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Abstract: In the context of climate change and ecological degradation, enhancing cropland
productivity in Northeast China is essential for ensuring national food security. This study
adopted an integrated framework combining the optimal parameter-based geographical
detector (OPGD) and SHapley Additive exPlanations (SHAP) to identify key drivers of
average and total cropland productivity at the county level from 2001 to 2020. Growing-
season-based cropland Net Primary Productivity (NPP) was estimated using the CASA
model to represent cropland productivity. Results indicated that natural and ecological
factors significantly dominated the spatial variation of cropland productivity, with their
interactions amplified through dual-factor or nonlinear enhancements. Various machine
learning models were fine-tuned and compared, and optimal models were selected for
subsequent SHAP analysis. The findings revealed that erosion intensity exhibited the most
significant impact on cropland productivity, whereas the effect of precipitation shifted from
negative to positive, with a clear threshold of around 400 mm—matching the boundary
between China’s semi-arid and semi-humid regions. Low-elevation plains (<300 m) and
gentle slopes (<0.5◦) predominately promoted total cropland productivity. Interactions
between erosion and fertilizer intensity highlighted the need for moderate fertilization to
prevent ecological degradation in severely eroded counties. These findings provide scien-
tific support for targeted cropland management aimed at achieving sustainable agriculture
in Northeast China.

Keywords: Northeast China; cropland productivity; optimal parameter-based geographical
detector; interpretable machine learning; SHapley Additive exPlanations

1. Introduction
In the context of rising global food demand and intensifying climate change, crop-

land productivity, which is defined as the capacity to produce material outputs within
specific socioeconomic and technological constraints, has emerged as a pivotal indicator for
assessing the efficiency of agricultural systems [1–3]. Consequently, enhancing cropland
productivity has become a key pathway for addressing food security and promoting sus-
tainable agricultural development particularly for China—a country feeding approximately
20% of the global population with limited cropland resources [4].

Northeast China, known as one of the major black soil regions in the world, has
achieved 21 consecutive years of production growth since 2004 and accounts for 25% of
China’s total grain output and nearly one-third of commercial grain supply in 2024 [5]. This
region serves as the stabilizer of domestic food production and the foundation of China’s
agricultural system. However, emerging challenges are threatening cropland productivity
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in Northeast China. Intensive agricultural practices and improper cropland management
have caused severe ecological degradation, including the thinning of the black soil layer,
loss of soil organic matter, and deterioration of soil structure [6–8]. Furthermore, climate
change introduces additional uncertainties and risks. Extreme weather events, such as
floods, droughts, and chilling injury, have repeatedly caused crop yield reductions in this
region [9,10]. Therefore, identifying and analyzing the key drivers of cropland productivity
is not only critical for achieving sustainable productivity enhancement in Northeast China’s
agricultural systems but also holds strategic importance for China’s national food security.

Previous studies, on the one hand, have demonstrated that the driving factors of
cropland productivity are multidimensional. Climatic factors, such as precipitation, land
surface temperature, and solar radiation, collectively play a substantial role in shaping
cropland productivity [11]. Additionally, climate change, along with hazards and extreme
weather events, increasingly threatens the long-term stability of agricultural productiv-
ity [12]. Researchers in agricultural sciences emphasize the influence of soil characteristics,
crop species, agricultural management and farming practices such as intercropping and
crop rotation, all of which significantly affect crop yields [13–16]. Meanwhile, ecological
studies explore the relationships between landscape diversity, structure changes, cropland
fragmentation, and productivity [17–19]; notably, soil erosion has long been recognized
as a crucial factor in reducing agricultural output [7]. Moreover, other studies stress the
roles of public policies and infrastructure investments in determining cropland productiv-
ity [20]. Given the diversity of factors involved, identifying and analyzing of all potential
drivers at large scales are neither feasible nor necessary. However, valuable insights into
the driving mechanisms of cropland productivity can be obtained by investigating fac-
tors in both natural and socioeconomic contexts, providing scientific support for targeted
policy decisions.

On the other hand, the existing literature has explored the drivers of cropland produc-
tivity from various perspectives, including mechanism exploration, spatial heterogeneity,
and factor contribution analyses. Correlation analysis [21], principal component analy-
sis [22,23], and structural equation modeling [24,25] have been employed to elucidate the
driving mechanisms and interactions among multiple driving factors affecting cropland
productivity. Spatial autocorrelation analysis [26] and geographical detector (GD) meth-
ods [27,28] are effective tools for identifying spatial heterogeneity of the spatial drivers
of cropland productivity. Moreover, methods such as dominance analysis and residual
trend analysis [29,30] can quantify their relative importance and contributions of different
drivers to cropland productivity. Nevertheless, no single approach can simultaneously
quantify spatial heterogeneity, factor importance, thresholds, and driving mechanisms.
Recent studies have employed machine learning algorithms such as Support Vector Ma-
chines, Random Forests, and Gradient Boosting algorithms to capture complex nonlinear
relationships in large datasets, providing higher predictive accuracy and computational
efficiency [31,32]. Yet, the inherent “black-box” nature of these models obscures the interpre-
tation of underlying mechanisms and influences patterns of driving factors. To overcome
these limitations, interpretable machine learning approaches—particularly SHapley Ad-
ditive exPlanations (SHAP)—have been widely adopted to elucidate feature importance,
reveal thresholds and identify interaction dynamics [33,34]. Building upon these devel-
opments, a framework involving GD and SHAP [35] is proposed in this study, thereby
integrating spatial heterogeneity detection with interpretable assessments of driver impor-
tance, nonlinear and interaction mechanisms, and threshold identification. This integrated
approach provides a more comprehensive understanding of the multidimensional drivers
of cropland productivity.
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Net Primary Productivity (NPP), which quantifies the total organic materials produced
by vegetation during the biogeochemical cycling process, conceptually aligns with the
caloric yield of crops [36] for cross-crop comparisons of cropland productivity. In addition,
studies have indicated a strong correlation between the cropland NPP during the growing
season and actual agricultural production [3], establishing NPP as a robust proxy for crop-
land productivity. For large-scale NPP estimation, the Carnegie-Ames-Stanford Approach
(CASA) model—a widely-used light-use efficiency model adjusted for vegetation and land
use types [37,38]—has demonstrated higher accuracy within China compared with NPP
products such as MODIS NPP [29,39].

Based on these foundations, this study estimated monthly NPP data from 2001 to
2020 at the county level in Northeast China using the CASA model. The cumulative
growing-season NPP on cropland was calculated to characterize average and total cropland
productivity for each county. The optimal parameter-based geographical detector (OPGD)
was then applied to explore the spatial contributions of driving factors and their interactions.
Multiple machine learning models were comparatively evaluated to identify optimal
modeling approaches, and the SHAP algorithm was subsequently used to determine
the critical driving factors, their influence patterns, and threshold effects. Finally, this
study aims to provide targeted policy implications to ensure food security and promote
sustainable agriculture in Northeast China.

2. Materials and Methods
2.1. Study Area

The study area encompasses three northeastern provinces (Heilongjiang, Jilin, and
Liaoning) and four leagues/cities of eastern Inner Mongolia (Hulunbuir, Hinggan, Chifeng,
and Tongliao), located in the northeastern part of mainland China (38◦44′−53◦30′ N,
115◦33′−135◦09′ E). Overall, Northeast China has an annual frost-free period of 80 to
180 days, with average annual precipitation ranging from 180 mm to 1000 mm.

The topography of Northeast China is characterized by mountains on three sides and
plains in the center, creating favorable conditions for large-scale cultivation. Specifically,
the Greater Khingan Mountains are in the west, the Lesser Khingan Mountains are in the
north, and the Changbai Mountains are in the east, forming a peripheral mountainous
belt. In the center, Songnen, Sanjiang, and Liaohe Plains constitute the Northeast China
Plain—the largest plain in China—with an average elevation between 50 and 200 m,
known for its fertile black soil. As shown in Figure 1, cropland in Northeast China is
predominantly distributed in the central and eastern plains. The mountain areas feature
high elevations, rugged terrain, and cold climates that restrict cultivation. In contrast,
the flat terrain and favorable climates of Liaohe, Songnen, and Sanjiang Plains support
extensive cropland areas.
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2.2. Data Source
2.2.1. Cropland Productivity

In this study, cropland productivity is measured by the accumulation of growing
season NPP estimated through the CASA model on the cropland. Multisource satellite
imagery, climate data, DEM data, and land use data were used for model construction.
MODIS13A1 NDVI dataset was compiled for vegetation coverage, while China’s National
Land Use and Cover Change (CNLUCC) dataset was used for cropland extraction [40].
Climate data included monthly temperature (◦C) and precipitation (mm) acquired from
datasets provided by the Resource and Environment Science Data Center of the Chinese
Academy of Sciences (www.resdc.cn, accessed on 4 May 2025). Specifically, monthly
average temperatures and total precipitation at 1 km spatial resolution across China were
utilized. Surface solar radiation data were acquired from the ERA5 dataset via the Google
Earth Engine (GEE) platform. Elevation data (m) were obtained from the Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) v3 dataset at a 30 m resolution,
and slope (◦) data were processed through the GEE based on the DEM.

Subsequently, the photosynthetically active radiation use efficiency parameter for
cropland was adjusted according to the method proposed by Zhu et al. [41] The optimized
parameter, along with the NDVI, climate, and DEM data, was integrated as input into
the CASA model to generate monthly NPP data at a 1 km resolution for the period of
2001–2020.

The growing season in Northeast China was defined as the period from April to
October [42], and cropland productivity was calculated by the cumulative NPP during
this period. Based on these results, the average NPP and total NPP within each county
were computed to quantify average cropland productivity and total cropland productivity,
respectively. Both average and total productivity values were log-transformed prior to
further analysis [43,44].

2.2.2. Explanatory Variables

This study compiled multisource datasets to comprehensively analyze the spatiotem-
poral heterogeneity and driving factors of cropland productivity in Northeast China from
2001 to 2020. Driver selection followed two criteria: (1) complete temporal coverage at the
county level for statistical variables and (2) representation of the major driver dimensions
—climate, topography, ecology, agricultural management, and socioeconomics. Accord-

www.resdc.cn
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ingly, the final driver set comprises natural conditions (growing season total precipitation,
mean temperature, and total surface solar radiation); topographic and ecological con-
straints (mean elevation, mean slope, and erosion intensity, the latter measured as the
combined effect of wind and water erosion—the two predominant forms of soil loss in
Northeast China [45]); and agricultural management factors (chemical fertilizer applica-
tion, agricultural-machine power, and rural electricity consumption). Table 1 describes
the metadata for cropland productivity and explanatory variables, including definitions,
hypothesized effects, original data sources, and key supporting references of those driving
factors in detail. Figure 2 illustrates the spatial distribution of raster-based driving factors
affecting cropland productivity.

Table 1. Definitions, hypotheses, data source, and references of the variables.

Variable Definition Hypothesized Effects Data
Source

Key
Reference

Response
variables

Average cropland
productivity

(ACP)

The average value of
growing season cropland

NPP (estimated by the CASA
model) for each county

- - -

Total cropland
productivity (TCP)

The total value of growing
season cropland NPP

(estimated by the CASA
model) for each county

- - -

Explanatory
variables

Precipitation
(PRE)

The sum of growing
season-based cropland

precipitation

Sufficient water availability is
crucial for crop growth. Higher

precipitation generally
promotes productivity.

RESDC [11,43]

Temperature
(TEM)

The average temperature
during the growing season

on cropland

Appropriate temperature ranges
support productivity. Extremely

high or low temperatures can
hinder physiological processes,

shorten effective growing seasons,
and reduce productivity.

RESDC [11,43]

Solar radiation
(SOL)

The total amount of solar
radiation received during the
growing season on cropland

Solar radiation is essential for
photosynthesis. Adequate sunlight

typically increases biomass
accumulation, namely the NPP

cropland productivity.

ERA-5 [11]

Elevation (ELV) The average elevation of
cropland

Higher elevations usually have
shorter growing seasons and thus

limit the cropland productivity.

SRTMDEM
v3.0 [46]

Slope (SLP) The average slope of
cropland

Plains are more favorable for
agriculture and are
more productive.

SRTMDEM
v3.0 [46]

Erosion (ERS) The intensity of wind and
water erosion of cropland

Soil erosion threatens cropland
productivity, especially in Northeast
China. High erosion rates can lead

to lower cropland quality and
degraded soil health.

[45] [7]
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Table 1. Cont.

Variable Definition Hypothesized Effects Data
Source

Key
Reference

Effective irrigation
(IRR)

The proportion of cropland
covered with

effective irrigation

Adequate irrigation satisfies water
demands, stabilizing cropland

productivity under variable rainfall
patterns and reducing the risk of

drought stress.

NBSC [16,43]

Fertilizer
application (FER)

The intensity of chemical
fertilizer usage per unit

of cropland

Proper fertilizer application
improves soil fertility and provides
essential nutrients, enhancing crop

growth and resilience to less
favorable conditions. Overuse,

however, can lead to
environmental degradation.

NBSC [16,43]

Machinery (MAC)
The intensity of agricultural
machinery power per unit

of cropland

Enhanced mechanization typically
increases cultivation efficiency and
improves the timeliness of cropland

operations, and therefore boosts
cropland productivity.

NBSC [47,48]

Electricity (ELC)
The intensity of electricity
consumption in rural areas

per unit of cropland

Sufficient electricity supply
supports cropland operations.

Improved access to electricity is
linked to higher agricultural

productivity.

NBSC [47,48]

RESDC: Resources and Environmental Science Data Center, Chinese Academy of Science (www.resdc.cn, accessed
on 4 May 2025). NBSC: National Bureau of Statistics of China (www.stats.gov.cn, accessed on 4 May 2025).
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2.3. Methods
2.3.1. Optimal Parameter-Based Geographical Detector

The geographical detector is a geostatistical method for detecting spatial heterogeneity
and quantifying the contributions of driving factors [49]. Its core assumption posits that
the stronger an independent variable’s influence on a dependent variable, the more similar
their spatial distributions will be. According to this principle, the input variables need to
be grouped into discrete categories according to the dependent variable to capture spatial
heterogeneity. However, this discretization of continuous variables remains subjective,
with outcomes heavily dependent on the chosen method and the number of breakpoints,
which may introduce bias into the GD analysis.

To address this issue, the optimal parameter-based geographical detector was pro-
posed to reduce subjective bias in variable discretization [50]. Specifically, different dis-
cretization schemes and the number of classifications are combined to determine the best
parameter set for more accurate analyses of the spatial contribution of the influence of
variables. In this study, five classification methods—natural breaks, equal intervals, quan-
tiles, geometrics, and standard deviations—were employed, and each influencing factor
was categorized from 3 to 9 classes for optimal parameter selection. The optimized dis-
cretization results for average and total cropland productivity are shown in Appendix A,
Table A1. The explanatory power of each driving factor on the spatial distribution of
cropland productivity is quantified using the q-value calculated by the following equation:

q = 1 − ∑H
h=1 nh · σ2

h
n · σ2 (1)

where h denotes the discretization number of a given factor, and nh and n represent the
number of samples within each classification and the total number of samples across the
entire study area, respectively. σ2

h and σh represent the variance in cropland productivity.
The q-value ranges from 0 to 1, where larger q-values indicate stronger explanatory power
of a factor regarding the spatial variation of cropland productivity.

Furthermore, the interaction detector [51] was used to investigate the spatial contribu-
tion of pairwise interactions among factors to cropland productivity. Spatial interaction is
regarded as the combination of two spatial explanatory variables. As shown in Table 2, by
comparing the q-values of individual variables with those of their interaction, the type and
strength of the combined effect can be determined, indicating whether the effects of two
spatial variables are attenuated, enhanced, or independent. In this study, the analysis was
conducted using the GD 10.8 package in R 4.3.3 [50].

Table 2. Interaction types of drivers in GD.

Interaction Types Condition

Nonlinear attenuation q(X1 ∩ X2) < min(q(X1), q(X2))
Single-factor nonlinear attenuation min(q(X1), q(X2)) < q(X1 ∩ X2) < max(q(X1), q(X2))

Dual-factor enhance q(X1 ∩ X2) > max(q(X1), q(X2))
Independent q(X1 ∩ X2) = q(X1) + q(X2)

Nonlinear enhance q(X1 ∩ X2) > q(X1) + q(X2)

2.3.2. SHapley Additive exPlanations

SHAP is a model-agnostic interpretability algorithm that leverages the Shapley value
concept from cooperative game theory to attribute predictions made by various ma-
chine learning algorithms, including linear models, decision trees, and deep learning
networks [52]. Specifically, it quantifies the contribution of every input feature to each
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individual prediction. Consequently, the interpretability of the SHAP algorithm transforms
those “block-box” models into transparent ones and enables a global importance rank.

In this study, we used the TreeExplainer method from the SHAP 0.45 library [53]
in Python 3.9 to calculate the Shapley values of driving factors. Positive SHAP values
denote drivers that enhance cropland productivity, while negative values indicate negative
effects. The mean absolute SHAP values reflect the relative importance of driving factors to
cropland productivity. Dependence plots are used to visualize influencing mechanisms
and threshold effects of driving factors to cropland productivity. Furthermore, pairwise
SHAP interaction plots reveal the effects between driving factors. The core equation for
calculating the Shapley value is defined as follows:

ϕj = ∑
S⊆{1,...,p}∖{j}

|S|!(p − |S| − 1)!
p!

[ f (S∪{j})− f (S)] (2)

In Equation (2), ϕj denotes the SHAP value of feature j; p represents the total number
of features; S is the subset of features excluding feature j; and f (·) refers to the prediction
function of the model. The term f (S ∪ {j})− f (S) represents the marginal contribution of
feature j.

3. Results
3.1. Spatiotemporal Variations of Cropland Productivity

The temporal trend of cropland productivity in Northeast China was analyzed using
linear regression and Mann–Kendall (MK) trend tests. As depicted in Figure 3, both the
average and total cropland productivity in Northeast China showed a consistent upward
trajectory over the study period, with minimum values recorded in 2002 and maxima in
2020. The MK test results demonstrated statistically significant increasing trends for both
ACP and TCP across all counties during 2001–2020 (p < 0.01). Additionally, the linear
regression results exhibited an average annual increase of 2.61 g·C/(m2·a) for average
cropland productivity (R2 = 0.60), and a steady increase of 4088.57 t·C/a for total cropland
productivity (R2 = 0.73).
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The spatial distribution of multi-year average cropland productivity in Northeast
China followed a pattern of “lower in the west and higher in the east” (Figure 4a). Areas
with high cropland productivity were primarily located in the central and eastern parts
of the Northeast Plain, whereas areas with low cropland productivity were concentrated
in the western region. The coefficient of variance (CV) was used to describe the stability
of cropland productivity from 2001 to 2020 in Northeast China. However, as shown in
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Figure 4b, the spatial distribution of CV of cropland was lower in the east and higher in
the west. The mean CV value is 0.14, indicating that the cropland productivity remained
relatively stable during the study period.
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3.2. Spatial Contributions of Driving Factors for Cropland Productivity
3.2.1. Effects of Single Driving Factors

Figure 5 illustrates the explanatory power of ten driving factors for the spatial het-
erogeneity of county-level average and total cropland productivity in Northeast China.
Although multiple dimensions of factors shape the distribution of cropland productivity,
the major determinants differ notably. Regarding the reliability of the OPGD results, all
driving factors have passed the significance test (p < 0.01).
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It should be noted that the coordinate axes in Figure 5 represent q-values derived from
the GD, reflecting the explanatory strength of each independent factor concerning cropland
productivity. Erosion intensity emerged as the dominant spatial driver of ACP, exhibiting
the highest explanatory power (q = 0.601), followed by fertilizer input (q = 0.492) and
elevation (q = 0.367). In contrast, topographic factors dominated the spatial distribution of
TCP, with slope (q = 0.432) and elevation (q = 0.381) accounting for the largest proportion
of spatial heterogeneity, while erosion intensity ranked third (q = 0.315). Compared with
the top three drivers for both ACP and TCP, the contributions of the remaining drivers
were relatively less significant.

3.2.2. Interactive Effects Among Driving Factors

Interactions among different natural and socioeconomic drivers often result in coupled
effects, significantly influencing the spatial distribution of cropland productivity. Therefore,
the interactions among driving factors were explored using the OPGD method. As shown
in Figure 6a, interactions influencing ACP were mainly characterized by a “dual-factor
enhancement” effect, with certain combinations exhibiting “nonlinear enhancement”. This
indicates that factor interactions generally strengthened explanatory power compared with
individual factors alone. Specifically, the interaction between precipitation and erosion
intensity exhibited the strongest contribution (q = 0.75), classified as a dual-factor enhance-
ment. The interaction between elevation and slope also had a high q-value (0.72), classified
as nonlinear enhancement, underscoring the importance of combined topographic condi-
tions. Additionally, interactions with slope mostly showed nonlinear or strong dual-factor
enhancement effects.
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Regarding TCP (Figure 6b), factor interactions also displayed significantly higher explana-
tory power than individual factors, predominantly categorized as “nonlinear enhancement”,
reflecting substantially strengthened impacts on TCP. The highest interaction was again
between elevation and slope (q = 0.74), characterized as a dual-factor enhancement.
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3.3. SHAP Explanations of the Driving Mechanisms
3.3.1. Comparative Assessment of Machine Learning Models

To systematically evaluate the influence mechanisms of different variables on county-
level ACP and TCP, various machine learning algorithms were selected, including Support
Vector Machine (SVM), Random Forest, Light Gradient Boosting Machine (LightGBM),
Extreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost). Each model’s
key hyperparameters were fine-tuned through grid search and 10-fold cross-validation,
with 90% of the data for training and 10% for validation [54]. The model performances
were assessed using the root mean square error (RMSE), mean absolute error (MAE), and
the coefficient of determination (R2), aiming to reduce overfitting risks while enhancing
prediction robustness. The set of best parameters and their performance are shown in
Appendix A, Table A2, and Table 3.

Table 3. Performance of different machine learning models.

Model Name
ACP TCP

R2 MAE RMSE R2 MAE RMSE

CatBoost 0.933 0.065 0.085 0.961 0.109 0.151
XGBoost 0.918 0.069 0.094 0.968 0.095 0.135

LightGBM 0.919 0.071 0.094 0.950 0.121 0.170
Random Forest 0.915 0.072 0.096 0.942 0.109 0.184

Support Vector Machine 0.705 0.140 0.179 0.473 0.433 0.552

The results indicated that the performance of the SVM model was relatively weaker,
as evidenced by its lower R2 values and higher errors (ACP: RMSE = 0.179, MAE = 0.140,
R2 = 0.705; TCP: RMSE = 0.552, MAE = 0.433, R2 = 0.473). This deficiency may be attributed
to the high sensitivity of SVM to kernel function parameters and its primary suitability
for classification tasks. By contrast, Random Forest, CatBoost, XGBoost, and LightGBM
all demonstrated relatively similar levels of accuracy. Although Random Forest produced
sound interpretability and stability, its RMSE and MAE values were slightly higher than
those of the gradient-boosting decision tree algorithms. Notably, CatBoost performed the
best in modeling ACP (R2 = 0.933, MAE = 0.065, RMSE = 0.085), while XGBoost showed
the highest accuracy in assessing TCP (R2 = 0.968, MAE = 0.095, RMSE = 0.135).

In subsequent analyses, the hyperparameter-optimized LightGBM and CatBoost mod-
els were selected for ACP and TCP, respectively. These models were integrated with the
SHAP framework to systematically identify and interpret key driving factors of cropland
productivity, as well as to elucidate their directions of impact and turning points. To
further verify the robustness of the model outcomes, default-parameter configurations
of both models were subjected to parallel SHAP analysis. The results exhibited broad
consistency with those derived from their optimized counterparts, thereby reinforcing the
generalizability and stability of the identified drivers and their mechanistic roles in shaping
productivity outcomes.

3.3.2. Identification of the Key Drivers of Cropland Productivity

Based on the optimal model results, the relative importance of each driving factor was
quantified using the mean absolute SHAP values, with positive or negative values indicat-
ing the direction of influence. As illustrated in Figure 7, the primary factors influencing
cropland productivity align closely with the ranking obtained from the OPGD analysis.
Erosion intensity maintained the dominant factor for ACP, with a mean absolute SHAP
value of 0.130. Topographic conditions, such as elevation and slope, remained critical
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determinants for TCP, with mean absolute SHAP values of 0.174 and 0.179, respectively,
significantly higher than those of other factors.
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Figure 8 presents the driving mechanisms behind ACP revealed by the SHAP value
distributions. Erosion intensity exhibited the most significant negative correlation with
ACP. Specifically, SHAP values rapidly decreased as erosion intensity increased. In contrast,
precipitation showed a positive relationship with ACP. Precipitation has the opposite pat-
tern. As shown in Figure 8a, a clear threshold around 400 mm separates negative to positive
SHAP values, matching the climatic boundary between semi-arid and semi-humid regions
in China. Fertilizer application intensity and rural electricity consumption displayed simi-
lar SHAP value distributions to precipitation; low input levels had limited positive effects,
whereas higher fertilizer and electricity use were associated with increasingly positive
SHAP values, enhancing ACP.

Figure 9 illustrates the dependency of SHAP values on driving factors for the TCP
model. Notably, for average elevation and slope, the critical thresholds at which SHAP
values transitioned from positive to negative were approximately 400 m and 0.5◦, respec-
tively. Gentle terrains below these thresholds positively contributed to TCP, whereas higher
elevations and steeper slopes significantly limited cropland expansion and productivity,
reflecting a predominantly negative contribution. Erosion continues to exert a substantial
negative impact on TCP. In addition, a similar threshold effect of precipitation (approxi-
mately 400 mm) re-emerged, while the pattern of fertilizer application was less clear.
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3.3.3. Interactions Between the Key Drivers of Cropland Productivity

In this section, we visualized SHAP interaction values to reveal the effects among
the key driving factors for cropland productivity, as illustrated in Figure 10, while the
interaction results for the remaining factors can be found in Appendix A, Figure A1.
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For the ACP model, significant spatial heterogeneity was observed in the interaction
effects between total precipitation during the growing season and fertilizer application in-
tensity (Figure 10a). In regions with abundant precipitation (>400 mm), increased fertilizer
intensity corresponded to higher SHAP interaction values. Conversely, in semi-arid and
semi-humid regions with precipitation below 400 mm, the enhancing effect of increased
fertilizer application was less pronounced. Furthermore, as depicted in Figure 10b, the
interaction between fertilizer application intensity and erosion intensity indicated that areas
with a combination of lower erosion intensity and higher fertilizer application intensity
significantly enhance ACP. Similarly, the interaction effect between elevation and fertil-
izer application intensity (Figure 10c) revealed that the positive contribution of fertilizer
application was particularly pronounced in flat, low-elevation (<300 m) plain areas.

For the TCP model, the interaction between average elevation and slope (Figure 10d)
also highlighted their significant positive contributions to TCP. While in regions above
600 m elevation, slope gradients did not clearly affect SHAP interaction values. Addition-
ally, counties with relatively high temperatures (>16 ◦C) under inadequate precipitation
(<400 mm) conditions exhibit a negative impact on TCP (Figure 10e). However, as precipita-
tion increased, the positive influence of increasing temperature on SHAP interaction values
became more pronounced. The interaction pattern between soil erosion and fertilizer appli-
cation intensity for TCP was largely consistent with ACP (Figure 10c,f). In areas with lower
erosion intensity and favorable ecological environments, increased fertilizer application
contributed positively to SHAP interaction values. In contrast, in areas experiencing severe
erosion, moderate fertilizer application was more effective in increasing productivity, while
overuse of chemical fertilizer may damage TCP.

4. Discussion
4.1. Importance, Mechanisms, and Thresholds of the Multidimensional Drivers for
Cropland Productivity

In this study, OPGD and SHAP exhibited highly consistent results in identifying
and ranking key driving factors of ACP and TCP. Both methods highlighted that erosion
intensity dominated the driving factors for ACP, while slope and elevation emerged as the
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most crucial determinants for TCP. Thus, OPGD provides an effective approach for the
preliminary screening of potential drivers, whereas SHAP provides in-depth insights into
their underlying driving mechanisms [35,46,55]. Overall, climate conditions, topographical
and ecological drivers fundamentally shaped the spatial patterns and temporal trends
of cropland productivity [56–58], thereby constraining the effectiveness of agricultural
management and input-related factors, which depend heavily on their alignment with local
ecological and environmental conditions [59–62].

The OPGD and SHAP analysis both indicated that the total precipitation during the
growing season was among the major drivers of cropland productivity, especially for ACP at
the county level. Previous studies have demonstrated that the seasonality and accumulation
of effective precipitation are essential for potential cropland productivity and its stable
growth [63,64]; therefore, its benefits for cropland productivity grow when the amount
of precipitation during the growing season increases. Interestingly, the identified critical
precipitation threshold at around 400 mm for both ACP and TCP aligns precisely with the
well-documented 400 mm precipitation contour that isolates China’s semi-humid and semi-
arid zones. While this climatic boundary has long been empirically recognized as a key
determinant of agricultural suitability [65], our SHAP dependency analysis provides a data-
driven quantitative validation of its importance in cropland productivity dynamics. This
precipitation threshold reflects the water requirements constraining cropland productivity
from a spatial perspective. Regions below this threshold should focus on drought-resilient
crop species and expansion of water-efficient irrigation facilities [66,67], whereas regions
with adequate water supply from growing season precipitation cropland exhibit more
resilience to climate variability [16,43] and would benefit more from effective fertilizer
use [68] as the interaction results implied. Meanwhile, the interaction between temperature
and precipitation indicated that although increased precipitation showed a consistent trend
of improving cropland productivity, growing season temperature exhibited an optimal
interval. As shown in Figure 8b, lower temperature (approximately lower than 13 ◦C)
increases the risk of cold events, while higher temperature (approximately greater than
17 ◦C) reduces effective precipitation [69], thereby diminishing cropland productivity.

Erosion intensity, calculated as the accumulation of wind and water erosion divided by
cropland area for each county, emerged as the most important driver for ACP. Meanwhile,
the SHAP dependency plots further indicated that increasing erosion intensity substantially
exacerbated its negative impacts on cropland productivity, which coincided with previous
studies on the degradation of black soil in Northeast China [7,70–72]. The erosion process
involves not only the physical degradation associated with thinning of the black soil
layer but also the loss of soil organic matter and depletion of key nutrients, such as N, P,
and K, which are essential for maintaining soil fertility [21]. Furthermore, the ecological
deterioration resulting from erosion indirectly undermines soil health [73] and fertility
recovery and reduces the resilience to climate variability in the long term [74,75]. The
interaction between erosion and fertilizer application intensity (Figure 10b,f), however,
indicated that the effectiveness of fertilizer application depended on erosion intensity,
implying an underlying relation between fertilizer usage and the ecological environment.
Therefore, strict policies should prioritize strengthening the monitoring and management
of soil erosion in Northeast China and adopt conservation tillage practices to mitigate soil
and nutrient loss, thereby enhancing cropland productivity and supporting sustainable
agricultural development.

Slope and elevation were also identified as major determinants of cropland produc-
tivity. Particularly, they combined exhibited substantially greater importance on TCP
compared to other explanatory variables. According to the SHAP dependency plots, areas
characterized by gentle slopes (<1.5◦) and moderate elevations (<300 m) were generally
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positively associated with higher cropland productivity. Conversely, increases in slope
steepness and elevation beyond these thresholds tended to negatively influence cropland
productivity. Moreover, the interaction effect between slope and elevation further indicated
that those regions below these thresholds were significantly more productive [3,22,46,59].
Spatially, these highly productive regions are distributed across the Songnen, Liaohe, and
Sanjiang Plains. These three plains constitute the core black soil region and represent the
major grain-producing areas of Northeast China. Overall, these results underscore the
critical role of topographic conditions in shaping county-level TCP.

4.2. Policy Implications

Based on the above findings, this study proposes the following policy recommenda-
tions to enhance cropland productivity in Northeast China:

(1) Enhance black soil conservation policies against ecological degradation. Soil
erosion, including water and wind erosion, remains a major threat to cropland productivity.
To address this, efforts should be intensified to protect black soils through the establishment
of high-standard farmland and widespread adoption of conservation tillage practices. As
this study revealed, the positive impact of fertilizer application intensity diminishes in
severely eroded areas. Therefore, fertilizer management should be scientifically optimized
by promoting soil testing-based fertilization and organic fertilizer substitution, with the
goal of achieving zero growth and eventual reduction in chemical fertilizer application.

(2) Promote region-specific management strategies based on the threshold effects of
key drivers. This study identified threshold effects for precipitation, slope, and elevation.
Regions with gentle terrain, including low slopes and elevations, are highly suitable
for large-scale mechanized agricultural production. Notably, the interaction between
slope and elevation exhibited a strong enhancement effect, reinforcing the importance of
topographic suitability. Regions with adequate precipitation should focus on maximizing
their potential cropland productivity. As for counties with precipitation levels below
400 mm, efforts should prioritize expanding irrigation coverage and improving water-use
efficiency to mitigate water constraints and enhance the resilience of cropland productivity
in arid environments.

4.3. Advantages and Limitations

This study constructed a comprehensive analytical framework based on the OPGD
combined with the SHAP algorithm, integrating statistical approaches with machine learn-
ing methods. The framework systematically investigates the spatial heterogeneity of
cropland productivity in Northeast China and systematically identifies multidimensional
drivers from three aspects: (1) relative importance ranking of drivers, (2) nonlinear and
interactive influence patterns, and (3) critical thresholds of spatial drivers. The main
advantages of this framework include the following:

(1) This integrated approach overcomes previous methodological limitations, such as
the separate treatment of mechanistic interpretation and factor-contribution analyses and
the difficulty of quantitatively determining critical thresholds for explanatory variables. As
a result, this integrated method provides robust methodological support for developing
precise regional cropland management policies.

(2) Taking advantage of the model-agnostic nature of the SHAP algorithm, this study
incorporated a hyperparameter optimization phase, where we compared multiple compet-
ing machine learning models in order to further enhance predictive accuracy and model
generalizability, thereby improving the overall reliability of the results.

Despite these advantages, several limitations for further improvement remain. In
particular, the selection of explanatory variables could be expanded to account for addi-
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tional agricultural practices (e.g., cropping systems and regional agricultural policies) [76],
socioeconomic factors (e.g., farming inputs and cropland transformation) [77], and in-depth
analysis of detailed climate change factors if data are available. Moreover, as North-
east China mostly follows a single-cropping system, future studies extending this model
to other regions with more complex cropping systems need to consider how different
crop-management systems influence cropland productivity and its recovery, as well as
adjustments in driver selection and model optimization.

Additionally, the cropland productivity in this study sources from NPP simulations
based on the CASA model, which inevitably incorporates modeling errors that may add un-
certainty to the results. Nevertheless, systematic model optimization and cross-validation
procedures in this study ensured the reliability of key findings. Further research may also
focus on the temporal dynamics in the importance and influence mechanisms of driving
factors across different periods. With the support of long-term high-resolution remote
sensing imagery and more detailed crop-specific statistical data, the research could con-
struct two cropland productivity metrics: (1) nutrition-based calorie productivity computed
through crop-type-specific conversion coefficients and (2) cropland economic productivity
measured by the marketing prices of various crops [78]. Applying the OPGD-SHAP frame-
work to analyze the drivers of cropland productivity would enable a more comprehensive
understanding of its spatial heterogeneity and dynamics in agricultural systems.

5. Conclusions
This study established an integrated OPGD-SHAP framework to analyze the im-

portance, mechanisms, and threshold effects of driving factors of county-level cropland
productivity in Northeast China from 2001 to 2020. The main conclusions are as follows:

(1) OPGD results confirmed the dominant role of natural and ecological factors in
shaping the spatial distribution of cropland productivity. Factor interactions predominantly
exhibited dual-factor or nonlinear enhancement effects, indicating that pairwise interactions
significantly improved explanatory power compared with individual variables. Among all
interactions, the combined effect of average slope and elevation ranked highest for both
ACP and TCP, underscoring the fundamental importance of topographic conditions.

(2) Through grid search and 10-fold cross-validation, hyperparameter-optimized Light-
GBM and CatBoost outperformed the other models for ACP and TCP, respectively. The
SHAP analysis was conducted based on these optimal models to further interpret factor
importance, influence mechanisms and threshold effects. SHAP analysis revealed that
erosion intensity had a strong negative effect on ACP, while precipitation, fertilizer in-
tensity, and electricity consumption were identified as major positive contributors. The
impact of total precipitation during the growing season shifted from negative to positive at
approximately 400 mm, aligning with China’s semi-arid/semi-humid ecotone boundary.
Low-elevation plains (<300 m) and gentle slopes (<1.5◦) significantly enhanced TCP, reflect-
ing optimal topographic and climatic conditions for sustaining high cropland productivity.
The interaction between soil erosion and fertilizer application intensity further suggests
that in severely eroded counties, moderate fertilization is recommended to mitigate eco-
logical degradation—offering practical insights for targeted and region-specific cropland
management policies.
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Abbreviations
The following abbreviations are used in this manuscript:

GD Geographical detector
OPGD Optimal parameter-based geographical detector
SHAP SHapley Additive exPlanations
NPP Net Primary Productivity
CASA Carnegie-Ames-Stanford Approach
ACP Average cropland productivity
TCP Total cropland productivity
PRE Precipitation
TEM Temperature
SOL Solar radiation
ELV Elevation
SLP Slope
ERS Erosion
IRR Effective irrigation
FER Fertilizer application
MAC Machinery
ELC Electricity

Appendix A

Table A1. Discretization types of driving factors.

Variable
ACP TCP

Method Number Method Number

PRE Natural 7 Equal 9
TEM Standard deviation 9 Standard deviation 9
MAC Geometric 9 Geometric 9
IRR Natural 9 Quantile 8
FER Natural 9 Natural 9
ELE Quantile 9 Quantile 9
ERS Natural 9 Quantile 9
SOL Natural 9 Natural 9
ALT Quantile 7 Quantile 9
SLP Quantile 9 Quantile 8

Table A2. Descriptions and tuning results of hyperparameters.

Model Hyperparameter Description Search Range
Best Value

ACP TCP

CatBoost

depth Maximum tree depth [3, 5, 7] 5 3
iterations Number of boosting iterations [100, 200, 300] 300 300
l2_left_reg L2 regularization coefficient [1, 3, 5] 1 3

learning_rate Step size shrinkage for boosting [0.01, 0.1, 0.2] 0.2 0.2
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Table A2. Cont.

Model Hyperparameter Description Search Range
Best Value

ACP TCP

XGBoost

colsample_bytree Fraction of features sampled for each tree [100, 200, 300] 0.8 1
learning_rate Step size shrinkage for boosting [0.01, 0.1, 0.2] 0.1 0.2
max_depth Maximum tree depth [3, 5, 7] 5 3
n_estimator Number of boosting trees [0.6, 0.8, 1.0] 300 300
subsample Fraction of features sampled for each tree [0.6, 0.8, 1.0] 0.6 1

LightGBM

colsample_bytree Fraction of features sampled for each tree [100, 200, 300] 0.6 1
learning_rate Step size shrinkage for boosting [0.01, 0.1, 0.2] 0.2 0.2
max_depth Maximum tree depth [3, 5, 7] 3 3
n_estimator Number of boosting trees [0.6, 0.8, 1.0] 300 300
subsample Fraction of features sampled for each tree [0.6, 0.8, 1.0] 0.6 0.6

Random Forest
max_depth Maximum tree depth [100, 200, 300] [3, 5, 7] None None
n_estimator Number of trees in the forest [None, 3, 5, 7] 300 100

Support Vector
Machine

C Regularization parameter [0.1, 1, 10] 10 10
epsilon Epsilon parameter in epsilon-SVR [0.01, 0.1, 1] 0.1 0.1
kernel Kernel function type [rbf, linear, poly] rbf rbf
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