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Abstract

Urban waterfront areas (UWAs), which are essential natural resources and highly perceived
public areas in cities, play a crucial role in improving the quality of the urban environment.
While numerous studies have delved into the visual perception of urban environments,
little attention has been paid to understanding how the visual perception of urban riverfront
streets (URSs) differs with various aspects within their unique spatial environment. This
study took the Gusu District in Suzhou, China, as a case study, applying deep learning to
street-view images to identify urban riverside landscape elements and evaluate their visual
attention, aesthetic preference, and distinctiveness through eye-tracking technology and
questionnaires. Subsequently, a multidimensional assessment was conducted to analyze
how landscape elements influence visual perception in the urban riverfront street. This
study concludes that (1) riverfront streets in the Gusu District present balanced visual
attention, with high aesthetic preference but limited distinctiveness, and only a few roads
in the ancient city score highly for distinctiveness. (2) Greenery, traditional-style buildings,
water, and riverfronts positively impact visual perception, while buildings have a negative
impact, and backgrounds such as the sky and roads exhibit minimal influence. This study
validated the scientific accuracy, appropriateness, and precision of assessments of visual
attention, aesthetics, and distinctiveness to quantitatively evaluate the multidimensional
human perception of URSs.

Keywords: urban waterfront areas; riverfront landscape elements; visual perception

1. Introduction
Urban waterfront areas (UWAs) integrate nature, culture, and society and stand out

as aesthetically appealing and unique areas [1]. They serve as vital exhibition spaces that
highlight the dynamism and unique character of a city [2]. Desirable UWAs can enhance
the quality of the urban environment, fostering cultural experiences and driving tourism
development [3]. As a fundamental linear element of UWAs, urban riverfront streets
(URSs) serve as a primary means for individuals to enjoy the surrounding environment,
enhancing their engagement with the city’s natural aesthetics and cultural heritage [4].
Making the riverfront landscape accessible, aesthetically pleasing, unique, and alluring
has become a crucial consideration for urban planners and decision makers. Nowadays,
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high-quality waterfront landscapes significantly elevate the aesthetic value and charm of
urban landscapes, with their planning and construction being increasingly prioritized for
human perceptual experience [5,6].

The development of UWAs has emerged as a global trend in numerous cities world-
wide, aiming to bring about ambitious waterfront projects [7]. Studies have demonstrated
that UWAs play a significant role in enhancing vitality, improving the environment, and
reshaping regional characteristics [8]. Moreover, the redevelopment of UWAs is considered
an effective means to alleviate the pressure brought about by urbanization [9,10]. Con-
currently, research on the visual perception of UWAs has emerged as a pivotal area of
focus, highlighting the importance of understanding and improving public perception
and evaluation of these areas, which is a crucial factor for urban planners and developers.
The research on UWA perception has intensified, with scholars investigating satisfaction,
service functions [11,12], spatial vitality via correlation analysis [13,14], and ecological
landscape design [15].

Landscape perception has a long history of research aimed at understanding how
individuals perceive and interact with various landscapes. With the development of
environmental psychology and cognitive theory, landscapes are perceived as a synthesis
of objective spaces and human cognitive perceptions [16,17]. It is widely recognized that
visual perception plays a key role in landscape experience, primarily through individuals’
perception of various landscape elements, each of which contributes equally to shaping
the overall experience [18]. For instance, in UWAs, landscape elements such as water,
revetments, and bridges uniquely influence landscape perception, collectively forming a
distinct and memorable impression of the riverfront landscape [1].

Traditional methods for analyzing urban visual perception, such as manual surveys
or basic image classification, often encounter challenges in capturing the complexity of
dynamic urban environments due to their reliance on subjective interpretation and lim-
ited scalability. In contrast, deep learning-based semantic segmentation facilitates auto-
mated, high-precision extraction of detailed landscape elements from extensive street-view
datasets, effectively overcoming the limitations of conventional approaches in managing
spatial heterogeneity and temporal variations [19–21]. These methods enable researchers
to explore the intricate interrelationships among human cognition, emotional responses,
and their combined effects on individual aesthetic evaluations, ultimately revealing the
complex dynamics underlying landscape perception [2,22,23].

UWAs possess significant visual features and aesthetic values, which reflect unique
cultural characteristics and natural beauty [24]. The scenic beauty evaluation (SBE) method
has been frequently adopted to quantify public preferences for riverfront aesthetics [25,26],
integrating subjective evaluations with objective scenery features, enabling the analysis of
influential factors, and providing a framework with which to understand the aesthetics
and value of these environments [27,28]. Additionally, data from questionnaires, street-
view images [29], mobile phone signals [30], and internet texts [31] have been employed
to explore human perception of the distinctiveness of UWAs and urban images, thereby
complementing research on public perception of urban-water-related environments from
different perspectives. These methodologies offer valuable insights, but gaps remain in
understanding how different public groups perceive specific visual elements of UWAs and
how these perceptions influence urban planning decisions, highlighting the need to refine
the integration of subjective preferences with objective environmental factors to enhance
the riverfront environment.

In UWAs, visual attention shapes public first impressions and unique perceptions, sig-
nificantly impacting their interest and stay intentions [6]. Data collected from eye-tracking
studies, including saccades, fixation counts, and gaze durations, is employed to quantify
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the attention devoted to diverse landscape elements, thereby assisting researchers in iden-
tifying salient scene features [32]. The objectivity of the eye-tracking index compensates
for the limitations of subjective perception in previous landscape evaluation [33]. The
combination of eye-tracking and cognitive evaluation is considered feasible in the linear
landscape area [34]. Research has shown that the relationship between eye-tracking be-
havior and cognitive evaluation is quite complex. In highway landscapes, the intensity of
visual attraction aligns with the public’s aesthetic preferences [35]. In coastal linear environ-
ments, aesthetic perception highly correlates with distinctiveness perception [36]. However,
popular landscape elements are not always the ones that attract the most attention [6].
Although eye-tracking provides a more objective measure of visual attention, it does not
fully capture the complex dynamics of how different landscape elements interact to form
distinct aesthetic preferences. Further research is needed to explore how the interaction
between landscape elements and cognitive processing impacts perception beyond simple
attention metrics, particularly in varied urban settings.

Prior studies have extensively explored visual perception in urban environments, yet
critical gaps remain in the context of riverfront streets. While eye-tracking methodologies
have revealed patterns of visual attention in greenways and waterfronts [1], these works
frequently fail to consider the interplay between physiological metrics, such as fixation du-
ration, and subjective perceptions like aesthetics and distinctiveness. For instance, Qiu [37]
linked eye-tracking data to aesthetic preferences but did not address how cultural distinc-
tiveness modulates attention. Similarly, Jiang [38] emphasized heritage canal landscapes
but limited their scope to semantic segmentation, omitting human-centered evaluations.
Furthermore, existing frameworks frequently isolate variables, such as greenery versus
architecture, rather than analyzing their synergistic effects [39,40]. A coordinated approach
that integrates these multiple dimensions is crucial for capturing the full complexity of
visual perception in historically rich waterfront environments.

Visual attention (VA) quantifies immediate physiological attention, aesthetic prefer-
ence (AP) reflects subjective evaluations of beauty, and distinctiveness-evaluation (DE)
measures perceived uniqueness. Unlike AP, which reflects general liking, DE measures
how recognizably different or locally distinctive a place appears—a quality often rooted in
historical, cultural, or narrative attributes that render a site identifiable and meaningful to
viewers [41]. These dimensions were selected to capture both objective visual engagement
and subjective psychological responses in UWAs. This study took the Gusu District in
Suzhou, China, as a case and applied deep learning to street-view images to identify urban
riverside landscape elements and evaluate their visual attention, aesthetic preference, and
distinctiveness through eye-tracking technology and questionnaires. Subsequently, we
conducted a multidimensional assessment of urban riverfront street landscape, analyzing
the influencing mechanism of the landscape elements on visual perception. This study
establishes a multidimensional framework integrating VA, AP, and DE, revealing how nat-
ural and cultural landscape elements differentially shape visual perception in UWAs. The
findings provide empirical evidence for optimizing waterfront environments by balancing
cultural heritage preservation with public perceptual needs.

Our primary objective was to address the following 3 questions: (1) What are the
visual perception characteristics regarding visual attention, aesthetic preference, and dis-
tinctiveness of urban riverfront spaces in the Gusu district? (2) How do riverfront landscape
elements influence these three visual perceptions? (3) What is the relationship between the
perception of visual attention at the physiological level and aesthetics and distinctiveness
at the psychological level?
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2. Materials and Methods
2.1. Research Framework

Figure 1 illustrates the three key stages of this study.

 

Figure 1. Research framework.

In the first stage, street-view images of the study area were obtained using the Baidu
Street View Application Programming Interface (API) and OpenStreetMap (OSM). The
extracted street-view elements were processed with a Pyramid Scene Parsing Network
(PSPNet) to achieve accurate and objective image segmentation, from which the percentage
of each landscape element was calculated. Subsequently, randomly selected image samples
underwent eye-tracking experiments and survey questionnaires to gather eye movement
data, aesthetic preference (AP), and distinctiveness evaluation (DE) scores.

In the second stage, the percentage data of landscape elements were combined with
the AP and DE scores. Correlation analysis and linear regression were employed to develop
predictive models for AP and DE across all URSs in Gusu District. A visual attention
(VA) model was subsequently constructed by summarizing the landscape elements visual
attention (EVA), which was used to predict the VA of all URSs in the district.

In the third stage, a comprehensive evaluation of the waterfront landscapes in Gusu
District was conducted by integrating the predicted results from the VA, AP, and DE models.



Land 2025, 14, 2039 5 of 21

This analysis explored the impact of landscape elements on VA, AP, and DE, and identified
landscape elements as having positive, negative, or neutral effects on visual perception.
Based on these findings, specific renewal strategies for UWAs were proposed.

2.2. Study Area

Gusu District, located in Suzhou, China, is the nation’s first historical-cultural preser-
vation zone. Renowned for its iconic “double checkerboard” urban layout—shaped by
the 2500-year-old Grand Canal intricately interwoven with modern roads—it exemplifies
the coexistence of heritage and contemporary infrastructure, uniquely defining its urban
landscape [42].

The district is characterized by an extensive network of main and tributary channels
originating from the ancient canal section of the Grand Canal (Figure 2).

Figure 2. Study area.

There are significant variations in street widths and large disparities in the visible
distances to the rivers among different streets in the Gusu District. To ensure that the
buffer space can cover all areas with visual accessibility to the water surface, this study
defines the spatial extent of URSs as the area within a 50-m buffer zone around the district’s
river system.

2.3. Data Collection and Process
2.3.1. Extracting URS Landscape Elements

It is widely acknowledged that the influence of visual perception on landscape experi-
ence is primarily manifested by the individual perception of various landscape elements,
each of which is equally crucial in shaping the overall experience [18]. Using the Open-
StreetMap (OSM) interface in QGIS (Quantum GIS 3.40.0) software, we captured vector
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data of urban roads in Gusu District and obtained coordinate points for URSs at 50-m
intervals. A Python 3.10 script was then used to retrieve undistorted, street-view images
from four directions (0◦, 90◦, 180◦, and 270◦) at these sampling points from Baidu Maps
V21, filtering out any invalid points. All the collected images are the latest, taken by Baidu
Street View V21 between March 2022 and September 2022. This process yielded a total of
3311 valid street-view sampling points and 13,244 street-view images. These street-view
perspectives effectively capture the URS landscape, composed of multiple elements, and
provide a realistic reflection of how the human eye perceives the urban environment.

Deep learning excels in processing vast and intricate visual data, offering precise,
efficient solutions with unmatched accuracy in computer vision tasks [21]. In this study,
we utilized the SegNet segmentation network to train our dataset, focusing on extracting
feature maps from the final convolutional layer, and we improved the model by integrating
local and global information through pyramid pooling and applying an optimized strategy
with balanced supervised loss.

The URSs in Gusu District contain many unique landscape elements, such as revet-
ments, bridges, and traditional-style buildings characterized by pitched roofs, wooden
structures, and decorative details [43], which differ significantly from those on typical
urban streets (Figure 3). These differences hinder existing semantic segmentation models
from accurately recognizing the landscape features of these waterfront roads.

 

Figure 3. Framework for extracting URS landscape elements.
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Due to the current dataset’s inability to cover all the elements we needed, especially
the absence of traditional elements, we collected 2648 street view images of Gusu riverfront
roads as a supplementary dataset. We used transfer learning to adjust the ADE20K dataset
and trained a PSPNet semantic segmentation model for riverfront roads landscapes [44].
Statistics were compiled on the average proportion of each element. Special elements such
as traditional-style buildings were labeled using the AnyLabeling tool, which supports
both manual and semiautomatic labeling for complex, multi-category, and multi-boundary
scenes, making it well-suited for fine-grained segmentation tasks. The dataset was then
split into 70% for training, 15% for validation, and 15% for testing. During the training
process, the pixel accuracy of the semantic segmentation model reached 0.86, with a mean
intersection over union (IoU) of 0.79. The accuracy of each element exceeded 0.75, with the
highest reaching 0.96. All IoU values were greater than 0.5. The recognition accuracy for
each label was high, making the dataset broadly applicable for recognizing and classifying
waterfront landscape elements.

2.3.2. Scoring Landscape Elements’ Visual Attention

Eye-tracking technology provides a series of quantifiable information for the study of
visual attention by recording objective data such as frequency, time, and repetition degree of
eye attraction, reflecting the gaze distribution in response to element stimuli [32,45]. Of the
3311 street-view sampling points (13,244 images), 48 groups of photos (4 for each sampling
point) were randomly sampled as the experimental sample for the eye-tracking experiment.

Participants were required to have normal naked eyesight or corrected visual acuity
and normal color vision. After excluding invalid participants, such as those who blinked
too much, gazed at a point too long, or had chaotic eye-movement tracks, 30 participants
were finally accepted. The quantified participants included undergraduates, graduate
students or faculty members (14 males and 16 females, aged between 18 and 41) from
the two universities. The participant pool size is consistent with sample sizes adopted in
related eye-tracking studies [46,47]. The eye-tracking tasks were accomplished by using
an aSee Pro telemetry eye tracker and a Lenovo R7000P monitor [48]. After calibration,
each participant was shown the 48 groups of photos for 5 s each. No specific viewing
instructions were given. The photos were randomly displayed to avoid order effects on
the output.

Visual attention in landscape spaces is defined as the focal point of a viewer’s gaze
when landscape elements stimulate their eyes and draw their attention to specific parts
of the space. In the experiments, observation results vary due to individual differences.
Qualitative analysis of data under various eye-movement indicators cannot accurately
quantify the appeal of different landscape elements, as the visual attention is also closely
related to the area proportion of the elements. To tackle this, we use the total gaze duration
on different elements and their share of the area to assess the visual attention of landscape
elements [45]. We segmented the landscape elements into Areas of Interest (AOIs) based on
semantic segmentation results. This was a crucial step for the subsequent eye-movement
experiments (Figure 4).

During the eye-movement experiments, we presented participants with images con-
taining various landscape elements and recorded the fixation durations of participants
on each element. The fixation duration within an AOI was calculated as the cumulative
value of all fixation points in that area. We used the total fixation duration as an indicator,
with a longer duration signifying that the corresponding element was more attractive to
the subjects. The total fixation duration, which is the sum of all fixation points within an
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AOI, reflects the level of attention an element can attract from the subject; a longer duration
means greater attention. The Element visual attention (EVA) is calculated as follows:

EVA = PF/PS (1)

where EVA represents the element visual attention, PF represents the proportion of fixation
(calculated as the fixation duration within this AOI divided by the total fixation duration of
the photo), and PS represents the proportion of the area (calculated as the area of this AOI
divided by the total area of the image).

Figure 4. Designation of AOIs and the attention heatmap.

2.3.3. Scoring AP and DE Perception

A questionnaire survey was conducted immediately after the eye-tracking experiment
to measure aesthetic preference and distinctiveness. The questionnaire experimental sample
was the same as the eye-movement one [45]. In the survey, participants’ evaluations of each
sampling point were measured with two indicators: aesthetic value and distinctiveness
value. In the questionnaire, “beautiful” and “unique” represent “aesthetic value” and
“distinctiveness value”, respectively. After viewing each photo, the participants used a
Likert scale from very poor (1) to excellent (7) to evaluate a photo in regard to the two
indicators above. Each experiment lasted 10–15 min and consisted of an eye-tracking test
and a questionnaire survey.

The formula for AP is as follows:

Z(AP)ij =
(

Rij − Rj
)
/Sj (2)

Z(AP)i = ∑ Zij/Nj (3)

In the formula, Z(AP)ij represents the standardized rating of landscape sample i by
evaluator j; Rij represents the rating value given by evaluator j for landscape sample i; Rij

represents the average rating of evaluator j for all landscape samples; Sj represents the
standard deviation of evaluator j’s ratings for all landscape samples; Nj represents the
number of evaluators for the j-th landscape; and Z(AP)i represents the final standardized
score of landscape sample i, i.e., the aesthetic preference (AP) value.

The formula for DE is as follows:

Z(DE)ij =
(

Rij − Rj
)
/Sj (4)

Z(DE)i = ∑ Zij/Nj (5)

In the formula, Z(DE)ij represents the standardized rating of landscape sample i by
evaluator j; Rij represents the rating value given by evaluator j for landscape sample i; Rj

represents the average rating of evaluator j for all landscape samples; Sj represents the
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standard deviation of evaluator j’s ratings for all landscape samples; Nj represents the
number of evaluators for the j-th landscape; and Z(DE)i represents the final standardized
score of landscape sample i, i.e., the distinctiveness (DE) value.

3. Results
3.1. Spatial Distribution of Landscape Elements

The collected pixel data of the URS landscape elements were statistically analyzed for
area proportion. The average value and standard deviation of the area proportion for each
landscape element were calculated to reflect their respective proportions in the URSs of
the Gusu District. Given the small proportion of traditional riverfront landscape elements
(TRLEs), such as revetments, parapets, bridges, and ships, these four types of landscape
elements were combined and counted as the total number of TRLEs. Similarly, cars, other
elements, and people were merged into a single category labeled “Others.” The results are
presented in Table 1.

Table 1. Percentages of URS landscape elements in the Gusu District.

Buildings Sky Green Roads Traditional-Style Buildings Water TRLEs Others

13.75% 27.94% 19.49% 20.45% 2.65% 0.47% 0.54% 14.71%

The results indicate that the sky is the most dominant visual element along the URSs
in the Gusu District, accounting for 27.94% of the landscape. Roads closely followed at
20.45%, while greenery comprised 19.49%. Building elements collectively make up 16.4% of
the visual composition, with ordinary buildings contributing 13.75% and traditional-style
buildings 2.65%. Together, the sky, roads, greenery, and buildings constitute the core visual
elements, comprising a total of 84.28% of the URS landscape. Other elements, such as
traffic lights, road fences, and garbage cans, occupy 14.71% of the visual area. Changes
in the spatial sequence of landscape elements are shown in Figure 5. In areas with a high
proportion of greenery, the proportion of other elements is low, suggesting that greenery
may obscure other elements. The proportion of traditional-style buildings is higher in the
ancient city area of Gusu District, while it is lower in other areas. Notably, water and URSs
elements make up only a minimal portion of the visual area at 0.47% and 0.54%, respectively,
summing up to just 1.01%. This suggests that water elements are underdeveloped and
underutilized in the overall urban URS landscape of the Gusu District.

3.2. Analysis of the Visual Attention of the URS Landscape
3.2.1. EVA Value

The average visual attention value of each element was calculated using the EVA
formula. The results are presented in Table 2, and the landscape elements were clustered,
with the corresponding results displayed in Figure 6. Landscape elements are classified
into 4 categories: SA-HV (small area, high visual attention, e.g., TRLEs), LA-HV (large
area, high visual attention, e.g., greenery), LA-LV (large area, low visual attention, e.g.,
others, roads, sky), and SA-MV (small area, middle visual attention, e.g., traditional-style
buildings, buildings, and water).

This result indicates that although the area of waterfront landscape elements is limited,
they possess a strong visual impact, occupying an important position, capable of attracting
attention and enhancing aesthetic value. The large proportion of the area occupied by greenery,
along with its high visual attractiveness, suggests that these elements not only exist extensively
but also can generate strong visual attention. Further analysis of the heat maps of the samples
reveals that buildings have a relatively strong visual attractiveness due to the presence of a
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lot of textual information. Roads and the sky occupy prominent positions in space, yet their
visual attractiveness is relatively low, and they mainly fulfill functional roles. The distribution
of traditional-style buildings and water elements is not as extensive as that of other landscape
elements, but they tend to be the significant visual focal points.

 

Figure 5. Changes in the spatial sequence of landscape elements.
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Table 2. The EVAs of URS landscape elements.

Element Percent
(Element)

EVA
(Element) Element Percent

(Element)
EVA

(Element)

Buildings 11.37% 1.38 Traditional-style buildings 6.65% 1.19
Sky 28.16% 0.26 Water 1.71% 1.4

Green 20.95% 1.53 TRLEs 1.25% 1.81
Roads 17.26% 0.28 Others 12.64% 0.19

Figure 6. Clustering results of eight visual attentions of URS landscape elements.

3.2.2. Visual Attention Evaluation Model Construction

EVA refers to the visual attention of landscape elements within a unit area. By multi-
plying the EVA of different landscape elements by the proportion data of these elements
in the landscape, the landscape visual attention (VA) of the entire image can be obtained.
The formula provides a method for predicting the visual attention of the research area on a
large scale, and it is presented as follows:

VA = EVA(buildings) × P(buildings) + EVA(green) × P(green) + EVA(roads) × P(roads) + EVA(sky) ×
P(sky) + EVA(traditional-style buildings) × P(traditional-style buildings) + EVA(water) × P(water) +

EVA(waterfront elements) × P(waterfront elements) + EVA(others) × P(others)

The VA of all URSs in Gusu District was calculated using this formula, and the
corresponding appeal map was generated, as shown in Figure 7.

The results show that the VA of URSs in the northern part of the Gusu District is
relatively low, while that in the southern part is higher. Roads perpendicular to the river
generally have lower VA. Most areas within the ancient city have higher VA; however, the
URSs beside the northern and southern city moats have lower VA, either because of their
distance from the river or their location in tunnels. By contrast, the VA of the roads beside
the eastern and western city moats is higher. Additionally, URSs with high VA generally
have either higher green coverage or a greater number of buildings, indicating a higher
level of built-up area.
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Figure 7. VA of URSs.

3.3. Coupling Analysis of AP and DE Perception
3.3.1. Influence of Landscape Elements on Aesthetic Preference and
Distinctiveness Perception

The AP and DE results are shown in Table 3 and Figure 8, respectively. The AP of
URSs in the Gusu District is evenly distributed. Most of the AP of URSs in the Gusu District
are positive, with an overall high evaluation. By contrast, most of the DEs of URSs in the
Gusu District are negative.

Figure 8. Scatter plots of the AP and DE scores.
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Table 3. Results of AP and DE.

Image
Number AP DE Image

Number AP DE

sample_1 0.65 −0.13 sample_25 0.37 1.03
sample_2 0.27 −0.05 sample_26 0.26 0.90
sample_3 −0.11 −0.37 sample_27 0.65 0.97
sample_4 0.37 −0.17 sample_28 −0.95 −0.54
sample_5 −0.51 −0.76 sample_29 0.82 −0.23
sample_6 0.02 0.04 sample_30 −0.48 −0.59
sample_7 0.65 −0.10 sample_31 0.48 1.09
sample_8 −0.03 −0.54 sample_32 0.84 0.30
sample_9 0.10 −0.27 sample_33 −0.73 −0.62

sample_10 0.56 0.13 sample_34 −0.86 −0.70
sample_11 −1.29 −0.79 sample_35 −0.85 −0.26
sample_12 −0.91 −0.57 sample_36 0.52 0.16
sample_13 −1.19 −0.90 sample_37 −0.68 −0.81
sample_14 0.03 0.34 sample_38 0.61 0.55
sample_15 −0.59 0.16 sample_39 −0.40 −0.63
sample_16 0.48 0.10 sample_40 −1.03 −0.60
sample_17 0.71 1.14 sample_41 1.06 0.71
sample_18 0.23 0.69 sample_42 1.33 −0.02
sample_19 1.16 1.64 sample_43 −0.56 −0.66
sample_20 0.10 0.01 sample_44 0.11 0.18
sample_21 0.08 −0.29 sample_45 −0.33 −0.52
sample_22 −0.24 0.41 sample_46 −0.05 −0.50
sample_23 −0.45 0.13 sample_47 0.18 0.07
sample_24 −0.09 0.44 sample_48 −0.34 0.44

The correlation analysis generally aims to reveal whether there is a certain degree of
association between variables and to describe the nature of such an association. Correlation
analysis helps us understand the relationship between the proportions of different land-
scape elements and AP, DE, and the results are shown in Table 4. AP was found to have a
highly significant positive correlation with green at the 0.01 level and a highly significant
negative correlation with buildings and roads at the 0.01 level. Additionally, a significant
negative correlation with others was observed at the 0.05 level. This indicates that green
buildings and roads play a decisive role in AP. DE, on the other hand, showed a highly
significant positive correlation with traditional-style buildings and water at the 0.01 level
and a significant positive correlation with water and TRLEs at the 0.05 level. This suggests
that the distinctiveness of URSs in Gusu District is primarily influenced by traditional-style
buildings, water, and riverfront structures. These elements reflect the unique characteristics
of the Gusu District and are important components of the URSs.

Table 4. Correlation Analysis of the subjective evaluation of URS landscape elements.

AP DE TRLEs Others Buildings Sky Green Roads Traditional-Style
Buildings Water

AP 1
DE 0.679 ** 1

TRLEs 0.095 0.306 * 1
others −0.320 * −0.123 0.004 1

buildings −0.521 ** −0.374 ** −0.083 −0.048 1
sky 0.117 0.082 0.033 −0.275 −0.143 1

green 0.575 ** 0.071 −0.022 −0.224 −0.337 * −0.405 ** 1
roads −0.382 ** −0.513 ** −0.451 ** −0.185 0.234 −0.09 −0.146 1

traditional-
style

buildings
0.003 0.399 ** −0.025 −0.071 −0.357 * −0.159 −0.264 −0.19 1

water 0.245 0.412 ** 0.640 ** 0.085 −0.112 0.009 −0.07 −0.468 ** 0.015 1

* p < 0.05, ** p < 0.01. Correlation coefficients (e.g., Pearson’s r) are reported. Significance levels are indicated by
asterisks (*).
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3.3.2. Construction of Aesthetic Preference and Distinctiveness Perception
Evaluation Models

The landscape elements that have a significant impact in the above analysis were
used as independent variables, and the AP and DE were used as dependent variables to
establish subjective evaluation models through multiple linear regression (Table 5). Model
1 represents the regression model for AP, whereas model 2 represents the regression model
for DE. In model 1, the R value is 0.773a, and the adjusted R2 is 0.598. The Durbin–Watson
(DW) test statistic is 1.643, suggesting that the data satisfy the independence criteria. The
summary data of the model indicates that the regression model fits well and possesses a
certain level of credibility. In model 2, the R value is 0.658a, and the adjusted R2 is 0.433.
Although the DW statistic of 1.317 suggests potential residual autocorrelation, Newey-West
HAC robust standard errors (lag = 3) were applied and confirmed consistency with original
estimates, supporting the reliability of results. The Variance Inflation Factor (VIF) values for
both models range from 1.021 to 1.886, indicating a low degree of multicollinearity among
the variables. This suggests that the impact of each variable on the model is independent.
The summary statistics of the model indicate that the regression model has a certain degree
of reliability.

Table 5. Regression coefficient analysis table.

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

Collinearity Statistics

B Std. Error Beta Tolerance VIF

1

(Constant) 0.581 0.221 2.636 0.012
Others −1.877 0.603 −0.318 −3.110 0.003 0.893 1.119

Buildings −1.836 0.556 −0.347 −3.300 0.002 0.844 1.185
Green 1.238 0.387 0.342 3.198 0.003 0.816 1.226
Roads −2.287 0.753 −0.309 −3.036 0.004 0.900 1.111

2

(Constant) 0.315 0.210 1.498 0.142
Buildings −0.875 0.620 −0.177 −1.412 0.165 0.843 1.186

Roads −2.113 0.931 −0.305 −2.271 0.028 0.732 1.367
Water 4.109 2.180 0.246 1.885 0.066 0.774 1.291

Traditional-
style buildings 1.193 0.542 0.274 2.202 0.033 0.853 1.172

According to the regression coefficient analysis in Table 5, the multivariate linear
regression equation established for the AP and DE models of URSs is as follows:

AP = 0.58 − 1.84 × buildings + 1.24 × green − 1.88 × others − 2.29 × roads

DE = 0.32 − 0.88 × buildings − 2.11 × roads + 4.11 × water + 1.19 × traditional-style buildings.

The AP values of all 3311 sampling points in Gusu District were calculated using the
regression equation, and the values were visualized using ArcGIS 10.8 to obtain the AP
and DE maps of URSs in Gusu District (Figure 9).

In Figure 9, the AP of most URSs in the Gusu District is high, benefiting from exten-
sive greening coverage and high-quality road landscapes. Specifically, Xitang Road and
Fengqiao Road beside the Xitang River, as well as Xihui Road and Nanmen Road on both
sides of the northern and southern city moats, exhibit the highest AP values. However,
the AP of some roads within tunnels on Xihuan Road and Beihuan Road is relatively
low, primarily due to the lack of green in the field of view and the presence of numerous
interference elements. In terms of DE, most URSs in the Gusu District perform poorly, with
the exception of Shantang Road, which has higher DE values. The URSs within the ancient
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city are enhanced by their long history and rich cultural landscape elements, whereas those
outside the ancient city lack distinctiveness.

Figure 9. AP map (left) and DE map (right).

4. Discussion
4.1. Comprehensive Evaluation of Visual Perception of URSs

VA, AP, and DE were divided into high and low categories, and the evaluation values
of these three dimensions were expressed through a three-dimensional coordinate system.
The comprehensive evaluation is represented by eight quadrants in the three-dimensional
coordinate system, each corresponding to a unique combination of high or low VA, AP,
and DE.

The three-dimensional scatter plot (Figure 10) shows that most scatter points are
concentrated in the third and fourth quadrants, indicating high AP and low DE, while VA is
evenly distributed. There are a few points with high AP–high DE–high VA, which indicates
that the waterfront roads in Gusu District generally have a certain degree of scenic beauty,
but are relatively poor in distinctiveness and relatively balanced in terms of appeal.

Further analysis of the two-dimensional scatter plot shows that AP and VA are evenly
distributed, DE and VA mostly present as a combination of low DE and high VA, and DE
and AP are mostly concentrated in the low-value area. The simultaneous occurrence of
high VA and low DE at certain points indicates that the waterfront area can still attract the
public even if it lacks distinctive features.

4.2. Influence Mechanism of Landscape Elements on VA, AP, and DE

The correlation between the regression values of VA, AP, and DE of URSs was analyzed.
The results are shown in Table 6, with the VA and AP (r = 0.515, p < 0.01) showing a highly
significant positive correlation, indicating that the VA of the landscape will affect the AP
of the audience in the studied area. Furthermore, there is a correlation between DE and
VA (r = 0.212, p < 0.01), suggesting that the level of DE does determine the value of VA.
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Figure 10. Scatter plots of AP, DE, and VA.

Table 6. Subjective evaluation correlation analysis.

AP DE VA

AP 1 0.506 ** 0.515 **
DE 1 0.222 **
VA 1

** The correlation is significant at the 0.01 level (two-tailed).

The coefficient values of the regression models for AP and DE clearly define the quan-
titative relationship between these landscape elements and subjective evaluations, whereas
the EVA establishes the quantitative relationship between landscape elements and VA. The
results in Table 7 reveal that buildings, green spaces, traditional-style buildings, water
features, roads and others exert a greater influence on the three types of visual perception.
By contrast, the sky and TRLEs, as background elements, have minimal effects on visual
perception. Notably, buildings with relatively high VA are associated with a negative rela-
tion to AP, suggesting that they can be disadvantageous visual landscape elements in URSs.
Conversely, green spaces are positively associated with VA and AP, emerging as positive
visual landscape elements. Furthermore, water features, and traditional-style buildings are
positively related to VA and DE, reinforcing their essential role in enhancing URSs.

The results demonstrate that people have a stronger preference for natural elements
rather than artificial ones. Areas that combine natural elements with characteristic elements
organically, as well as pure natural environments, are more popular and possess greater appeal.

It was discovered that the samples with a high proportion of natural elements had a
relatively high AP, and the samples with high DE scores showed a significant variation in
their AP evaluation results, as Figure 11 presents typical sample photos. The areas that
combined unique elements with natural elements always received a relatively high DE
score, as shown in Figure 11a. The areas rich in natural elements had higher AP scores,
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presented in Figure 11b. However, the samples with more characteristic elements but fewer
natural elements had a lower AP score and a higher DE score, as illustrated in Figure 11c.
The AP was considerably and negatively influenced by interfering elements, even if the
area had a high degree of distinctiveness, as depicted in Figure 11d. Therefore, more
emphasis should be placed on introducing natural elements and combining them with
unique elements, and interfering elements should be strictly controlled to enhance the
aesthetic perception of the historical waterfront area.

Table 7. VA, AP, and DE coefficients of landscape elements.

Landscape Elements VA AP DE Type

Buildings 1.12 −1.84 −0.88 −
Sky 0 0 0 ·

Green 1.27 1.24 0 +
Roads 0.02 −2.29 −2.11 -

Traditional-style buildings 0.93 0 1.19 +
Water 1.14 0 4.11 +
TRLEs 1.55 0 0 ·
Others −0.07 −1.88 0 −

Note: “+” means positive visual landscape elements; “−” means negative visual landscape elements; and
“·” means neutral visual landscape elements.

 
Figure 11. The comparison of AP and DE scores of photo samples. (a) high DE, combination of
characteristic and natural elements; (b) high AP, rich in natural elements; (c) higher DE and lower AP,
more characteristic elements and fewer natural elements; (d) low AP, more characteristic elements
but with interfering elements.

These findings highlight the importance of strategically managing key landscape el-
ements to optimize the visual perception of URSs. Specifically, generic building elements
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negatively correlate with aesthetic preference, indicating the need to mitigate their visual
dominance—particularly in historic settings [37]. By contrast, greenery consistently enhances
both visual attention and aesthetic preference, aligning with evidence that water and green
coverage significantly elevate public preference [6]. Moreover, water features and traditional-
style buildings contribute notably to visual distinctiveness and appeal, reinforcing the positive
role of historical “distinctiveness” in waterfront redevelopment. Such distinctiveness can not
only enhance cultural salience but also amplify tourism appeal, fostering economic revital-
ization through cultural heritage preservation and public space activation [49]. Importantly,
traditional riverfront landscape elements (TRLEs) show a significant contribution to visual
attention but exert limited effects on aesthetic preference and distinctiveness. This suggests
that their cultural and aesthetic potential remains underutilized.

Therefore, the renewal of URSs should prioritize the integration of green spaces, water
features, and culturally distinctive elements while minimizing the presence of incongruous
or visually intrusive structures. Careful consideration of building placement and form,
combined with the balanced inclusion of natural and heritage elements, is essential to
enhance both the aesthetic quality and cultural uniqueness of historic waterfront envi-
ronments. Furthermore, we have established the optimization paths of URSs based on a
Comprehensive Evaluation of Visual Perception (Figure 12).

 

Figure 12. Optimization paths of URSs.

4.3. Limitations

There are several limitations in this study. First, street-view images are obtained from
different seasons and years. This might lead to errors in the identification of plant elements
because seasonal changes can affect visual perception. In addition, weather variations may
also impact the accuracy of both machine recognition and subjective human perception.
Secondly, due to the constraints of experimental equipment, photographs are used instead
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of real-life scenes in the eye-tracking experiments. In addition, this study did not explicitly
account for visual depth or viewing distance, both of which strongly influence visual
attention and aesthetic judgments; overlooking them may have reduced result accuracy.
Participants may not be able to perceive the street views comprehensively and intuitively,
which may cause potential discrepancies between the experimental results and the actual
perception. The participant pool, primarily consisting of students and faculty, may intro-
duce sampling bias and limit generalizability. Furthermore, the small sample size may limit
the generalizability of our findings over a larger spatial area, while the sparse proportion of
key elements like traditional-style buildings and water features could reduce the sensitivity
of the linear regression model. Nonlinear methods or spatial analyses—alongside multi-
scale data such as dynamic eye-tracking and real-time environmental interactions—may
be needed to more accurately capture and validate the relationships between visual atten-
tion and psychological perceptions. Future studies should expand recruitment to include
diverse age groups and socioeconomic backgrounds to enhance generalizability.

5. Conclusions
Measuring the multidimensional perception of URSs and revealing their influencing

mechanisms can help understand public landscape perceptions and create better URS
landscapes. This study employs deep-learning and eye-tracking technology to identify the
multidimensional visual perception of URSs by analyzing landscape elements and their in-
fluence on visual attention, aesthetic preference, and distinctiveness. This study introduces
a novel integration of EVA and correlation analysis models to quantify the impact of urban
landscape elements on multidimensional visual perceptions—visual attention, aesthetic
preference, and distinctiveness—in riverfront streets. Our findings show that traditional-
style buildings and water features enhance distinctiveness, while greenery aligns with
both visual attention and aesthetic preference, supporting the existing literature on the
restorative effects of natural elements. These insights redefine waterfront regeneration
priorities, emphasizing the need to balance natural and culturally distinctive elements
while mitigating the negative effects of generic buildings.
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