accounting
framework by integrating land use emission coefficients with the IPCC method to simulate
urban carbon emissions from 2010 to 2020. We then apply the LSTM model to predict the
spatial distribution of net emissions for 2025 and 2030. Next, a GTWR model analyzes the
spatial heterogeneity of emission drivers during urban expansion to identify key factors.
Finally, we establish historical evolution and carbon neutrality-constrained scenarios and
formulate zero-carbon pathways for 2025 and 2030 based on these drivers. This study aims
to provide empirical evidence and technical pathways for local governments like Qionglai
City to promote low-carbon urban development and offer insights for developing countries
balancing urban expansion with climate mitigation.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Overview of the Study Area

Qionglai City, located in western China between the Chengdu Plain and Longmen
Mountains (30◦12′ N–30◦33′ N, 103◦04′ E–103◦45′ E), covers 1377 km2 and includes 1 street,
19 towns, and 4 townships (Figure 1). The terrain slopes northwest to southeast, ranging
from 451 m to 1991 m, and consists of plains (mainly east and northeast), mountains
(mainly south and west), and hills (central and northwest). Rivers extend 271 km, providing
abundant water resources. The city experiences a subtropical humid monsoon climate, with
an average temperature of 16.3 ◦C, annual precipitation of around 1117 mm, 1108 sunshine
hours, and evaporation of 1025 mm. Soils are mainly fluvo-aquic and purple soils, and
forest vegetation is dominated by subtropical evergreen broadleaf forests in mountainous
and hilly areas.

In this study, we selected Qionglai City as our case study to explore pathways for
achieving carbon emissions during urban expansion. This choice was based on two pri-
mary considerations. First, since 2010, its trends in urbanization, economy, population,
and carbon emission intensity closely resemble those of typical Chinese cities and devel-
oping countries like India, Brazil, and South Africa, reflecting shared challenges in land
transformation, energy adjustment, and carbon changes amid rapid urbanization. Second,
Qionglai emphasizes ecological civilization and climate governance, has set clear carbon
neutrality goals, and faces similar governance needs [48]. Therefore, this case not only
guides Qionglai’s low-carbon development but also provides policy and theoretical support
for comparable regions.
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Figure 1. Geographical location of the research area [49].

2.1.2. Data Sources and Processing

The data used in this study mainly include raster data, vector data, and panel data
(Table 1). To meet the data analysis requirements, all data types were standardized: the
geographical coordinate system was set to WGS-1984, the projected coordinate system
to UTM, and the raster resolution to 100 m × 100 m. Based on this, the panel data
underwent primary preprocessing, which mainly involved spatialization. The panel data
comprises two categories: socioeconomic development statistics and energy statistics.
Socioeconomic data, aggregated at municipal and township levels, were spatialized onto
a 100 m × 100 m vector grid following Ou et al. [49]. Energy-consumption parameters
were obtained from [50,51] and the China Energy Statistical Yearbook. Notably, due to the
absence of energy consumption and chemical oxygen demand (COD) data in industrial
wastewater for Qionglai City, we estimated these values using data from Chengdu city
or Sichuan Province. Specific methods include the following: urban production energy
consumption is equal to Chengdu’s comprehensive energy consumption per 104 CNY of
industrial output (above-scale enterprises) multiplied by the study area’s industrial output
value; urban domestic energy consumption is equal to Chengdu’s per capita consumption
of electricity, natural gas, and liquefied petroleum gas multiplied by the study area’s urban
population; rural domestic energy consumption is equal to Chengdu’s rural per capita
consumption of electricity, natural gas, and liquefied petroleum gas multiplied by the study
area’s rural population; and chemical oxygen demand in industrial wastewater is equal to
Sichuan Province’s average COD concentration multiplied by the ratio of the study area’s
industrial output to that of Sichuan Province [52–56].

2.2. Methodology
2.2.1. Urban Spatial Expansion Simulation Using the PLUS Model
Development of a Driver Indicator System for Urban Expansion

Research indicates that the process of urban expansion is jointly influenced by to-
pography and geomorphology, the natural environment, transportation accessibility, and
socio-economic factors [57,58]. To clarify the driving mechanisms of these factors on the
functional evolution of territorial space, we systematically screened the core factors that
significantly influence urban expansion in Qionglai City, following the principles of sci-
entific validity, relevance, and data availability. Based on this, we constructed a driving
factor indicator system (Table 2) (Detailed calculation method is provided in Table S1 of
Supplementary Materials).
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Table 1. Data types and sources.

Data Type Data Name Time-Series
(Year) Resolution Data Source

Raster data

DEM 2020 12.5 m 91 Visitor Assistant

Google satellite image 2020 10 m https://developers.google.com/earth-engine/
datasets (accessed on 19 January 2025)

Territorial space–function
distribution map 2009–2023 50 m Previous research datasets [49]

Temperature
2000–2020 1 km

National Tibetan Plateau/Third Pole
Environment Data Center

http://data.tpdc.ac.cn
(accessed on 19 January 2025)

Precipitation

Net primary productivity 2000–2020 500 m
National Earth System

Science Data Center
https://www.geodata.cn/data/index.html?

word=NPP (accessed on 19 January 2025)

NDVI

National Earth System
Science Data Center

https://www.geodata.cn/main/face_
scientist?categoryId=&word=NDVI (accessed

on 19 January 2025)

Vector Data

Administrative boundary 2020 1:5000 Sichuan Academy of Land Science
and Technology

Land use status data
2009–2023

1:5000 Sichuan Academy of Land Science
and Technology

Road Network Vector Data - OpenStreetMap

Panel data

Number of pigs (head)

2009–2023

County level

Qionglai Statistics Bureau

Number of cows (head)
Number of sheep (head)

Urban population (person)
Township-levelRural population (person)

GDP per capita (104 CNY/person)

Energyconsumption per 104 CNY
of industrial output

(tce/104 CNY)

2009–2023 City-level Chengdu Municipal Bureau of Statistics
Per capita electricity

consumption (kWh/person)
Per capita natural gas

consumption (m3/person)
Per capita liquefied gas

consumption (kg/person)

Chemical oxygen demand (COD)
in wastewater (t) 2009–2023 Provincial-level China Energy Statistical Yearbook

Topographical factors determine the ease of land development and the direction
of expansion. Altitude restricts development in highland areas due to its influence on
temperature, oxygen levels, and construction costs. Slope impacts both development costs
and the risk of natural disasters, making areas with steep gradients difficult to develop.
Topographic relief reflects landscape complexity, with areas of poor connectivity being
unconducive to spatial agglomeration and urban sprawl. Consequently, altitude, slope,
and topographic relief were selected as the representative topographical indicators.

Natural environmental factors support and constrain urban development through
ecological services. Water conservation capacity affects water supply and agricultural
layout. Evapotranspiration regulates microclimate and water cycles, mitigating urban heat
islands. Environmental purification capacity influences carrying capacity and pollution con-
trol costs. Soil conservation reflects nutrient levels and erosion prevention, underpinning
agricultural sustainability. Habitat quality indicates ecosystem stability and biodiversity,
providing buffering and landscape services. Consequently, water resource conservation,
evapotranspiration, environmental purification services, soil conservation, and habitat
quality were selected to constitute the natural environment indicators.

https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
http://data.tpdc.ac.cn
https://www.geodata.cn/data/index.html?word=NPP
https://www.geodata.cn/data/index.html?word=NPP
https://www.geodata.cn/main/face_scientist?categoryId=&word=NDVI
https://www.geodata.cn/main/face_scientist?categoryId=&word=NDVI
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Table 2. Indicators of driving factors for urban spatial expansion.

Driving Factor Measurement
Indicators Description Unit

Topography and
Landform

Elevation Vertical height of a surface point relative
to the mean sea level. m

Slope Ratio of vertical rise to horizontal
distance on the land surface. %

Topographic relief Maximum relative elevation difference
per unit area. m/km2

Natural
Environment

Water conservation The ecosystem’s ability to purify, store,
and supply freshwater. m3/raster

Evapotranspiration Total volume of water released into the
atmosphere through plant transpiration. m3/d

Environmental
purification service

capacity

The ecosystem’s self-purification
capacity for water and air. -

Soil conservation
Index of the ecosystem’s ability to

control erosion and maintain
nutrient cycling.

-

Habitat quality
Composite index for biodiversity

maintenance and ecological
sustainability.

-

Transportation Location

Road network density Ratio of total road length to the area of
the evaluation unit. km/km2

Distance to public
services

Shortest feasible distance to key public
service facilities (e.g., education,

healthcare).
m

Socioeconomic
Population density Number of permanent residents per

unit area. people/km2

Per capita GDP Ratio of total GDP to the permanent
population. 104 CNY/person

Transportation location factors serve as exogenous drivers, influencing factor mo-
bility and accessibility. Higher transportation network density enhances inter-regional
connectivity, driving the dispersion of population and resources towards urban peripheries.
In addition, the accessibility of public service facilities impacts residential convenience
and regional attractiveness, thereby accelerating population and industrial agglomeration.
Consequently, transportation network density and public service accessibility were selected
to constitute the transportation location indicators.

Socio-economic factors provide the endogenous momentum for urban expansion.
Population density reflects the intensity of land demand, as high-density areas compel
cities to expand outward due to the demand for housing and services. Per capita GDP
measures the level and vitality of economic development; economically robust areas typi-
cally exhibit higher levels of urbanization and continuously enhanced spatial functions.
Consequently, population density and per capita GDP were selected to constitute the
socio-economic indicators.

Simulation of Urban Expansion Using the PLUS Model

The PLUS model, an extension of cellular automata, integrates LEAS and CARS mod-
ules, effectively explaining driving factors behind land use changes with high simulation
accuracy [14]. The LEAS module samples land expansion across categories between two
periods and applies a random forest algorithm to identify drivers and calculate expansion
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probabilities. The CARS module employs a competitive mechanism with a decreasing
threshold to control random seeds, generating new land use patches in a natural growth
process. This approach mitigates the probability of unlimited patch expansion, thereby
permitting new patches to evolve freely within these constraints [59].

In this study, we predicted the territorial spatial functional patterns (TSFP) of Qionglai
City for 2025 and 2030, with a focus on urban space evolution. The specific workflow
was as follows: Firstly, we constructed a driving factor indicator system and utilized
the LEAS module to quantify the contribution of each factor to functional expansion,
thereby generating an expansion probability map. Secondly, we employed the CARS
module, using the quantity of each functional type in the base year as the spatial demand.
We then simulated the spatial distribution in conjunction with the probability map and
compared the results with the actual distribution to evaluate accuracy, which involved pre-
selecting parameters such as the seed probability of the random patch and the neighborhood
effect. Subsequently, we predicted future spatial demand using a Markov chain model.
Finally, we used this projected demand as input for the CARS module, invoking the
validated expansion probability map and simulation parameters to simulate the functional
distribution for 2030, respectively, thereby revealing future urban expansion trends.

2.2.2. Spatial Simulation of Carbon Emissions from TSFs

Currently, Simulation methodologies for the spatial distribution of carbon emissions
from TSFs remain scarce. This study employs a spatial-unit–based framework to model
carbon emissions from TSFs. The framework construction steps are as follows: First, we
compiled a list of carbon emissions from county-level land use functions and referred to
both carbon emissions and absorption as carbon emissions, with positive values represent-
ing carbon sources and negative values representing carbon sinks. Secondly, we calculate
total carbon emissions for each TSF and derive corresponding emission coefficients. Finally,
we divide the study area into spatial units, compute net emissions per unit, and produce
a TSFP of carbon emissions from TSFs (Figure 2).

Carbon Emission Inventory of TSFs

In this study, we build upon the previously established county-level TSF classification
system [49] and integrate the advantages of the land use carbon emission coefficient
method with the IPCC inventory approach to develop a carbon emission inventory for
TSFs. Qionglai City’s territorial space is divided into six primary TSFs: urban production
space (UPS), urban living space (ULS), urban ecological space (UES), rural production
space (RPS), rural living space (RLS), and rural ecological space (RES) [49]. Further, based
on the IPCC 2006 National Greenhouse Gas Inventory Guidelines (2019 revision) [51], we
classify carbon sources into five sectors: terrestrial ecosystems, energy consumption, waste,
population and livestock, and others. Finally, by linking different TSFs with land use
categories and aligning land use types with carbon emission items, we establish a carbon-
emission inventory corresponding to each TSF (Table 3).

Table 3. Carbon emission inventory for TSFs.

Territorial Space Type Terrestrial
Ecosystems

Energy
Consumption Waste Population and

Livestock Others

UPS

Industrial energy
consumption,
Service energy
consumption

Industrial
wastewater

Urban population
respiration

Transportation
land
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Table 3. Cont.

Territorial Space Type Terrestrial
Ecosystems

Energy
Consumption Waste Population and

Livestock Others

ULS
Urban residential

energy
consumption

Domestic
wastewater

Urban population
respiration

Transportation
land

UES Forest land, water
bodies, grassland

RPS Cropland, orchard
land

Livestock
respiration, enteric
fermentation, and

manure

Transportation
land

RLS
Rural residential

energy
consumption

Domestic
wastewater

Rural population
respiration

RES Forest land, water
bodies, grassland

Note: TSFs refer to territorial spatial functions; UPS is urban production space; ULS is urban living space; UES is
urban ecological space; RPS is rural production space; RLS is rural living space; RES is rural ecological space.

Figure 2. Spatial unit-based simulation framework for TSF carbon emissions distribution: UPS is
urban production space; ULS is urban living space; UES is urban ecological space; RPS is rural
production space; RLS is rural living space; RES is rural ecological space.
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Accounting for Total Carbon Emissions and Coefficient Calculation of TSFs

(1) Total carbon emissions accounting
In the previously constructed TSF carbon-emission inventory, an indirect method

based on land use carbon emission coefficients (Detailed calculation method is provided in
Table S2 of Supplementary Materials) was used to estimate terrestrial ecosystem emissions,
with parameters referenced from existing studies. Emissions from energy consumption,
waste, and respiration by humans and animals were calculated directly (Detailed calculation
method is provided in Table S3 of Supplementary Materials). Regional carbon emissions
include direct and some indirect emissions, incorporating only electricity, heat, cooling,
and steam imported from outside the city, while excluding embedded emissions from
commodities like building materials and food to avoid unclear boundaries and excessive
accounting. Furthermore, referencing relevant studies [60,61], only two major greenhouse
gases, carbon dioxide and methane, were accounted for, focusing on primary gases and
simplifying the process.

(2) Calculation of carbon emission coefficients
The net carbon emission coefficient for each TSF, including urban production, urban

living, urban ecological, rural production, rural living, and rural ecological spaces, is
calculated by dividing the total carbon emissions of each type by its total area. The formula
used is as follows:

ψk =
∑5

j=1(Cnet)kj

Ak
(1)

where ψk denotes the net carbon emission coefficient for the kth TSF (Detailed calculation
results are provided in Table S4 of Supplementary Materials) (Cnet)kj represents the carbon
emissions of the jth carbon emission source within the kth TSF; Ak is the area of the kth TSF;
j and k denote the project and category codes for carbon emissions associated with TSFs,
respectively, with k = 1, 2, 3, . . . , N.

Calculation of Carbon Emissions for Territorial Spatial Units

Firstly, the Create Fishnet tool in Esri ArcGIS 10× (Environmental Systems Research
Institute (ESRI), Redlands, CA, USA.) was used to generate territorial spatial units based on
Qionglai City’s vector boundary. After balancing accuracy and efficiency, a 100 m × 100 m
grid was chosen, totaling 1.40 × 105 units, as it captures both macro patterns and local
details [62,63]. On this basis, we applied the Tabulate Intersection tool to overlay the fishnet
grid with the TSF classification layers for each year. This yielded a table of area values
Aik for each of the six functional space types within each grid cell. We then multiplied Aik

by the corresponding net carbon emission coefficient ψk (calculated using Equation (1) in
Section Accounting for Total Carbon Emissions and Coefficient Calculation of TSFs) for
that year to generate spatial distribution maps of carbon emissions from 2010 to 2020. The
carbon emission per unit was calculated as follows:

(Ctotal)i =
N

∑
k=1

ψk Aik (2)

where (Ctotal)i denotes the carbon emissions of the ith territorial spatial unit; Aik represents
the area of the kth TSF within the ith territorial spatial unit; i is the index of the territorial
spatial unit, where i = 1, 2, . . . , 139736; ψk, k carries the same meaning as defined in
Equation (1).
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Spatial Distribution Forecast of Carbon Emissions by TSFs

The Long Short-Term Memory (LSTM) is a time series-based prediction tool and
represents an advanced algorithmic model of the RNN. A key capability of the LSTM is its
ability to predict data for a subsequent time period based on an existing data sequence. Its
selective memory function enables it to process large sample sizes without encountering
the vanishing or exploding gradient problems commonly found in traditional RNNs. LSTM
has demonstrated notable efficacy in time series prediction of carbon emissions, yielding
substantial application outcomes [64]. Consequently, we opted to employ the LSTM model
to predict the time series of carbon emissions within Qionglai City’s territorial space. We
used the net carbon emissions of each 100 m × 100 m grid cell for 2010, 2012, 2014, 2016,
2018, and 2020 (derived from the results in Section Calculation of Carbon Emissions for
Territorial Spatial Units) as input features. These six time-point values were concatenated
into a sequence of length six, which was then fed into the LSTM model for training
and prediction, yielding estimates of net carbon emissions for 2025 and 2030. To assess
prediction accuracy, three evaluation metrics were selected: mean absolute error (MAE),
root mean square error (RMSE), and determination coefficient (R2). The formulas for these
metrics are as follows:

MAE =
1
n

n

∑
i=1

|ŷi − yi| (3)

RMSE =

√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2 (4)

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (5)

where ŷi denotes the predicted value, yi the observed value, and y the mean of the observed
values. Both MAE and RMSE range from [0, +∞), with lower values indicating reduced
error and higher model accuracy. The coefficient of determination R2 ranges from [0, 1],
where higher values correspond to lower error and greater model precision.

2.2.3. Zero-Emission Pathway Design for Urban Expansion Based on Scenario Analysis
Identification of Key Drivers Influencing Carbon Emissions from Urban Expansion

Urban expansion and carbon emissions show marked spatiotemporal heterogeneity,
necessitating analytical tools that capture both dimensions. This study adopts the GTWR
model to identify key drivers, as it extends Geographically Weighted Regression (GWR)
by incorporating time, thus enabling local regression on panel data across space and time.
This helps address sample size limitations and spatiotemporal non-stationarity, improving
result accuracy. The dependent variable is defined as the net carbon emission change due
to urban expansion. The specific calculation steps were as follows: First, expansion areas
for each stage were delineated by comparing the observed spatial patterns in 2010, 2015,
and 2020 [49] with the simulated expansion patterns for 2025 and 2030 generated by the
PLUS model. Then, using the Spatial Join tool in ArcGIS, each expansion area was spatially
linked to the corresponding grid-level net carbon emissions for the relevant year (with
emission data for 2010, 2015, and 2020 obtained from the calculations in Section Calculation
of Carbon Emissions for Territorial Spatial Units, and data for 2025 and 2030 derived from
the LSTM model predictions in Section Spatial Distribution Forecast of Carbon Emissions
by TSFs). Finally, the net carbon emission changes within expansion areas for the four
periods—2010–2015, 2015–2020, 2020–2025, and 2025–2030—were aggregated into separate
panel datasets to serve as the dependent variables in the GTWR model.



Land 2025, 14, 1689 12 of 35

Based on previous studies [65] and considering the availability of data and the suit-
ability of quantitative methods for the variables used, six explanatory variables were
selected to identify key drivers of carbon emissions during urban expansion (Table 4). The
mathematical formulation of the GTWR model is expressed as follows:

yi = β0(µi, νi, ti) +∑
k

βk(µi, νi, ti)Xik + εi (6)

where yi denotes the carbon emissions from urban expansion in the ith spatial unit; β0

represents the intercept; µi, νi and ti correspond to the latitude, longitude, and temporal
coordinate of the centroid of the ith spatial unit, respectively; βk signifies the estimated
coefficient of the kth influencing factor for the ith spatial unit; Xik is the value of the kth

influencing factor in the ith spatial unit; and εi denotes the stochastic error term.

Table 4. Indicators of driving factors for carbon emissions from urban expansion.

Driving Factors Description Unit

GDP per Unit Area GDP generated per unit of territorial space area. 104 CNY/hm2

Secondary Industry
Output Density

The output value of the secondary industry per unit of
territorial space area. 104 CNY/hm2

Population Density Number of residents per unit of territorial space area. persons/hm2

Number of fuel vehicles Number of fuel vehicles per unit of territorial space. vehicles/hm2

Temperature Average air temperature within a unit territorial space. ◦C

NPP Net primary productivity of vegetation per unit
territorial space area. kgC/m2/year

Scenario-Based Design of Carbon-Neutral Pathways for Urban Expansion

We designed two pathways for achieving carbon neutrality in the expansion of urban
space in Qionglai City in 2025 and 2030. Based on this, we designed specific strategies for
implementing the scenarios and, through comparative analysis, determined the optimal
path for achieving carbon neutrality during urban expansion.

(1) Scenario I: Urban expansion scenarios under historical evolution patterns
This scenario assumes that by 2025 and 2030, the scale and spatial layout of urban

production, living, and ecological spaces in Qionglai City will follow historical land use
and emission trends. Such “historical continuation” scenarios are widely applied in studies
on urban expansion and carbon emissions [66,67], serving as a baseline reference in the
absence of policy interventions. They help assess the effectiveness and feasibility of various
emission reduction strategies. Based on a carbon source–sink balance, compensation
strategies are proposed to offset residual emissions, prioritized as: optimizing urban green
space vegetation types, replacing fuel vehicles with new energy vehicles, controlling carbon
emissions per GDP, and purchasing carbon credits.

(2) Scenario II: Urban expansion scenarios optimized under carbon neutrality targets
In this scenario, the TSFP no longer follows historical development trends but is

instead simulated based on the strategic goal of “carbon neutrality,” aiming to optimize
spatial development in a way that coordinates urban expansion and carbon emission re-
duction. Specifically, the scenario first takes into account the dual objectives of minimizing
net carbon emissions and maximizing economic benefits for the years 2025 and 2030. Using
constraints such as urban construction land expansion, farmland protection, ecological se-
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curity, and population size, a multi-objective constrained optimization model is constructed
to determine the spatial scale of each TSF. The model expression is as follows:

min Z1 =
6

∑
i=1

aixi,t

max Z2 =
6

∑
i=1

bixi,t

s.t.



6

∑
i=1

xi,t = At

x1,t + x2,t + x3,t ≤ Au,t

x6,t ≥ Ae,t

x4,t ≥ A f

x5,t ≥ Pt × S
xi,t ≥ 0, i = 1, 2, . . . , 6

(7)

where Z1 represents the net carbon emission objective function value, denoting the an-
nual total carbon emissions of various TSFs in Qionglai City under a given spatial layout;
Z2 denotes the economic growth objective function value, reflecting the annual total eco-
nomic benefits under the same layout. ai(i = 1, . . . , 6) correspond to the net carbon emission
factors for each TSF; bi(i = 1, . . . , 6) represent the economic benefit coefficients for each TSF;
xi,t(i = 1, . . . , 6); t ∈ {2025, 2030} indicate the spatial area of the ith TSF in year t, where
x1,t, x2,t, x3,t, x4,t, x5,t, x6,t correspond to urban production, urban living, urban ecological,
rural production, rural living, and rural ecological spaces, respectively; At denotes the
total area of Qionglai City’s territorial space; Au,t is the scale of urban construction land in
planning year t; Ae,t represents the ecological redline protection area in year t; A f is the
baseline area for farmland protection; Pt is the total rural registered population in Qionglai
City in 2025; S is the per capita homestead area standard for Chengdu City.

Then, based on the optimized quantitative structure and the TSF suitability evalua-
tion results, the PLUS model is applied to simulate the specific distribution patterns of
urban space. Although the spatiotemporal distribution of net carbon emissions under
this scenario continues the historical evolution trend, the optimization of TSFs to balance
economic benefits and carbon reduction reduces emission intensity to some extent. Fi-
nally, to address the remaining carbon deficits following TSF layout optimization, the
same compensation-strategy priorities as in Scenario 1 are implemented to design specific
zero-emission measures.

3. Results and Analysis
3.1. Simulation Results and Analysis of Urban Space Expansion
3.1.1. Characteristics of the Quantitative Structure of Urban Expansion

In 2025, the urban space in Qionglai City is projected to reach an area of 6249.77 hm2,
accounting for 4.54% of the city’s total territorial space. This represents an increase of
154.10 hm2 compared to the base year (2020). Within this urban space, ULS constitutes the
largest component at 5258.95 hm2 (3.90% of the city’s total territorial space), followed by
UPS at 521.61 hm2 (0.38%), while UES is the smallest, at only 363.18 hm2 (0.26%).

By 2030, the area of urban space in Qionglai City is projected to continue to climb,
reaching 6385.75 hm2. This will account for 4.64% of the city’s total territorial space,
representing an increase of 291.02 hm2 compared to the base year (2020). Within this urban
space, ULS will remain the largest component, at 5474.75 hm2 (3.98% of the city’s total
territorial space); UPS will follow, at 536.81 hm2 (0.39%); and UES will be the smallest, at
374.19 hm2 (0.27%).
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In contrast, the area of rural space is projected to decrease from 131,628.44 hm2 in 2020
to 131,473.39 hm2 in 2025, and to further reduce to 131,337.41 hm2 by 2030. Consequently,
its proportion of Qionglai City’s total territorial space is expected to decline from 95.57% in
2020 to 95.46% in 2025, and then to 95.36% in 2030 (Table 5).

Table 5. Qionglai City TFQS optimization results.

Type of Territorial Functions 2020 2025 2030

First-Level Second-Level Area (hm2) % Area (hm2) % Area (hm2) %

Urban
UPS 501.60 0.36 521.61 0.38 536.81 0.39
ULS 5258.95 3.82 5364.98 3.90 5474.75 3.98
UES 334.18 0.24 363.18 0.26 374.19 0.27

Rural
RPS 59,600.53 43.28 59,631.48 43.30 59,652.54 43.31
RLS 9443.61 6.86 9135.60 6.63 8851.13 6.43
RES 62,584.29 45.44 62,706.31 45.53 62,833.74 45.62

Total 137,723.16 100.00 137,723.16 100.00 137,723.16 100.00
Note: TFQS refers to territorial spatial function quantity structure; UPS is urban production space; ULS is urban
living space; UES is urban ecological space; RPS is rural production space; RLS is rural living space; RES is rural
ecological space.

Compared with the base year, the scale of urban space in the target years (2025 and
2030) is projected to grow steadily, though not significantly. This limited increase is at-
tributed, on one hand, to the “Construction Planning Outline for the Chengdu-Chongqing
Dual-City Economic Circle,” which secures land for industrial upgrading through the
secondary development of existing construction land. On the other hand, it stems from the
slowdown in Qionglai City’s population growth and the new urbanization strategy’s shift
from large-scale expansion to quality improvement, with a greater emphasis on tapping
the potential of existing land, thereby inhibiting overall growth. In terms of functional
distribution, ULS is dominant, primarily influenced by the concentration of rural popula-
tions in urban areas and the urban-rural land quota linkage mechanism. UPS is developing
intensively to meet the policy requirement for the “efficient utilization of production space.”
Driven by the “Park City” concept and the integrated park system of mountains, rivers,
forests, farmlands, lakes, and grasslands, UES is steadily improving. However, its growth
remains limited due to multiple constraints, including arable land protection policies,
mountainous terrain, and the demand for land for urban renewal. Meanwhile, rural space
continues to shrink, a trend consistent with the strategy of enhancing the intensive use of
rural land.

3.1.2. Spatial Distribution Characteristics of Urban Expansion

The planned target years (2025 and 2030) for urban spatial distribution are primarily
concentrated in the central and eastern regions (Figures 3 and 4).

UPS is primarily concentrated in towns such as Linqiong, Yang’an, Pingle, and
Sangyuan. These towns possess strong industrial foundations, well-developed trans-
portation networks, and abundant land resources, which collectively support the intensive
layout and large-scale development of production land. ULS is predominantly clustered in
towns including Linqiong, Yang’an, and Wolong. These areas are characterized by dense
populations, comprehensive public service facilities, and favorable living environments,
enabling them to meet the multi-level living needs of residents and accommodate the
ongoing urbanization process. UES is more sparsely distributed across towns like Wenjun,
Linqiong, Yang’an, and Sangyuan. Such areas are often situated along river corridors or at
the peripheries of forested land, holding significant ecological value. They fulfill ecological
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functions as green spaces and wetlands, forming a dispersed yet interconnected system of
ecological corridors that underpins the city’s sustainable development.

Figure 3. TSFP of Qionglai City in 2020, 2025, and 2030: TSFP refers to territorial spatial functional
patterns. (a) TSFP in 2020; (b) TSFP in 2025; (c) TSFP in 2030. UPS is urban production space; ULS is
urban living space; UES is urban ecological space; RPS is rural production space; RLS is rural living
space; RES is rural ecological space.

The expansion of new UPS occurred sporadically, spreading outwards from the core
production areas of the base year. This pattern was driven by GDP, as significant regional
economic agglomeration effects attracted investment and promoted industrial spillover. In
contrast, the new ULS exhibited an annular expansion pattern, radiating outwards. This
was primarily prompted by the accessibility of public service facilities, which spurred
population migration and the extension of residential demand. The expansion of UES
was limited, with growth mainly originating from the ecological transformation of RLSs.
This is because the restoration of green spaces and wetlands improved environmental
quality and enhanced ecological service capabilities, thereby fostering the gradual growth
of ecological space.

3.2. Simulation Results and Analysis of Carbon Emission Distribution in Territorial Space
3.2.1. Temporal Characteristics of Carbon Emissions from TSFs

Over the period 2010–2030, the carbon emissions from Qionglai City’s territorial
space are observed and projected to follow a pattern characterized by three historical
growth phases and two future phases of slower increase: rapid growth (2010–2012),
a stabilization period (2012–2016), a moderate rebound (2016–2020), and slow growth
(2025–2030) (Figure 5). The city’s total carbon emissions rose from 706,367.34 t in 2010 to
1.11 × 106 t in 2020. During this period, emissions from urban production, living, and eco-
logical spaces increased by 47,067.35 t, 58,035.10 t, and 5768.85 t, respectively. Concurrently,
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emissions from rural production, living, and ecological spaces increased by 235,031.97 t,
29,735.40 t, and 28,557.74 t, respectively. This reflects the rapid industrialization and urban-
ization of Qionglai City over the past decade, as well as the significant increase in energy
demand and the continuous improvement of transportation infrastructure. Notably, the
carbon emissions from ecological spaces are positive. This is attributed to the mixed-patch
pattern of land use; even though ecological land possesses carbon sink capabilities, these
are insufficient to offset the emissions from the large number of interspersed, high-emission,
non-ecological plots.

Figure 4. Urban space expansion and driving factor contribution: UPS is urban production space; ULS
is urban living space; UES is urban ecological space; RPS is rural production space; RLS is rural living
space; RES is rural ecological space. (a) Spatial distribution of UPS in 2025; (b) Spatial distribution of
ULS in 2025; (c) Spatial distribution of UES in 2025; (d) Spatial distribution of UPS in 2030; (e) Spatial
distribution of ULS in 2030; (f) Spatial distribution of UES in 2030; ESPC is Environmental purification;
PD is Population Density; TR is Topographic relief; HQ is Biodiversity maintenance; WC is Water
supply; SC is Soil conservation; RND is Road network density; ET is Climate regulation; DPS is
Proximity to public services.

Between 2010 and 2020, the average annual growth rate of carbon emissions was
4.61%. The fastest growth occurred during 2010–2012, with an average annual rate of
14.12%, primarily driven by the construction of the Tianfu New Area Qionglai Industrial
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Park, which spurred a surge in industrial energy consumption. From 2012 to 2016, the
growth rate slowed to its lowest point of 0.59%. This was due to Qionglai’s designation
as a key ecological functional zone, which increased ecological land, and the inclusion of
local enterprises in a carbon emissions trading scheme, which reduced emissions by ap-
proximately 53,000 t annually. Subsequently, from 2016 to 2020, the growth rate rebounded
to 4.26%, following the opening of the Chengdu-Ya’an Railway and the development of
rural tourism. Projections indicate that net emissions will reach approximately 1.26 × 106 t
by 2025 and rise to 1.40 × 106 t by 2030. This suggests that without accelerated structural
adjustments and policy interventions, it is unlikely that Qionglai City will naturally achieve
its carbon peak during the 14th and 15th Five-Year Plan periods.

Figure 5. Temporal evolution of carbon emissions in Qionglai City from 2010 to 2030: UPS is urban
production space; ULS is urban living space; UES is urban ecological space; RPS is rural production
space; RLS is rural living space; RES is rural ecological space.

3.2.2. Spatial Characteristics of Carbon Emissions from TSFs
Analysis of Historical Spatial Variations

The carbon emissions from various TSFs in Qionglai City between 2010 and 2020
were classified into five types: Low (≤5 t), Relatively Low (>5–10 t), Moderate (>10–15 t),
Relatively High (>15–20 t), and High (>20 t) emission (Figure 6). Accelerated urbanization
and industrial agglomeration spurred the conversion of agricultural and ecological land
into production and living areas. This led to the continuous expansion of population- and
industry-dense zones and the progressive improvement of infrastructure and transportation
networks, which in turn drove the sustained outward spread and intensification of high-
emission areas. Specifically, in 2010, Qionglai City was predominantly characterized
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by Relatively Low emissions, while the central and eastern regions exhibited Moderate
emissions. A few high-emission areas were concentrated in UPSs along the banks of the
Nanhe and Xiejiang Rivers. By 2014, the emission levels of some ULSs in the central and
eastern parts had escalated from Moderate to Relatively High. Between 2014 and 2016,
the Relatively High emission zones gradually expanded outwards, with some central
areas further transitioning to High emission status. Subsequently, from 2016 to 2020,
the net carbon emission levels of urban areas in the central and eastern parts rose from
Relatively High to High. Additionally, driven by infrastructure improvements and rising
living standards, rural living and production spaces gradually expanded from Moderate to
Relatively High emission zones. In contrast, rural ecological space largely maintained its
Low emission pattern.

Figure 6. Spatiotemporal variation of carbon emissions in Qionglai’s territorial space: (a) Carbon
emissions in 2010; (b) Carbon emissions in 2012; (c) Carbon emissions in 2014; (d) Carbon emissions
in 2016; (e) Carbon emissions in 2018; (f) Carbon emissions in 2020.

Analysis of Future Spatial Evolution Trends

Relying solely on the carbon sink function within ecological spaces is insufficient
for achieving carbon neutrality. Effective emission control necessitates optimizing the
territorial spatial structure, strengthening land management, and implementing targeted
emission reduction policies to realize sustainable development goals. Specifically, projec-
tions for 2025 indicate that high-emission zones in the central and eastern urban areas of
Qionglai City will further expand from their 2020 extent, with a continued intensification
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of carbon emissions in both urban living and production spaces. Concurrently, agricultural
modernization is expected to increase energy consumption, causing some RPSs to escalate
from Moderate to Relatively High emission levels. By 2030, ongoing urbanization and
agricultural modernization will continue to drive growth in energy consumption and
net emissions. Urban living and production spaces are projected to be almost entirely
encompassed by high-emission zones, while large areas of RPS are also expected to tran-
sition to the high-emission category. Furthermore, within ecological spaces, the carbon
sequestration capabilities of water bodies, forests, and grasslands cannot fully offset the
emissions from other intermingled land uses. Consequently, the carbon emissions from
rural ecological spaces are projected to rise from Low to Relatively Low levels. Meanwhile,
UESs are expected to shift from Low to Moderate emission levels, influenced by pressures
from adjacent industries, frequent traffic, and population concentration (Figure 7).

Figure 7. Forecast of carbon emissions in the territorial space of Qionglai City for 2025 and 2030:
(a) Carbon emissions in 2025; (b) Carbon emissions in 2030.

3.3. Identification and Analysis of Factors Influencing Carbon Emissions from Urban Expansion
3.3.1. Selection of Influencing Factors

To select the factors influencing carbon emissions from urban expansion, this study first
employed Pearson correlation analysis and subsequently conducted a variance inflation
factor (VIF) test to ensure the model’s scientific validity and robustness. Through this
screening process, six key explanatory variables were ultimately identified: GDP per unit
area, secondary industry output density, population density, the number of fuel vehicles,
annual average temperature, and NPP (Figure 8).

3.3.2. Exploring the Driving Factors of Carbon Emissions During Urban Expansion Using
the GTWR Model

A GTWR analysis was conducted on the six selected factors influencing carbon emis-
sion changes associated with urban expansion. The analysis yielded a coefficient of de-
termination (R2) of 0.61, indicating a good model fit (Figure 9). Furthermore, the GTWR
parameters for each factor were statistically summarized, encompassing the maximum,
minimum, median, and mean values of the regression coefficients, as well as the proportions
of positive and negative coefficients (Table 6).

The primary drivers of carbon emissions from urban expansion are GDP per unit
area, secondary industry output density, motor vehicle ownership, population density, and
annual average temperature. These factors exert a significant positive promoting effect,
with GDP per unit area and secondary industry output density notably exhibiting a 100%
positive coefficient proportion. In contrast, NPP has a negative coefficient and acts to
inhibit emissions. In terms of spatial distribution, the high values of GDP per unit area
regression coefficients are concentrated in the central urban area and the eastern plains.
This is because this region is home to functional zones such as food processing industrial
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parks and modern seed industry parks, where high-intensity industrial activities not only
boost regional GDP but also significantly increase carbon emissions. The high values of
secondary industry output density are distributed in the southwestern mountainous areas,
as this region relies on resource-based industries such as alcohol production bases, mineral
processing, and heavy chemical projects, whose production activities have a significantly
high carbon emission intensity. High values for the number of fuel vehicles and population
density are concentrated in the central urban area and eastern regions. This is because, on
the one hand, the increase in the number of motor vehicles directly leads to rising carbon
emissions from the transportation sector, and on the other hand, high population density
areas exhibit significant building energy consumption and residential carbon emissions;
The spatial effects of annual average temperature on carbon emissions vary: cities in the
central and eastern regions exhibit a positive effect due to higher temperatures leading
to increased cooling energy consumption, while mountainous areas in the west exhibit
a negative effect due to lower temperatures suppressing energy consumption; The negative
inhibitory effect of NPP is primarily evident in the central agricultural regions, followed
by the eastern regions, where high biological productivity effectively enhances carbon
sink capacity.

Figure 8. Impact factor spatial distribution map: (a) Spatial distribution of GDP; (b) Spatial dis-
tribution of Secondary Industry Density; (c) Spatial distribution of Population Density; (d) Spatial
distribution of Fuel Vehicle Density; (e) Spatial distribution of Temperature; (f) Spatial distribution of
Net Primary Productivity (NPP).
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Figure 9. Spatial distribution of regression coefficients of impact factors: (a) Regression coefficients
for GDP; (b) Regression coefficients for secondary industry density; (c) Regression coefficients for
population density; (d) Regression coefficients for fuel vehicle density; (e) Regression coefficients
for temperature; (f) Regression coefficients for Net Primary Productivity (NPP). Insets A, B, and C
present enlarged views of the central, eastern, and western regions of Qionglai City, respectively.
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Table 6. Results of the GTWR model.

Variable Minimum Median Maximum Mean Positive (%) Negative (%)

GDP per Unit Area 0.24 0.38 0.44 0.37 100.00 0.00
Secondary Industry Output

Density 0.03 0.05 0.30 0.07 100.00 0.00

Population density 0.06 0.04 0.09 0.03 92.28 7.72
Number of fuel

vehicles 0.10 0.04 0.09 0.03 82.41 17.59

Temperature 0.33 0.03 0.13 0.02 82.07 17.93
NPP 0.07 −0.04 0.02 −0.04 13.31 86.69

3.4. Analysis of Zero-Emission Pathways for Urban Expansion
3.4.1. Analysis of Carbon Emission Control Pathways for Urban Expansion Scenarios
Under Historical Evolution Patterns

Under the historical evolution model, new carbon emissions resulting from the expan-
sion of production and living space are projected to far exceed the carbon sink increments
generated by ecological succession, making it difficult for these sinks to offset emissions.
From 2020 to 2030, the conversion patterns among TSFs are expected to be relatively consis-
tent: a small portion of RLS will be converted into urban production or ecological space,
a large portion will be transformed into ULS, and some rural ecological space will also
be converted into ULS. By 2025, the net emissions from newly added spatial units are
projected to be approximately 6035.50 t. Of this total, new production and living land will
emit 3909.00 t and 2387.30 t, respectively, while new ecological land will provide a carbon
sink of 260.80 t. Areas with high emission intensity are concentrated in the residential fringe
zones undergoing transformation from rural living areas, whereas ecologically transformed
zones will serve as the primary carbon sinks. By 2030, net emissions are anticipated to rise
to 7206.90 t. This includes a significant increase in emissions from living land (to 6463.30 t)
and an enhanced ecological carbon sink of 340.00 t. The overall emission pattern is ex-
pected to remain largely similar to that of 2025. Concurrently, economic activity will be
significantly enhanced. The GDP from these newly expanded areas is projected to increase
from 7.35 × 108 CNY in 2025 to 9.58 × 108 CNY in 2030 (Figure 10).

3.4.2. Analysis of Carbon Emission Control Pathways for Urban Expansion Scenarios
Under Carbon Neutrality Targets

In this study, we optimized the quantitative structure of TSFs by strictly controlling
the scale of urban construction land, adhering to ecological protection red lines, and main-
taining the retained amounts of arable land and homestead land. This optimization path
prioritizes the enhancement of ecological carbon sinks while simultaneously ensuring the
steady growth of production land and the balanced development of living land (Table 7).
Following this optimization, we projected that by 2025, UPS would increase by approxi-
mately 1.34% compared to the baseline, while ULS would remain largely consistent with the
baseline scenario. In contrast, UES is anticipated to expand by about 21.51%. By 2030, we
forecast that production space will grow by approximately 3.87%, living space will remain
largely unchanged, and ecological space will expand by about 28.44%. Subsequently, we
employed the PLUS model to spatially reallocate land uses according to this optimization
plan. (The spatial distribution map is shown in Figure S1 of the Supplementary Materials)
The results show that new production space tends to scatter around the periphery of the
base-year production areas. New living space radiates outward from existing clusters.
Significantly, the newly added ecological space originates not only from the ecological
transformation of rural living land but also includes the conversion of rural production



Land 2025, 14, 1689 23 of 35

land to ecological land, a strategy that markedly enhances the regional carbon sink capacity.

Figure 10. Urban expansion and spatial distribution of carbon emissions under scenario I: “RLS–UPS,
RLS–UES, RLS–ULS, RES–ULS” represent the transition from the former function to the latter function,
for example, “RLS-UPS” represents the transition from rural living space to urban production space.
Scenario I represents urban expansion scenarios under historical evolution patterns. “<5” indicates
territorial spatial units with carbon emissions less than 5 t; “5–10” indicates units with emissions
between 5 and 10 t; “10–15” indicates emissions between 10 and 15 t; “15–20” represents emissions
between 15 and 20 t; “>20” represents spatial units with carbon emissions greater than 20 t. (a) Urban
expansion in 2025 under scenario I; (b) Spatial distribution of carbon emissions in 2025 under
scenario I; (c) Urban expansion in 2030 under scenario I; (d) Spatial distribution of carbon emissions
in 2030 under scenario I.

Table 7. Qionglai City TFQS optimization results under scenario II.

Type of Territorial Functions 2020 2025 2030

First-Level Second-Level Area (hm2) % Area (hm2) % Area (hm2) %

Urban
UPS 501.60 0.36 528.66 0.38 557.60 0.40
ULS 5258.95 3.82 5333.60 3.87 5475.10 3.98
UES 334.18 0.24 441.30 0.32 480.60 0.35

Rural
RPS 59,600.53 43.28 59,451.70 43.17 59,270.06 43.04
RLS 9443.61 6.86 8596.20 6.24 6164.50 4.48
RES 62,584.29 45.44 63,371.70 46.01 65,775.30 47.76

Total 137,723.16 100.00 137,723.16 100.00 137,723.16 100.00
Note: TFQS refers to territorial spatial function quantity structure; scenario II refers to urban expansion scenarios
optimized under carbon neutrality targets. UPS is urban production space; ULS is urban living space; UES is
urban ecological space; RPS is rural production space; RLS is rural living space; RES is rural ecological space.

In terms of carbon emission control, projections for 2025 indicate that the net emissions
from new urban space will be approximately 3782.70 t, a 37.33% decrease from the baseline
scenario. This total comprises a carbon sink of 3261.00 t from new ecological land, alongside
emissions of 2687.70 t from new production land and 4356.00 t from new living land. Over
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56% of the grid cells are expected to achieve zero or negative emissions. High-emission
zones are concentrated in the marginal areas where former rural production and living
land have been converted to production land. Conversely, areas with significant carbon
sink advantages are located in the transition zones converted to ecological land, which
are connected to existing ecological corridors and possess favorable ecological conditions.
By 2030, RLS is anticipated to be substantially reduced and restructured into urban living
and ecological spaces. The net emissions from new urban space are projected to be ap-
proximately 7206.90 t, a 4.47% decrease from the baseline. This is composed of a 3173.30 t
carbon sink from new ecological land, and emissions of 2867.80 t and 7189.90 t from new
production and living land, respectively. The spatial patterns of high-emission and carbon
sink zones are expected to remain largely consistent with those of 2025 (Figure 11).

Figure 11. Urban expansion and spatial distribution of carbon emissions under scenario II: “RPS–UPS,
RPS–ULS, RPS–UES, RLS–UPS, RLS–ULS, RLS–UES, RES–ULS, RES–UES” represent the transition
from the former function to the latter function, for example, “RPS-UPS” represents the transition
from rural production space to urban production space. Scenario II represents urban expansion
scenarios optimized under carbon neutrality targets. “<5” indicates territorial spatial units with
carbon emissions less than 5 t; “5–10” indicates units with emissions between 5 and 10 t; “10–15”
indicates emissions between 10 and 15 t; “15–20” represents emissions between 15 and 20 t; “>20”
represents spatial units with carbon emissions greater than 20 t. (a) Urban expansion in 2025 under
scenario II; (b) Spatial distribution of carbon emissions in 2025 under scenario II; (c) Urban expansion
in 2030 under scenario II; (d) Spatial distribution of carbon emissions in 2030 under scenario II.

Overall, scenario II demonstrates significant synergistic effects in adjusting spatial
structure, controlling carbon emissions, and promoting urban growth. In the expansion
zone, GDP increased by 135.47% and 133.22% (for 2025 and 2030, respectively) compared
to the baseline scenario, achieving a dual leap in both carbon emission reduction and urban



Land 2025, 14, 1689 25 of 35

growth. This outcome verifies the comprehensive benefits of the model in multi-objective
territorial space management.

3.4.3. Designing Zero-Emission Paths for Urban Expansion Under Different Scenarios

In this study, we conducted a quantitative comparison of four strategies—optimizing
urban green space vegetation types (by introducing high-carbon-sequestering species
like camphor trees), replacing fuel vehicles with new energy vehicles, controlling carbon
emissions per GDP, and purchasing carbon credits—under two scenarios. We found that
scenario II significantly enhances ecological carbon sink capacity and emission reduction
capabilities in the production and transportation sectors by optimizing the spatial layout.
This reduces reliance on high-cost, high-difficulty interventions such as industrial structure
adjustment and purchasing carbon credits, thereby offering greater advantages in economic
viability and technical feasibility for achieving a zero-emission pathway. In scenario
1 for 2025, optimizing urban green space vegetation increased the carbon sink of new
UES by 349.84 t; replacing fuel vehicles with new energy vehicles reduced emissions by
24.37 t; and controlling carbon emissions per GDP to 0.20 t/104 CNY cut emissions by
1010.58 t. The remaining 4650.71 t had to be offset by purchasing carbon credits at a cost
of 3.23 × 105 CNY. For 2030 under Scenario 1, the ecological carbon sink rose by 422.22 t;
vehicle replacement reduced emissions by 44.78 t; and reducing emission intensity to
0.15 t/104 CNY yielded a further 396.70 t reduction, leaving 6343.20 t to be offset through
credits costing 4.41 × 105 CNY. In Scenario 2 for 2025, the new ecological space carbon sink
surged to 3170.28 t; vehicle replacement cut emissions by 24.37 t; and a modest reduction in
carbon intensity to 0.21 t/104 CNY, achieving a 588.05 t cut, was sufficient to reach net-zero
without any credit purchases. By 2030, under Scenario 2, the ecological carbon sink climbed
to 3210.09 t; replacing fuel vehicles reduced emissions by 44.78 t; and lowering emission
intensity to 0.15 t/104 CNY achieved a 1049.89 t reduction, leaving just 2527.64 t to be offset
at a cost of 1.79 × 105 CNY.

4. Discussion
4.1. Integrated Analysis of Urban Expansion Impacts on Carbon Emissions and
Carbon Sequestration

Numerous studies have shown that urban expansion significantly increases regional
carbon emissions due to the growth of construction land, changes in industrial structure,
and population agglomeration effects [25,68,69]. Urban construction expansion not only
directly drives the consumption of large amounts of fossil fuels but also alters land use
and land cover types, exacerbating the reduction in terrestrial ecological carbon pools
and thereby leading to an increase in carbon emissions [70]. In particular, the extensive
encroachment on ecological land, such as forests and grasslands, during urban expansion
leads to a significant decline in regional ecological carbon sink capacity, which has become
an important cause of increased regional carbon emissions [26]. For instance, urban expan-
sion in Qionglai City from 2010 to 2020 resulted in an additional net carbon emission of
37,387.19 t, while the net carbon absorption of newly added UES was only 267.48 t. Urban
expansion generates a large amount of new carbon emissions, which is consistent with
existing research findings [71–73]. Projections indicate that urban expansion will continue
through 2025 and 2030, resulting in additional carbon emissions of approximately 6036.50 t
and 7206.90 t, respectively. This trend suggests that urban expansion poses a significant
challenge to Qionglai City’s efforts to achieve carbon neutrality and may become a common
challenge for China as it strives to reach its carbon neutrality targets by 2060. Some studies
have suggested that strengthening green space development can enhance a city’s carbon
sink capacity and offset emissions generated by urban expansion [74]. However, most
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studies agree that carbon losses from soil and vegetation during urbanization far exceed
carbon sequestration gains from new green spaces, making the expansion of ecological
spaces alone insufficient for complete carbon neutrality [75,76]. For example, a study cover-
ing ten Chinese urban agglomerations demonstrated that the trade-off between ecological
construction and urban expansion cannot fundamentally reverse the high-carbon-emission
trajectory of urbanization [77]. Taking Qionglai City as an example, the net carbon absorp-
tion of newly added urban ecological space from 2010 to 2020 was only 267.48 t, which
was insufficient to offset the additional carbon emissions generated during urban expan-
sion (37,387.19 t), consistent with the conclusions of existing studies [78,79]. Therefore,
optimizing urban spatial layout and adopting specific, effective carbon emission reduction
strategies are crucial for achieving a net-zero carbon emission pathway during urban expan-
sion. This study focuses on Qionglai City. By limiting the scale of urban construction land,
establishing ecological and farmland protection baselines, and optimizing TSFs, carbon
emissions from urban expansion were reduced by 37.33% and 4.47% by 2025 and 2030,
respectively, compared to the baseline scenario. Additionally, strategies such as optimizing
urban green space vegetation types, replacing fuel vehicles with new energy vehicles, and
controlling carbon emissions per GDP were designed to establish a zero-carbon path for
urban expansion.

4.2. Integrated Effects of Urban Expansion on Carbon Emissions and Storage

Existing studies on the spatial distribution simulation of carbon emissions are pre-
dominantly based on administrative scales such as provinces, cities, and counties [80–82],
which cannot accurately characterize the spatial heterogeneity of carbon emissions at small
scales during urban expansion. This study develops a territorial spatial functional carbon
emission accounting framework that integrates land use carbon emission coefficients and
the IPCC inventory method. This framework not only enables the spatial distribution
simulation of urban carbon emissions in Qionglai City from 2010 to 2020 but also predicts,
using the LSTM model, the spatial patterns of carbon emissions under urban expansion
scenarios for 2025 and 2030. The framework effectively addresses the shortcomings of
traditional large-scale simulations in capturing small-scale heterogeneity and provides
more precise support for identifying the key influencing factors of carbon emissions during
urban expansion.

Considering the significant spatial heterogeneity and dynamic characteristics of carbon
emissions and their driving factors, this study employed the GTWR model to reveal the
impact of factors such as economic development, population size, and urban green space
functions on carbon emissions during the urban expansion process of Qionglai City. This is
because the GTWR model integrates the spatial non-stationarity analysis of Geographically
Weighted Regression (GWR) with the temporal dynamic capture capability of Temporally
Weighted Regression (TWR), thereby enabling a more comprehensive understanding of the
key factors influencing carbon emissions across different regions and periods, as well as
the differences in their effect intensity [83].

Empirical results indicate that GDP, NPP, and the number of fuel-powered vehicles
are the primary factors influencing carbon emissions from urban expansion in Qionglai
City. Specifically, GDP growth exhibits a significant positive correlation with regional
carbon emissions, primarily stemming from increased overall energy consumption driven
by economic expansion and heightened construction intensity in urban functional zones,
which in turn lead to indirect emissions. An increase in NPP effectively suppresses carbon
emissions, with its emission reduction effects primarily achieved by enhancing regional
vegetation photosynthetic efficiency and soil carbon sink capacity [84]. An increase in the
number of fuel vehicles directly leads to higher fossil fuel consumption, thereby increas-
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ing the carbon emission contribution from the transportation sector [85]. Additionally,
the fitting accuracy (R2 = 0.61) of the GTWR analysis is comparable to that of existing
studies [38] and exhibits distinct regional differences and dynamic changes. This confirms
the spatiotemporal heterogeneity in the impact of these driving factors on carbon emissions
from urban expansion, consistent with existing research conclusions on the spatiotemporal
heterogeneity of carbon emission drivers [86], highlighting the necessity and advantages of
using the GTWR model for analyzing the influencing factors of carbon emissions during
urban expansion. Therefore, promoting the adjustment of industrial structure towards low
energy consumption and high-added value, optimizing urban green vegetation types to
enhance carbon sequestration potential, and accelerating the replacement of fuel-powered
vehicles with new energy vehicles are key strategies for controlling carbon emissions from
urban expansion and contributing to the achievement of carbon neutrality goals.

4.3. Pathways and Strategies for Achieving Carbon Neutrality in Urban Expansion Scenarios

Differing views exist on whether urban expansion can reduce carbon emissions. The
mainstream perspective is that urbanization causes significant losses of soil and vegetation
carbon, and the carbon sequestration capacity of green spaces can only partially offset
new carbon emissions [87,88]. Only a few studies suggest that a significant increase
in green space could potentially offset all new carbon emissions and achieve net-zero
emissions [82]. The empirical results of this study are consistent with the mainstream
view that the increase in green space during the urban expansion of Qionglai City can
only partially offset carbon emissions. Taking the urban expansion pattern of Qionglai
City in 2025 under a historical evolution scenario as an example, newly added ecological
land can contribute 260.80 t of carbon sinks. However, new carbon emissions from urban
expansion during the same period reach 6296.30 t, leaving a net carbon emission of 6035.50 t
after offsetting. This indicates that the additional carbon sinks from the expansion of
green spaces, if following historical trends, cannot offset the increased carbon emissions
caused by urban expansion. Research has confirmed that optimizing TSFs can effectively
coordinate urban growth and carbon emission reduction. This study further considered
key factors affecting carbon emissions, such as industrial structure, urban green space scale
and vegetation type, and the number of fuel-powered vehicles, and designed two carbon
neutrality pathways under two scenarios: urban expansion scenarios under historical
evolution patterns (scenario I) and urban expansion scenario optimized under carbon
neutrality targets (scenario II). In scenario I, the carbon offset capacity of UES by 2025
is limited. Additional offsets are required through measures such as optimizing urban
green space vegetation types, promoting the substitution of conventional fuel vehicles with
new energy vehicles, controlling carbon emissions per GDP, or purchasing carbon credits.
Scenario II, under carbon neutrality targets, optimizes TSFs to expand the scale of UES,
enhance ecological carbon sink capacity, and reduce initial carbon emission levels, thereby
lowering the implementation costs of subsequent compensation measures. In contrast
to the conclusion that “ecological construction cannot reverse high carbon emissions”
found in ten urban agglomerations [77], this study demonstrates a more systematic zero-
carbon strategy by designing a pathway that integrates bottom-line protection, functional
layout optimization, and multi-strategy compensation. For example, by 2025, the UES
area expands to 441.30 hm2, increasing carbon sink capacity by 2820.44 t compared to
scenario I. This, in turn, reduces the required control on carbon emission intensity per unit
of GDP and the cost of purchasing carbon credits by 0.01 t/104 CNY and 3.23 × 105 CNY,
respectively (Table 8).
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Table 8. Carbon neutrality pathways for urban expansion under different scenarios and design of
implementation strategies.

Carbon Neutrality

2025 2030

Scenario I Scenario II Scenario I Scenario II

Quantity Carbon
Emissions Quantity Carbon

Emissions Quantity Carbon
Emissions Quantity Carbon

Emissions

Urban
expansion space

(hm2)
155.05 6035.50 208.74 3782.7 135.98 7206.90 208.88 6884.4

Optimization of
urban green space
vegetation types

(hm2)

7.36 −349.84 66.73 −3170.28 8.89 −422.22 67.57 −3210.09

Replacement of fuel
vehicles with new

energy vehicles
(units)

800 −24.37 800 −24.37 1470 −44.78 1470 −44.78

Control of carbon
emissions per unit of

GDP (t/104 CNY)
0.20 −1010.58 0.21 −588.05 0.15 −396.70 0.15 −1049.89

Purchase of carbon
credits (104 CNY) 32.34 −4650.71 0.00 0.00 44.11 −6343.20 17.94 −2579.64

Note: In the carbon emission column, “+” indicates carbon emissions, while “−” indicates carbon storage.
Scenario I represents urban expansion scenarios under historical evolution patterns; Scenario II represents urban
expansion scenarios optimized under carbon neutrality targets.

Moreover, in terms of implementation feasibility, optimizing urban green space vege-
tation types, such as replacing lawns with high-sequestration species like Cinnamomum
camphora, requires low technical investment and delivers rapid results, making it the most
easily deployable strategy. Promoting the replacement of fuel vehicles with new energy
vehicles demands policy support and complementary infrastructure, but benefits from
mature technologies, ranking second in feasibility. Industrial structure adjustment involves
economic transformation and changes in employment patterns, entails long implementa-
tion cycles and strong resistance, and is therefore highly challenging. Although purchasing
carbon credits offers a direct means of offsetting, it carries the highest economic cost and
places a heavy burden on public finances, rendering it difficult to sustain or scale in practice.
Comparing the two pathways, scenario II reduces reliance on high-difficulty strategies
(such as industrial restructuring and purchasing carbon credits) by optimizing TSFs, while
also lowering economic costs. This indicates that integrating the optimization of TSFs with
optimizing urban green space vegetation types and promoting the replacement of fuel
vehicles with new energy vehicles is a feasible pathway for achieving carbon neutrality
during urban expansion. To enhance the effectiveness of these carbon reduction strategies,
priority can be given to deploying charging stations and providing car purchase subsidies
in the city center and eastern plain areas to reduce transportation emissions. In the central
farmland and sub-plain regions, high carbon-sequestration tree species can be introduced
and ecological corridors established to improve carbon sink efficiency. At the same time, an
industry–academia–research collaboration platform can be established to localize carbon
emission monitoring and ecological restoration technologies. Public awareness of low-
carbon practices can also be strengthened through community activities such as “carbon
footprint garden tours” and “green travel days.”.
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4.4. Limitations and Future Prospects

Although in this study, we constructed a territorial spatial carbon emission accounting
framework by integrating the IPCC inventory method with the land use carbon emission
coefficient method, optimized the simulation accuracy of small-scale carbon emissions,
identified the key drivers of carbon emissions from urban expansion, and proposed targeted
carbon neutrality strategies, we acknowledge the following limitations. Firstly, while
in this study, we determined the carbon emission coefficients for land use types based
on existing literature [89–91], the actual coefficients may deviate due to spatiotemporal
heterogeneity in regional climate conditions, land management practices, and technological
levels. Secondly, carbon emissions from urban expansion are influenced by multiple factors.
In this study, we primarily focused on core strategies such as optimizing urban green space
vegetation types, promoting the substitution of conventional fuel vehicles with new energy
vehicles, controlling carbon emissions per GDP, and purchasing carbon credits. We did
not comprehensively cover equally important emission reduction measures, including
the popularization of green buildings, the advocacy of green travel among residents, and
the large-scale application of clean energy [92]. Moreover, similar to studies [93,94], this
research, although using the representative case of Qionglai City for empirical analysis, does
not capture the full heterogeneity under different climatic zones, topographical conditions,
levels of economic development, and policy contexts. Therefore, the generalizability of its
conclusions remains limited in scope.

Future research can be deepened in the following directions: First, we suggest that
future studies combine real-time remote sensing data with ground monitoring stations to dy-
namically refine the carbon emission coefficients of different land use types, thereby improv-
ing the simulation accuracy of the spatial distribution of carbon emissions at small scales.
Second, we also recommend that future research quantitatively assess the specific contribu-
tions of green transportation modes (e.g., bicycle travel), green energy-efficient buildings
(e.g., renewable energy integration), and efficient ecological management (e.g., optimized
allocation of carbon sink forests) to carbon emission reduction, and enhance the analyti-
cal framework for multi-strategy synergistic emission reduction. Third, we propose that
comparative studies be conducted on cities of different scales (e.g., megacities, small and
medium-sized cities) and at different development stages (e.g., rapid expansion period,
stable period) to design differentiated carbon neutrality pathways for urban expansion. In
addition, future research could incorporate more socioeconomic, policy, and technologi-
cal development variables to construct a more diverse scenario system, thereby further
enriching the body of research in this field.

5. Conclusions
This study takes Qionglai City, China, as a case area to investigate pathways for

achieving carbon neutrality during urban expansion. We first simulated the distribution of
TSFs and carbon emissions for 2025 and 2030. Subsequently, we employed a GTWR model
to identify the drivers of carbon emissions from urban expansion. Based on these analyses,
we designed and evaluated specific carbon-neutral pathways for 2025 and 2030 under two
scenarios: Scenario I (urban expansion scenarios under historical evolution patterns) and
Scenario II (urban expansion scenarios optimized under carbon neutrality targets). The
main findings are as follows:

(1) Urban space is projected to continuously expand from 2010 to 2030, exhibiting
a structural pattern dominated by ULS, followed by UPS, with UES being the smallest.
Under scenario I, total urban space will reach 6249.77 hm2 in 2025 (521.61 hm2 UPS,
5364.98 hm2 ULS, and 363.18 hm2 UES) and 6385.75 hm2 in 2030 (536.81 hm2 UPS,
5474.75 hm2 ULS, and 374.19 hm2 UES), increasing by 155.04 and 291.02 hm2 from 2020, re-
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spectively. Under scenario II, urban space expands to 6303.56 hm2 in 2025 (528.66 hm2 UPS,
5333.60 hm2 ULS, and 441.30 hm2 UES) and 6513.30 hm2 in 2030 (557.60 hm2 UPS,
5475.10 hm2 ULS, and 480.60 hm2 UES), growing by 208.83 and 418.57 hm2, respectively. In
both scenarios, newly added urban space primarily radiates outward from existing urban
cores in the central and eastern regions.

(2) Carbon emissions in Qionglai City are projected to continuously increase, with
LSTM model forecasts indicating levels of 1.26 × 106 t in 2025 and 1.40 × 106 t in 2030.
Spatially, emissions exhibit a “high in the central-eastern regions, low in the west” pat-
tern, concentrated in urban and industrial zones, while western mountainous areas,
mainly composed of forest land and ecological conservation zones, exhibit relatively low
emission levels.

(3) GDP, NPP, and the number of fuel vehicles are the core drivers of carbon emis-
sion changes during urban expansion, with GTWR mean regression coefficients of 0.37,
−0.04, and 0.03, respectively. Their impacts show significant spatial heterogeneity: GDP’s
influence is stronger in the central urban and eastern plain areas, NPP’s carbon reduction
effect is more pronounced in central agricultural and urban-farmland fringe zones, and the
impact of fuel vehicles is greater in the central urban and eastern plain areas.

(4) A four-pronged strategy, optimizing urban green space vegetation types, replacing
fuel vehicles with new energy vehicles, controlling carbon emissions per GDP, and purchas-
ing carbon credits, is effective for achieving carbon neutrality, with scenario II as the optimal
pathway. For 2025, carbon neutrality can be achieved by implementing three measures:
optimizing 66.73 hm2 of green space, replacing 800 fuel vehicles, and maintaining emissions
at 0.21 t/104 CNY per GDP. For 2030, all four measures are needed: optimizing 67.57 hm2

of green space, replacing 1470 fuel vehicles, controlling emissions at 0.15 t/104 CNY per
GDP, and purchasing carbon credits (costing 1.79 × 104 CNY). Compared with scenario I,
scenario II in 2025 adds 59.37 hm2 more green space, keeps vehicle replacements the same,
relaxes the emission intensity target by 0.01 t/104 CNY, and eliminates the need to buy 3.23
× 104 CNY in credits. In 2030, it adds 58.68 hm2 green space, maintains vehicle replacement
and emission targets, and reduces credit costs by 2.62 × 104 CNY.

In summary, this study constructs and evaluates scenario-based pathways for carbon-
neutral urban expansion, designing specific implementation strategies that address existing
research gaps. It provides effective guidance for local governments like Qionglai City to
advance low-carbon urban development and offers theoretical support and policy insights
for similar regions globally to reconcile urban expansion with carbon reduction.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/land14081689/s1, Figure S1: TSFP under Scenario II in Qionglai city: TSFP
refers to the territorial spatial function pattern. Scenario II represents urban expansion scenarios
optimized under carbon neutrality targets. UPS is urban production space; ULS is urban living space;
UES is urban ecological space; RPS is rural production space; RLS is rural living space; RES is rural
ecological space. (a) TSFP in 2025 under Scenario II in Qionglai city; (b) TSFP in 2030 under Scenario
II in Qionglai city; Table S1: Preprocessing and Calculation Methods of driving factors for urban
spatial expansion; Table S2: Carbon emission calculation formulas and parameters for different land
types; Table S3: Accounting methods for carbon emissions from energy consumption, wastewater,
respiration, animal enteric fermentation, and manure; Table S4: Net carbon emission coefficients for
various TSFs utilization from 2010 to 2020 (10 tons/hm2). Note: UPS is urban production space; ULS
is urban living space; UES is urban ecological space; RPS is rural production space; RLS is rural living
space; RES is urban ecological space. References [95–111] are cited in the Supplementary Materials.
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