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Abstract: The rapid detection of landslide phenomena that may be triggered by extreme
rainfall events is a critical point concerning timely response and the implementation of
mitigation measures. The main goal of the present study is to identify susceptible areas by
estimating changes in the Normalized Difference Vegetation Index (NDVI), Normalized
Difference Moisture Index (NDMI), Bare Soil Index (BSI), and Synthetic Aperture Radar
(SAR) amplitude ratio before and after extreme rainfall events. The developed methodology
was utilized in a case study of Storm Daniel, which struck central Greece in September
2023, with a focus on the Mount Pelion region on the Pelion Peninsula. Using Google Earth
Engine, we processed satellite imagery to calculate these indices, enabling the assessment
of vegetation health, soil moisture, and exposed soil areas, which are key indicators of
landslide activity. The methodology integrates these indices with a Weight of Evidence
(WofE) model, previously developed to identify regions of high and very high landslide
susceptibility based on morphological parameters like slope, aspect, plan and profile
curvature, and stream power index. Pre- and post-event imagery was analyzed to detect
changes in the indices, and the results were then masked to focus only on high and very
high susceptibility areas characterized by the WofE model. The outcomes of the study
indicate significant changes in NDVI, NDMI, BSI values, and SAR amplitude ratio within
the masked areas, suggesting locations where landslides were likely to have occurred due
to the extreme rainfall event. This rapid detection technique provides essential data for
emergency services and disaster management teams, enabling them to prioritize areas for
immediate response and recovery efforts.

Keywords: extreme rainfall; rapid landslide detection; remote sensing indices; landslide
susceptibility; weight of evidence

1. Introduction
Landslides are considered one of the most destructive natural hazards, and have been

reported to have significant socio-economic disruption, threatening the lives and properties
of organized societies worldwide [1,2]. The manifestation of landslides can be triggered by
extreme weather events such as heavy rainfall that may influence the hydrological condi-
tions and soil saturation levels, thus affecting the stability of slope surfaces [3–5]. In recent
years, the accurate prediction and the necessary implementation of mitigation measures has
heighted due to advancements in remote sensing and geospatial analysis techniques [6–9].
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Landslides leave a unique mark on the landscape, in most cases creating a visible scar and
depositing debris at their base, often changing the drainage patterns and the vegetation
cover [10]. Traditional methods of landslide detection typically involve field surveys and
visual inspections [11,12]. In earlier years, experienced geomorphologists collected and
analyzed landslide-related data through the inspection and interpretation of aerial images,
preferably stereoscopic, implementing criteria that refer to characteristics of images such
as color, tone, texture, shape, size, and other characteristics related to morphology and
structural settings [13–15]. However, although this kind of process could be characterized
as direct and detailed, they can be time-consuming and limited by availability of related
data. In contrast, advanced remote sensing methods integrate satellite and aerial imagery
to detect landslides over large areas [11,14–17]. Techniques such as optical satellite imagery,
radar interferometry, and LiDAR technology provide important data concerning changes of
the morphology, allowing real-time monitoring, often with higher precision and frequency
compared to traditional approaches. Additionally, satellite-derived indices such as the
Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index
(NDMI), and Bare Soil Index (BSI) enhance the ability to identify potential landslide-prone
areas, since they could provide insights into vegetation health, soil moisture, and exposed
soil surfaces, which are critical for detecting disturbances in natural landscapes [18–20].
By combining these indices with remote sensing data, it is possible to better predict and
manage landslide risks, leading to more effective emergency planning and response [21–24].
In addition to traditional and advanced remote sensing methods, Sentinel-1 (S1) Synthetic
Aperture Radar (SAR) data significantly improves landslide detection capabilities. SAR
has been a valuable tool in landslide studies for nearly two decades, primarily through
interferometric SAR for measuring ground surface deformation [25–31]. Additionally, SAR
radar backscatter intensity and coherence-based change detection have proven effective in
identifying natural hazards, including landslides [15,32–36].

Notable examples of the approaches described earlier include the work of Mondini
et al. [15], which implemented Sentinel-1 SAR C-band images, particularly in areas where
optical imagery is limited. The authors reported that from a database of 32 landslide cases,
around 84% exhibit changes in SAR amplitude that may be attributed to surface changes
caused by landslide phenomena. Similarly, Handwerger et al. [7] developed a cloud-based
methodology within Google Earth Engine (GEE) by incorporating multiple SAR images
from different acquisition angles and applying topographic masks. In another study, Scheip
and Wegmann [37] developed HazMapper, an open-access hazard mapping application
utilized through GEE, which calculated the relative difference in the normalized difference
vegetation index (rdNDVI), an index that was an indicator for changes in vegetation cover
following the occurrence of a natural disaster. Notti et al. [38] developed a two-phase pro-
cedure that could detect shallow landslides using Sentinel-2 images. The authors used the
NDVI index along with geomorphological characteristics to successfully identify landslides.
Phakdimek et al. [20] developed a landslide detection model based on classification and
regression tree (CART) using differential spectral indices and amplitude ratio changes. The
authors used Sentinel-1 and Sentinel-2 data, achieving moderately good to excellent accu-
racy. In an analogous study, Peters et al. [39] developed the ML-LaDeCORsat approach for
landslide detection, a machine learning-based approach that integrates Sentinel-1, Palsar-2,
and Sentinel-2 satellite imagery within GEE that combines optical and radar data.

Despite the well-designed detection approaches that were previously discussed, sev-
eral limitations are present. In most cases, there are issues concerning false positives,
especially in areas of riverbank erosion or cultivated land [38]. In addition, relying on
single index approaches using either NDVI, NDMI, or BSI may capture changes on the
surface, but may not always correspond to changes due to landslide movements. On the
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other hand, radar-based methods can be less effective in correctly classifying types of
surface changes without additional context from optical or multispectral data [15].

In this context, to overcome these limitations, our methodological approach developed
partly in the GEE platform, combining indices derived by optical and radar data analysis.
Specifically, NDVI, NDMI, and BSI indices were calculated to analyze the vegetation health,
soil moisture, and exposed soil conditions before and after an extreme rainfall incidence,
whereas an SAR amplitude-based change detection ratio was calculated to indicate sig-
nificant changes in ground surface properties. This formed the Rapid landslide Detection
(RLD). In addition, to avoid false positives, we developed a landslide susceptibility model
based on the Weight of Evidence (WofE) method. Our methodology uses a similar approach
to the approaches of Adriano et al. [40] and Handwerger et al. [7], who applied an SAR
backscatter change detection approach. The researchers reported enhanced performance
when integrating a DEM (Digital Elevation Model) mask, and similarly, when land cover
data were used to filter out areas where landslides were less likely to occur. In line with
these studies, we applied the WofE models using geomorphological variables and a set of
historical landslides. The WofE model, which calculates the likelihood ratio for landslides,
assisted in indicating the most prone areas, which, when combined with the previous phase
of analysis, gave the final characterization of the investigated area and specifically the
identification of potential landslides. This resulted in the creation of the Rapid Landslide
Detection-WofE (RLD-WofE) model. Additionally, we applied a topographic masking
approach by excluding areas with slope angles less than 15 degrees, forming the Rapid
Landslide Detection-Slope (RLD-Slope) model [38].

The novelty of our study lies in the integrated approach that combines empirical data
from remote sensing with model-based predictions using the WofE model. Leveraging
the advantages of optical and radar data analysis, our methodology effectively detects
landslides, while using the WofE landslide susceptibility model to minimize false positives,
thus enhancing the accuracy and reliability of the developed approach. Designed as a rapid
tool for landslide inventory mapping, the approach offers reliable and efficient detection
capabilities, essential to support emergency response agencies in disaster scenarios. To
verify the effectiveness of the methodology, it was applied to the specific case of Storm
Daniel, which struck central Greece in September of 2023, particularly affecting the study
area of Mount Pelion, located on the Pelion Peninsula.

2. Materials and Methods
In this study, we adopted a systematic approach, combining the analysis of remote

sensing data with geospatial modeling to enhance the detection of landslide phenomena
that were triggered by an extreme rainfall event. The main investigation tools for the imple-
mentation of the methodology were the GEE platform and the ArcGIS suite (version 10.5).
GEE is considered an advanced cloud-based platform, which provides free access to a
vast multi-petabyte archive of geospatial datasets, also including weather, climate data,
and digital elevation models, covering over four decades of historical and contemporary
Earth observation imagery [33,41]. Concerning the ArcGIS suite, it is one of the most
powerful tools for modeling landslide susceptibility and hazard assessments [42]. Using
geoprocessing tools such as the Weighted Overlay and the Raster Calculator, the GIS-based
models can effectively predict areas of high landslide susceptibility [43]. GEE was utilized
for the pre- and post-event analysis of the various remote sensing indices, while ArcGIS
was used to implement the WofE model and provide the final inventory map based on the
integration of the remote sensing indices and the high and very high susceptible areas. The
methodology involves five key phases of analysis, data acquisition, preprocessing, index
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calculation, susceptibility modeling, and detection and validation, which are described in
detail below (Figure 1).
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2.1. Data Acquisition

The first phase involved collecting pre-event and post-event optical satellite imagery
and SAR Imagery. SAR amplitude data are obtained from the Copernicus Sentinel-1
satellite constellation. The Sentinel-1 satellites is equipped with a C-band radar sensor,
which operates at a wavelength of 5.6 cm, having a minimum revisit time of 12 days
for a specific area. In GEE, Ground Range Detected (GRD) images have been subjected
to several preprocessing steps, including thermal noise removal, radiometric distortion
correction, and terrain effects correction. For the last process digital elevation data from
the Shuttle Radar Topography Mission has been used [20]. GRD images are provided
at a spatial resolution of 10 m and support up to four polarization configurations: 1. a
vertical transmit/vertical receive (VV), 2. a horizontal transmit/horizontal receive (HH),
3. a vertical transmit/horizontal receive (VV + VH), and 4. a horizontal transmit/vertical
receive (HH + HV) (Table 1). For our study, we utilized SAR data in the VH polarization
mode that appears more sensitive to forest biomass structure, thus making them effective
for identifying landslides in vegetated areas [44].
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Table 1. Sentinel-1 data.

Spectral Band Polarization Central Frequency
(GHz)

Spatial Resolution
(m)

C-band VV 5.405 10
C-band VH 5.405 10
C-band HH 5.405 10
C-band HV 5.405 10

Additionally, multi-spectral satellite imagery from Sentinel-2 sensors was used to
calculate the NDVI, NDMI, and BSI indices. The Sentinel-2 images analyzed included
13 spectral bands at varying spatial resolutions, ranging from 10 m for visible and near-
infrared bands to 20 m for red edge and shortwave infrared bands (Table 2).

Table 2. Sentinel-2A and 2B data.

Spectral Band Band Wavelength (µm) Spatial Resolution (m)

Blue (B) B2 0.46–0.52 10
Green (G) B3 0.54–0.58 10

Red (R) B4 0.65–0.68 10
Red edge (RE1) B5 0.698–0.712 20
Red edge (RE2) B6 0.733–0.747 20
Red edge (RE3) B7 0.773–0.793 20

Near-infrared (NIR) B8 0.784–0.9 10
Near-infrared (NIR) B8A 0.855–0.875 20
Shortwave infrared

(SWIR1) B11 1.565–1.655 20

Shortwave Infrared
(SWIR2) B12 2.1–2.28 20

To assess the impact of the rainfall event on vegetation and potential landslide areas,
we defined specific time periods for analysis. The pre-event period was set from 1 August
2023, to 1 September 2023, allowing for baseline data collection prior to the extreme rainfall
event. During this time, we utilized the Sentinel-1 and Sentinel-2 data to capture the
vegetative health and moisture content before the onset of significant precipitation. For the
pre-event analysis, 5 Sentinel-1 images and 12 Sentinel-2 were analyzed.

Following the extreme weather event, we established the post-event period from 10
September 2023, to 30 October 2023. This interval was critical for analyzing the immediate
effects of the rainfall on the landscape and monitoring changes in vegetation indices,
particularly NDVI, NDMI, and BSI, as well as alterations in the forest biomass structure
identified through the VH polarization mode of the SAR data. For the post-event analysis,
8 Sentinel-1 images and 20 Sentinel-2 were analyzed.

While the Sentinel-1 and Sentinel-2 dataset imagery are widely used in studies that
focus on landslide detection and spatial landslide prediction, each serves different purposes.
The Sentinel-1 imagery, which is used to calculate the SAR amplitude ratio, is effective in
detecting surface changes under all-weather and day–night conditions, making it ideal for
radar-based analyses. In contrast, Sentinel-2 provides multispectral visual imagery, which
is not suitable for SAR amplitude ratio, but excels in calculating vegetation and soil indices
such as NDVI, NDMI, and BSI. By integrating these datasets, our approach leverages their
complementary advantages to enhance accuracy and reduce false positives in post-event
landslide detection.
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2.2. Data Preprocessing

The second phase involved preprocessing the optical imagery and preprocessing the
SAR imagery. Stacked NDVI images are used instead of just one image for the pre-event
and post-event periods because they provide a more robust and accurate representation of
vegetation conditions over time. Using multiple images allows researchers to account for
natural variability in vegetation due to daily or seasonal changes, as well as other factors
like cloud cover, sensor noise, or slight differences in illumination. A single image might
capture an anomaly or short-term fluctuation that does not accurately represent the overall
vegetation health before or after the event. Stacking multiple images smooths out these
variations, creating a more reliable “mean” NDVI value that reflects typical conditions.
This approach also improves the detection of subtle changes caused by the event, like
landslides, by ensuring that the comparisons are made against a stable baseline rather than
a potentially unrepresentative snapshot.

In the present study, Sentinel-1 GRD images acquired in the VV polarizations were
employed, which in GEE are already preprocessed. The preprocessing in GEE involves
removing thermal noise, applying radiometric calibration, and terrain correction using
the Shuttle Radar Topography Mission DEM [45]. In our case, the images were further
preprocessed with a 7 × 7 adaptive Sigma Lee speckle filter implemented in the GEE
platform to reduce the granular noise [46].

2.3. Calculation of Indices

In the third phase of the rapid landslide detection approach, several critical remote
sensing indices are calculated from optical imagery to facilitate change detection and iden-
tify significant environmental changes between pre-event and post-event conditions [39].
This involves calculating the NDVI to assess vegetation health, the NDWI to evaluate water
content, and the BSI to detect changes in exposed surface properties.

2.3.1. Normalized Difference Vegetation Index (NDVI)

The NDVI index is used to assess the health of vegetation, with values typically
ranging from −1 to 1. Healthy vegetation absorbs a significant percentage of visible light
and reflects high amounts of light in the near-infrared spectrum. In contrast, sparse or
unhealthy vegetation is characterized by increased reflectance in the visible spectrum and
reduced reflectance in the near-infrared [47]. In the context of an extreme rainfall event, pre-
and post-event NDVI calculations can be highly effective in detecting landslides and their
impacts on vegetation. Prior to the event, NDVI values can indicate the normal vegetation
health in the area, with dense, healthy vegetation typically showing high values (0.6 to
0.9). After the rainfall, a significant landslide would likely cause vegetation to be stripped
away, exposing bare soil or rock, leading to much lower NDVI values (0.1 or below). By
comparing the pre-event and post-event NDVI images, researchers can identify areas where
drastic reductions in NDVI values have occurred, signaling potential landslide locations.
Additionally, by analyzing NDVI changes over time, the recovery of vegetation in the
affected areas can be monitored, providing insight into the long-term ecological impacts of
the landslide.

We used the Sentinel-2 band of NIR and Red, and the following equation to calculate
the index [48] (Equation (1)):

NDVI =
(NIR − Red)
(NIR + Red)

(1)

where NIR is the near-infrared light reflected by vegetation, and Red is the visible light
absorbed by vegetation. To detect any changes in the research area caused by the manifes-
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tation of the extreme rainfall event, a simple abstraction between the pre-event stacked
Sentinel-2 bands and the post-event stacked Sentinel-2 bands were applied based on the
following equation (Equation (2)):

NDVIchn = NDVIpre − NDVIpost (2)

A significant negative change in NDVI values corresponds to vegetation removal,
which may be attributed to landslide activity, especially after extreme rainfall events. On
the other hand, positive or no change assume than no significant disturbance on vegetation
cover has been manifest during the extreme rainfall event [49].

2.3.2. Normalized Difference Moisture Index (NDMI)

This index assists in identifying the moisture content in vegetation cover, which can be
an indicator of the presence of soil saturation—a precursor to many landslide events [50].
The estimation of NDMI is based on the following equation [51] (Equation (3)):

NDMI =
(NIR − SWIR)
(NIR + SWIR)

(3)

where NIR is the near-infrared light reflected by vegetation, and SWIR is the short-wave
infrared light, which increases in reflection with moisture content.

NDMIchn = NDMIpre − NDMIpost (4)

A negative change, a decrease in the post-event NDMI index, in most cases indicates
an area where the vegetation cover has been removed, exposing bare soil or bedrock,
thus retaining less moisture. However, in some cases, a positive change might happen in
areas associated with landslide phenomena, in which landslides deposits earth material in
low-lying areas or in areas where debris may block the water flow [52].

2.3.3. Bare Soil Index (BSI)

The BSI is a remote sensing index used to detect changes in areas of exposed soil,
which is very important in monitoring environmental settings such as landslides, soil
erosion, and areas at risk of degradation due to the absence of vegetation. The following
equation is used to estimate the BSI [53] (Equation (5)):

BSI =
(SWIR + Red)− (NIR + Blue)
(SWIR + Red) + (NIR + Blue)

(5)

where Red is visible red reflectance, NIR is the near-infrared, and SWIR is the short-wave
infrared band, which are sensitive to soil and vegetation conditions (Equation (6)).

BSIchn = BSIpre − BSIpost (6)

A positive change in the BSI index indicates an increase in the bare soil surface that
may be associated with landslide areas. On the other hand, a negative change may be
attributed to the process of deposition, in which landslide material may be deposited.

2.3.4. SAR Amplitude Change

Amplitude in SAR data is calculated based on the radar backscatter intensity, which
represents the strength of the radar signal reflected to the satellite. SAR sends microwave
pulses to the Earth’s surface, and the amplitude of the returned signal is influenced by the
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surface’s characteristics, such as its roughness, geometry, and dielectric properties [20]. The
amplitude can be calculated using the following formula (Equation (7)):

A =
√

I (7)

where A is the amplitude, and I is the intensity of the backscattered signal. In GEE, the
backscatter values are stored as the SAR intensity in the ‘VV’ or ‘VH’ band.

Concerning the identification of potential landslides using amplitude, this could be
feasible if we calculate changes in amplitude, defined as the difference between the pre-
event and the post-event amplitude. Since GEE provides amplitude data in decibels (dB),
this is equivalent to the amplitude ratio approach [20] (Equation (8)):

Achn = log10
Apre

Apost
(8)

Positive values of Achn indicate a decrease in SAR amplitude recorded after a landslide
event. This is due to the significant changes that a landslide causes in the surface properties
of the soil, affecting radar reflectivity, slope geometry, surface roughness, and dielectric
properties [36,40].

2.4. Landslide Detection and Landslide Susceptibility Mapping

The fourth phase of analysis involved two procedures: the first procedure included
the production of a landslide detection map based on the three indices (NDVIchn, NDWIchn,
BSIchn) and the SAR amplitude change, and the second procedure included the generation
of the landslide susceptibility map based on the historical landslides and geomorphological
settings using the WofE model. For the first procedure, the features NDVIchn, NDWIchn,
BSIchn, and the SAR amplitude change were normalized within the range of 0 to 1 to ensure
consistent processing, using the min–max normalization algorithm [54] (Equation (9)).

xnew =
x − xmin

xmax − xmin
(9)

These normalized values were then aggregated to produce a single raster output,
which was subsequently reclassified into five classes of landslide detection potential using
a Natural Break classification scheme [55]. For the second procedure, the landslide sus-
ceptibility map was created. Landslide susceptibility refers to the likelihood of landslide
occurrence in a specific area, and is influenced by a complex interplay of factors, includ-
ing terrain, lithology, climate, human activity, and environmental conditions [56,57]. As
has been stated by many researchers, the choice of control factors for modeling landslide
susceptibility is largely dictated by local morphological and geological settings [58,59].
However, despite the extensive research conducted in this topic, a standardized method
for choosing these factors remains not clearly formed [60,61], as the influential factors can
vary significantly from one region to another region. To enhance the prediction accuracy of
landslide susceptibility models, it is very important to carry out optimization work to eval-
uate the contribution and correlation of various conditioning factors through quantitative
indicators [62].

2.4.1. Landslide-Related Variables

To assess the study area’s susceptibility to landslides, five variables were selected,
considering both the local geoenvironmental conditions and available database. These
variables include altitude, which influences terrain impact, precipitation patterns, and
vegetation cover [63], aspect, affecting solar radiation, evaporation, weathering, vegetation,
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and slope erosion [64], and slope, a critical factor in stress distribution and soil sliding
potential [65]. Additionally, two curvature variables, the plan curvature, which measures
the horizontal surface curvature [66], and the profile curvature, which indicates the vertical
elevation changes [67], are also used in the present analysis. The stream power index
(SPI) assesses erosion and water flow energy [68–70]. In most landslide susceptibility
assessments, lithology or geological composition is considered a significant factor due to
its influence on the stability of terrain and soil properties [1]. Different rock types can
exhibit varying degrees of susceptibility to weathering, erosion, and water infiltration, all
of which contribute to landslide potential [71]. However, in this particular study, we have
excluded lithology as a variable because the research area is predominantly composed of a
single geological formation—ortho- and para-metamorphic rocks—as further discussed in
Section 3. Additionally, the available geological map, at a scale of 1:50,000, does not further
differentiate within this formation, making it difficult to account for any subtle geological
variations. The homogeneity of this geological setting means that lithological variations do
not play a significant role in influencing landslide susceptibility in the area. Since there is
little to no variability in rock types across the region, including lithology as a factor would
offer minimal additional insights into the susceptibility analysis. Therefore, focusing on
other factors, such as terrain, slope, aspect, and curvature, which exhibit more variability
across the study area, allows for a more effective and targeted analysis.

2.4.2. Weight of Evidence (WofE)

The Weight of Evidence (WofE) method is a probabilistic method initially developed in
the 1980s for mapping mineral potential by combining multiple lines of evidence to support
a given hypothesis [72,73]. Although originally designed for non-spatial applications, the
method is now applied to spatial predictions, and especially in cases where the goal is to
estimate the probability of point occurrences [72]. Regarding its application to landslide-
related analyses, the method has been widely used, particularly through the integration
of GIS technology in numerous studies [74,75]. According to Neuhauser et al. [76], the
WofE method is effective in analyzing the spatial distribution of landslides, as well as in
the ability to extract quantitative spatial information, which can be used to determine the
influence of various factors related to the occurrence of landslides. Both continuous and
categorical factors can be used in the application of the method, which, in the process,
form distinct categories to which a unique weight of evidential values is assigned. The
method assumes conditional independence between the variables and requires that the
distribution of the data for each variable follows a normal distribution. It is important to
test for conditional independence to exclude dependent variables that could bias the results
due to double counting of their effects on the results. This process is particularly critical
when selecting variables for landslide susceptibility, hazard, and risk analyses [77]. The
WofE method is rooted in the principles of Bayes’ theorem, and employs the concepts of
prior and posterior probability to statistically evaluate the relative influence of evidential
variables [78]. In this context, the method assesses whether a set of independent variables
can trigger landslides by analyzing the spatial correlation between the distribution of
historical landslide occurrences and the distribution of susceptibility variables. It quantifies
the degree of influence each variable has on past events and its potential impact on future
landslide occurrences [79]. In the case under consideration, a simple application of Bayes’
theorem was used through the binary map method. This approach evaluates the presence
or absence of a landslide event, and determines the degree of influence for each variable [80].
The method calculates the prior probability by determining the total number of landslides
observed in the past under specific conditions or within different classes of each variable,
divided by the total area corresponding to each class. The WofE method’s effectiveness
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is measured through the contrast magnitude, C, which indicates the spatial association
between landslide events and evidence layers. In particular, a positive contrast value
indicates a strong positive correlation, while a negative contrast value means a negative
spatial correlation [80]. The following equations are used to estimate the weights of each
variable (Equations (10)–(12)):

W+
ji = ln

P(V|L)
P(V|L)

(10)

W−
ji = ln

P(V|L)
P(V|L)

(11)

Cji = W+
ji − W−

ji (12)

where L represents the amount of landslide grid cells in the ith class of the jth landslide
variable, and L is the number of non-landslide grid cells in the ith class of the jth landslide
variable. P(V|L) and P(V|L) refer to the amount of grid cells in which the landslide-related
variables exists in L and in L, whereas P(V|L) and P(V|L) refer to the amount of grid cells
in which the landslide-related variables do not exist in L and in L.

For a given grid cell, the final landslide susceptibility value is calculated as the sum of
the total contrast values in all categories of the evidence variables (Equation (13)):

LSI =
n

∑
j=1

m

∑
i=1

Cji (13)

where j refers to each landslide-related variable and i represents the class of each landslide-
related variable. A higher value of LSI indicates that the grid cell is more susceptible to
landslides based on the evidence factors considered.

2.4.3. Training and Validation Database

The training and validation of landslide susceptibility models requires a robust and
comprehensive database to ensure accurate predictions. For this purpose, a dataset com-
prising approximately 180 recorded landslides from past events has been utilized. This
historical landslide inventory serves as the foundation for training the models, allowing
them to learn the patterns and factors associated with landslide occurrences. The database
is divided into two subsets: one for training and the other for validation [81]. The training
subset, 70% of the total number of historical landslides, was used to develop and cali-
brate the model. The validation subset, the remaining 30%, was used to test the model’s
predictive accuracy.

2.4.4. Validation of WofE Model

The validation was carried out by estimating the cumulative portion of observed
landslide events within the produced landslide susceptibility classes, and secondly, the
estimation of success and prediction rate. In more detail, it has been reported that an effec-
tive landslide susceptibility map should display an increase in the landslide density ratio
from lower to higher susceptibility classes, while also meeting two key spatial effectiveness
criteria [82–84]: the identified landslide-prone areas should predominantly fall within the
high susceptibility class, and the high susceptibility class should occupy a relatively small
portion of the total area [85,86].

2.5. Landslide Detection and Validation

In the detection and validation phase, the objective was to identify significant changes
in the remote sensing indices that indicate potential landslide activity, and validate these
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findings with ground truth data obtained from extensive field surveys conducted in Decem-
ber 2023. The final detection maps were produced by combining two previous products:
the landslide detection map based on NDVI, NMDI, BSI, and SAR data and the RLD
model, and the landslide susceptibility map produced by the WofE model. For the latter,
only the high and very high susceptibility zones were utilized to minimize false positives.
Additionally, a topographic masking technique was implemented, excluding areas with
slope angles less than 15 degrees. This process, combined with the landslide detection
map, resulted in the creation of the RLD-Slope model, offering an alternative approach
to refine the detection of potential landslides. The analysis was specifically focused on a
50 m buffer zone around the road network. This approach was chosen because our field
investigations were conducted along the road, making the surrounding area highly relevant
for evaluating landslide occurrences. By concentrating on this buffer zone, we could more
accurately assess the performance of the methodology in detecting landslides near the road,
where such events pose the greatest risk to critical infrastructure and can cause significant
disruption. The validation for this output was based on the landslide density ratio, as
discussed earlier, to ensure that the methodology accurately reflects landslide-prone areas.
By focusing on the landslide density ratio, we aimed to assess whether the detected land-
slides, both from remote sensing and ground surveys, predominantly occur within the high
and very high susceptibility zones. This approach was taken to verify that the model not
only identifies landslide-prone areas effectively, but also minimizes false positives in less
susceptible regions. For the overall validation of the methodology, two additional statistical
processes were conducted: a receiver operating characteristic (ROC) curve analysis, and
a comparison between the RLD, the RLD-Slope, and RLD-WofE models to determine the
presence of statistically significant differences. The ROC curve and the area under the curve
(AUC) are widely recognized as standard techniques for assessing the performance of
predictive models using training and validation datasets [87]. To ensure a balanced dataset
for this analysis, an equal number of non-landslide points were randomly generated using
the “Create Random Points” geoprocessing tool available in the Data Management Tools
of the ArcGIS platform [88]. These points served as a counterpart to the field-identified
landslide locations, providing the necessary balance for robust statistical evaluation of the
models. Additionally, performance metrics such as precision, recall, and F1-score were
used to validate the effectiveness of the models in detecting landslides. Precision, also
referred to as the positive predictive value, represents the proportion of correctly identified
landslides (true positives) among all instances predicted as landslides. It highlights the
model’s ability to minimize false alarms in landslide detection. Recall, also known as
sensitivity, measures the proportion of actual landslides that were correctly identified by
the model, demonstrating its capacity to detect landslides comprehensively. The F1-score,
which is the harmonic mean of precision and recall, provides a single metric to assess the
balance between reducing false positives and maximizing accurate detection [89].

3. Study Area
3.1. General Setting

The study area is located in the southeastern part of Thessaly, in central Greece,
and specifically concerns Mount Pelion, on the Pelion peninsula, which extends between
the Aegean Sea and the Pagasetic Gulf (Figure 2). Most of the study area is part of the
Municipality of Zagora–Mouresi, covering an area of approximately 108 km2.
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Based on the Thornthwaite climate classification, [90] the area is characterized as
semi-arid climate with moderate winter water surplus and mesothermal conditions, with
evapotranspiration between 855 mm and 997 mm. This type is typical of areas far from
the coast, resulting in a neutral thermal climate. In more detail, Magnesia’s climate varies
due to its geography and topography. Microclimates are influenced by the rugged terrain
and strong Aegean winds. In northern and eastern Pelion, the climate ranges from marine
to mountainous, with higher annual rainfall, higher relative humidity, lower average
temperatures, and prevailing northern winds. Snowfall is common in mountainous areas,
and frosts, though rare, occur from December to March, peaking in January. Annual rainfall
averages between 466.8 mm and 793.2 mm.

Concerning the geological settings, the study area is located within the Pelagonian
zone and is characterized by a diverse range of formations, spanning from the Quater-
nary Holocene to the Neo Paleozoic and Triassic periods [91] (Figure 3). The Quaternary
Holocene formations include alluvial and fluvial deposits, predominantly consisting of
sandy-clay materials interspersed with unconsolidated gravels and pebbles. These gravels
and pebbles are primarily composed of schists, with a smaller proportion of limestones.
Unconsolidated materials of sand and pebbles are prevalent in the beds of torrents, as
well as in small terraces and coastal formations. They cover only a very small portion of
the study area, with limited instability problems. The Tertiary Neogene period is repre-
sented by acid vein intrusions, comprising a variety of rock types such as quartz, dioritic
porphyrites, syenodioritic porphyrites, gabbroporphyrites, dacites, and diabases. These
formations add to the region’s geological complexity; however, limited instability problems
are associated with their presence. The older Neo Paleozoic to lower and middle Triassic
systems consist of a range of ortho- and para-metamorphic rocks that have undergone sim-
ilar metamorphic facies as the eohellenic tectonic nappe. These formations predominantly
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include mica- and amphibole-bearing schists such as glaucophane schists, cal-epidote and
quartz schists, muscovite, and chlorite schist gneisses, as well as prasinite, quartzites, and
phyllites. The western part of the area is particularly rich in glaucophane schists. The micas
found in these rocks include muscovite, phengite, and hydromuscovite, with less biotite,
while feldspars such as orthoclase and acid plagioclases are also present. Amphiboles,
including glaucophane and actinolite, are notable components of the metamorphic assem-
blage. They are intruded by tertiary acid vein intrusions, and in the upper members of
the neo Paleozoic-lower-middle Triassic formations, intercalations of thick-bedded, coarse
crystalline marbles (mr) locally occur, white to white-grey in color [91]. Almost all historical
landslides are reported within this formation that occupies over 90% of the research area.
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3.2. Rainstorm Daniel

Regarding the extreme rainfall event that impacted the wider study area, Storm Daniel
struck the Mediterranean between 3 September and 8 September 2023. Storm Daniel
brought unprecedented rainfall to central Greece, following a period of drought, wildfires,
and heatwaves during the Summer. Areas received around 500 mm of rain in just one day,
significantly exceeding the average September rainfall and setting new records [93]. The
extreme weather led to severe flooding, with massive damage to infrastructure, destruction
of buildings and bridges, and entire villages submerged. This event is considered Greece’s
worst rainfall occurrence on record and the deadliest weather event of the year, with
casualties in Greece and neighboring Bulgaria and Turkey. The flooding caused damages
amounting to billions of euros, prompting the European Union to allocate EUR 2.25 billion
for Greece’s recovery efforts.

The following Figure 4a–f shows the rainfall intensity and spatial distribution in
Greece, based on the GPM IMERG V06 dataset. The dataset is filtered to a 30 min inter-
val, and includes precipitation estimates that are refined as more data becomes available.



Land 2025, 14, 21 14 of 30

Specifically, maximum precipitation values were selected, and areas with low precipitation
(values below 0.5 mm/h) were masked out to highlight significant rainfall events [94]. The
Global Precipitation Measurement (GPM) mission is an international satellite initiative
designed to provide global-scale observations of precipitation and snowfall at three-hour
intervals. The Integrated Multi-Satellite Retrievals for GPM (IMERG) algorithm is a com-
prehensive methodology that combines data from all passive-microwave instruments in the
GPM constellation. The algorithm intercalates, fuses, and interpolates satellite microwave
precipitation estimates, while incorporating calibrated infrared (IR) data, rain gauge analy-
ses, and potentially additional sources of precipitation estimates. This process covers the
Tropical Rainfall Measuring Mission (TRMM) and GPM eras, providing fine-scale time and
space precipitation data globally [94].

Land 2025, 14, x FOR PEER REVIEW 15 of 31 
 

damages amounting to billions of euros, prompting the European Union to allocate EUR 
2.25 billion for Greece’s recovery efforts. 

The following Figure 4a–f shows the rainfall intensity and spatial distribution in 
Greece, based on the GPM IMERG V06 dataset. The dataset is filtered to a 30 min interval, 
and includes precipitation estimates that are refined as more data becomes available. Spe-
cifically, maximum precipitation values were selected, and areas with low precipitation 
(values below 0.5 mm/h) were masked out to highlight significant rainfall events [94]. The 
Global Precipitation Measurement (GPM) mission is an international satellite initiative 
designed to provide global-scale observations of precipitation and snowfall at three-hour 
intervals. The Integrated Multi-Satellite Retrievals for GPM (IMERG) algorithm is a com-
prehensive methodology that combines data from all passive-microwave instruments in 
the GPM constellation. The algorithm intercalates, fuses, and interpolates satellite micro-
wave precipitation estimates, while incorporating calibrated infrared (IR) data, rain gauge 
analyses, and potentially additional sources of precipitation estimates. This process covers 
the Tropical Rainfall Measuring Mission (TRMM) and GPM eras, providing fine-scale 
time and space precipitation data globally [94]. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Cont.



Land 2025, 14, 21 15 of 30Land 2025, 14, x FOR PEER REVIEW 16 of 31 
 

  
(e) (f) 

Figure 4. (a) Hourly accumulated precipitation 4 September 2023; (b) hourly accumulated precipi-
tation 5 September 2023; (c) hourly accumulated precipitation 6 September 2023; (d) hourly accu-
mulated precipitation 7 September 2023; (e) hourly accumulated precipitation 8 September 2023; (f) 
hourly accumulated precipitation 9 September 2023. 

As shown in Figure 4a, on the 4th of September, a notable increase in the rainfall 
amount occurred, peaking at around 10 mm/h. The most intense rainfall happened on 
September 7, with the highest peak reaching approximately 35 mm/h, indicating the 
storm’s core activity. Following this, the rainfall intensity decreased, with intermittent 
showers reaching up to 15 mm/h on September 7 and another peak of about 10–15 mm/h 
on September 8. By September 9, precipitation levels returned to near zero, marking the 
end of significant rainfall and the storm’s impact. 

4. Results 
The results of the analysis are presented in this section, focusing on the outcomes of 

the landslide susceptibility mapping, the detection of landslide activity, and the overall 
validation process of our methodology. 

4.1. Landslide Susceptibility Map Produced by the WofE Model 

Based on the developed methodology, the WofE model was applied to assess the 
influence of five conditioning factors on landslide occurrences using GIS overlay analysis 
(Table 3). For the study area, it was found that surfaces having a slope angle greater than 
35° had the higher C value (0.164), indicating a high likelihood of landslide presence. Con-
cerning the aspect conditioning factor, southeast and south facing slopes were found to 
be more susceptible to landslides, with C values 0.825 and 0.788, respectively. Concave 
planform curvature, areas that have negative values, were found to have higher C values 
(0.169), whereas positive profile curvature, upward concave, had the highest C values 
(0.103). Finally, the SPI values had the highest C value (0.849) in the second class (B), fol-
lowed by the third class (C) with C value 0.515. 

Table 3. Weight of Evidence, contrast values. 

Landslide-Related Variables Classes—Range of Values W+ W- Contrast, C 

Slope 
0°–13° −0.428 0.053 −0.48 
14°–19° 0.108 −0.047 0.155 

Figure 4. (a) Hourly accumulated precipitation 4 September 2023; (b) hourly accumulated pre-
cipitation 5 September 2023; (c) hourly accumulated precipitation 6 September 2023; (d) hourly
accumulated precipitation 7 September 2023; (e) hourly accumulated precipitation 8 September 2023;
(f) hourly accumulated precipitation 9 September 2023.

As shown in Figure 4a, on the 4th of September, a notable increase in the rainfall
amount occurred, peaking at around 10 mm/h. The most intense rainfall happened on 7
September, with the highest peak reaching approximately 35 mm/h, indicating the storm’s
core activity. Following this, the rainfall intensity decreased, with intermittent showers
reaching up to 15 mm/h on 7 September and another peak of about 10–15 mm/h on 8
September. By 9 September, precipitation levels returned to near zero, marking the end of
significant rainfall and the storm’s impact.

4. Results
The results of the analysis are presented in this section, focusing on the outcomes of

the landslide susceptibility mapping, the detection of landslide activity, and the overall
validation process of our methodology.

4.1. Landslide Susceptibility Map Produced by the WofE Model

Based on the developed methodology, the WofE model was applied to assess the
influence of five conditioning factors on landslide occurrences using GIS overlay analysis
(Table 3). For the study area, it was found that surfaces having a slope angle greater than
35◦ had the higher C value (0.164), indicating a high likelihood of landslide presence.
Concerning the aspect conditioning factor, southeast and south facing slopes were found
to be more susceptible to landslides, with C values 0.825 and 0.788, respectively. Concave
planform curvature, areas that have negative values, were found to have higher C values
(0.169), whereas positive profile curvature, upward concave, had the highest C values
(0.103). Finally, the SPI values had the highest C value (0.849) in the second class (B),
followed by the third class (C) with C value 0.515.
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Table 3. Weight of Evidence, contrast values.

Landslide-
Related Variables

Classes—Range
of Values W+ W- Contrast, C

Slope

0◦–13◦ −0.428 0.053 −0.48
14◦–19◦ 0.108 −0.047 0.155
20◦–26◦ 0.003 −0.001 0.005
27◦–34◦ 0.015 −0.004 0.018

>35◦ 0.153 −0.011 0.164

Aspect

North 0.212 −0.027 0.238
Northeast 0.141 −0.012 0.152

East 0.398 −0.045 0.443
Southeast 0.719 −0.107 0.825

South 0.758 −0.03 0.788
Southwest 0.15 −0.001 0.151

West −0.446 0.005 −0.451
Northwest −0.603 0.035 −0.638

Plan Curvature
<−0.2 0.114 −0.054 0.169

−0.1–0.1 0.018 −0.012 0.029
>0.2 −0.16 0.06 −0.22

Profile Curvature
<−0.2 −0.014 0.008 −0.021

−0.1–0.1 −0.061 0.026 −0.087
>0.2 0.068 −0.035 0.103

Stream Power
Index

A: <6209 −0.021 0.358 −0.38
B: 6210–6609 0.514 −0.001 0.515

C: 6610–12,818 0.825 −0.023 0.849
D: 12,819–109,295 −0.128 0.003 −0.131

E: >109,296 −0.265 0.001 −0.266

By combining the five conditional factors, we generated the landslide susceptibility
map illustrated in Figure 5, which was categorized into a five-classification susceptibility
scheme: very low (VLS), low (LS), moderate (MS), high (HS), and very high susceptibility
(VHS). Examining the spatial distribution of the landslide susceptibility zones, the VHS
zone mainly covers steep slopes and ridges, where the topography and other environmental
factors create favorable conditions for landslide activity. These high-risk areas tend to be
clustered around the central and eastern regions of the map, near settlements such as
Makriraxi, Anilio, and Kissos, which highlights the potential threat to nearby communities.
The MS and HS zones cover a large portion of the study area, specifically in the mid-slopes
of the region. These areas may still experience landslides, but with less frequency. The LS
and VLS zones dominate the flatter or less rugged regions of the study area, especially in
the western and southern parts of the map, where the terrain is less prone to landslides. The
historical landslide events, both data corresponding to the training and testing subsets, are
scattered throughout the area, showing a clear overlap with regions of higher susceptibility,
particularly in the HS and VHS classes.

As summarized in Table 4, the VLS class, representing 13.18% of the area, accounted
for only 3.41% of the landslides, with a relative frequency of 3.95%. The LS class covered
26.33% of the area, with 17.05% of landslides occurring within it, and a relative frequency of
9.90%. The MS class, making up 29.03% of the area, included 19.32% of the landslides, with
a relative frequency of 10.17%. The HS class, which covered 22.93% of the area, captured
28.41% of the landslides, showing a relative frequency of 18.94%. Lastly, the VHS class,
despite occupying only 8.53% of the total area, contained 31.82% of the landslides, and had
the highest relative frequency of 57.04%.



Land 2025, 14, 21 17 of 30Land 2025, 14, x FOR PEER REVIEW 18 of 31 
 

 

Figure 5. Landslide susceptibility map based on WofE model. 

As summarized in Table 4, the VLS class, representing 13.18% of the area, accounted 
for only 3.41% of the landslides, with a relative frequency of 3.95%. The LS class covered 
26.33% of the area, with 17.05% of landslides occurring within it, and a relative frequency 
of 9.90%. The MS class, making up 29.03% of the area, included 19.32% of the landslides, 
with a relative frequency of 10.17%. The HS class, which covered 22.93% of the area, cap-
tured 28.41% of the landslides, showing a relative frequency of 18.94%. Lastly, the VHS 
class, despite occupying only 8.53% of the total area, contained 31.82% of the landslides, 
and had the highest relative frequency of 57.04%. 

Table 4. Landslide susceptibility classes—relative frequency of landslides test database. 

Landslide  
Susceptibility 

Area 
(%) 

Landslide  
Percentage (%) 

Relative Frequency  
of Landslides (%) 

Very Low Susceptibility (VLS)  13.18 3.41 3.95 
Low Susceptibility (LS) 26.33 17.05 9.90 

Moderate Susceptibility (MS) 29.03 19.32 10.17 
High Susceptibility (HS) 22.93 28.41 18.94 

Very High Susceptibility (VHS) 8.53 31.82 57.04 

These results indicate that landslide occurrences are strongly correlated with areas 
classified as having high and very high susceptibility, validating the effectiveness of the 
susceptibility model in predicting potential landslide-prone areas. The significantly 
higher relative frequency of landslides in the VHS class highlights the accuracy of the 
classification, as this category is most densely associated with actual landslide events from 
the test database. 

4.2. Landslide Detection Map 

Figure 5. Landslide susceptibility map based on WofE model.

Table 4. Landslide susceptibility classes—relative frequency of landslides test database.

Landslide
Susceptibility Area (%) Landslide

Percentage (%)
Relative Frequency
of Landslides (%)

Very Low Susceptibility
(VLS) 13.18 3.41 3.95

Low Susceptibility (LS) 26.33 17.05 9.90
Moderate Susceptibility

(MS) 29.03 19.32 10.17

High Susceptibility (HS) 22.93 28.41 18.94
Very High Susceptibility

(VHS) 8.53 31.82 57.04

These results indicate that landslide occurrences are strongly correlated with areas
classified as having high and very high susceptibility, validating the effectiveness of the
susceptibility model in predicting potential landslide-prone areas. The significantly higher
relative frequency of landslides in the VHS class highlights the accuracy of the classifi-
cation, as this category is most densely associated with actual landslide events from the
test database.

4.2. Landslide Detection Map

In the landslide detection phase of our analysis, we employed the four indices to
assess changes in the study area before and after Storm Daniel. Figure 6a–d illustrate the
spatial distribution of these indices across the study area, with each index providing unique
insights into potential landslide activity. The spatial distribution of NDVI changes reveals
significant vegetation loss, particularly along the river network and in areas with steep
slopes, where landslide potential is high. The red and orange zones (ranging from −0.55
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to −0.15) indicate the most severe decreases in NDVI, suggesting substantial vegetation
disturbance or loss. Evidence of landslides was also identified along the road network,
where the negative NDVI changes coincide with known landslide occurrences. Quite
similar spatial distribution can be observed for the NDMI and BSI change index, with some
slight differences at the western regions of the study area. The SAR amplitude changes
reflect terrain and surface condition alterations, such as changes in radar reflectance,
hillslope geometry, surface roughness, and dielectric properties of the ground, which
may be helpful in identifying areas prone to the manifestation of landslides. The areas
highlighted in red and orange indicate significant changes in SAR width, which in our case
are areas with steep slopes and in proximity to the river network, where soil saturation and
runoff are more intense.
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By combining the four indices, the Rapid Landslide Detection map has been produced
based on a five-level probability scheme utilizing the RLD model (Figure 7a). The pattern
highlights the important role of topography and proximity to river networks in determining
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landslide susceptibility, with the most severe impacts expected in the steeper, more erosion-
prone areas.
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In the landslide detection phase, we analyzed a buffered zone extending 50 m from the
road to verify the effectiveness of the developed methodology (Figure 7b). This approach
was adopted because our field investigations were conducted along the road extent, making
the immediate surroundings particularly relevant for evaluating landslide occurrences.
By focusing on this buffer zone, we were able to ensure that the methods were tested in
an area closely related to the road network, which is a critical infrastructure subject to
landslide risks. This analysis allowed us to assess how well the methodology performs in
detecting landslides in proximity to the road, where such events are most likely to cause
significant disruption.

4.3. Validation–Ground Truth–Field Surveys

The results of our analysis, as shown in Table 5, categorize the study area into five
Landslide Detection Potential classes: Very Low (VLP), Low (LP), Moderate (MP), High
(HP), and Very High Potential (VHP). Each class is characterized by its percentage of the
total area, the percentage of landslides detected within that area, and the relative frequency
of ground truth landslides.

Table 5. Landslide Detection Potential Classes–Relative Frequency of Ground Truth Landslides.

Landslide Detection
Potential Area (%) Landslide

Percentage (%)
Relative Density of Ground

Truth Landslides (%)

Very Low Potential (VLP) 21.40 3.33 2.38
Low Potential (LP) 25.21 11.67 7.07

Moderate Potential (MP) 22.18 21.67 14.93
High Potential (HP) 20.21 30.00 22.69

Very High Potential (VHP) 10.99 33.33 46.36

The VHP class, covering 21.40% of the area, contained 3.33% of the detected landslides,
with a relative frequency of 2.38%. The LP class, occupying 25.21% of the area, accounted
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for 11.67% of the landslides, with a relative frequency of 7.07%. The MP class covered
22.18% of the area and had 21.67% of the landslides, with a relative frequency of 14.93%.
The HP class, representing 20.21% of the area, showed a substantial increase, with 30.00%
of the landslides and a relative frequency of 22.69%. Finally, the VHP class, which occupied
only 10.99% of the area, had the highest concentration of landslides, with 33.33% of the
total, and a relative frequency of 46.36%.

These results indicate a clear correlation between higher detection potential classes
and the relative density of actual landslides, with landslides being more concentrated in
areas classified as having high or very high potential.

Regarding the validation of the improvement achieved by combining the three models,
it was found that the AUC value for the RLD-WofE model (0.758) is higher than that of the
RLD-Slope model (0.719) and the RLD model (0.696), indicating improved performance in
landslide detection when incorporating the WofE methodology (Figure 8). Table 6 shows
the AUC values, the standard errors, and the 95% confidence intervals for the three models.
Accordingly, during the relative pairwise comparison of the ROC curves between the RLD
and RLD-WofE models, it was found that the improvement in detection performance using
the RLD-WofE model is statistically significant, since the value of the z-statistic metric
is 2.044, with a significance level of p = 0.041 (Table 7). A similar statistically significant
difference has been observed between the RLD and RLD-Slope model, and the RLD-Slope
and RLD-WofE model.
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Table 6. AUC Metrics of RLD, RLD-Slope, and RLD-WofE models.

Models AUC Values Standard Error 95% Confidence
Interval

RLD 0.696 0.0479 0.606 to 0.777
RLD-Slope 0.719 0.0421 0.621 to 0.803
RLD-WofE 0.758 0.0441 0.671 to 0.831

Table 7. Pairwise comparison of ROC curves of RLD, RLD-Slope, and RLD-WofE models.

Statistical Metrics RLD–RLD-WofE RLD–RLD-Slope RLD-Slope–RLD-
WofE

Difference Between
Areas 0.0614 0.0233 0.0620

Standard Error 0.0300 0.0167 0.0283
95% Confidence

Interval 0.00253 to 0.120 0.00280 to 0.0722 −0.0065 to 0.1175

z Statistic 2.044 2.118 2.191
Significance Level p = 0.041 p = 0.034 p = 0.029

Furthermore, it was found (Table 8) that the RLD-WofE model achieves the highest
precision (0.680), followed by the RLD-Slope model (0.651) and the RLD model (0.642), indi-
cating a reduced number of false positives, which enhances the reliability of the predictions.
Regarding the recall, the RLD-WofE model achieves higher values (0.760) compared to that
achieved by the RLD-Slope model (0.696) and the RLD model (0.664). The F1 score, which
balances precision and recall, is also higher for the RLD-WofE model (0.717), confirming
the overall better performance in identifying landslide-prone areas, maintaining fewer false
positives and ensuring comprehensive detection.

Table 8. Statistical metrics.

Models Precision Recall F1-Score

RLD 0.642 0.664 0.653
RLD-Slope 0.651 0.696 0.673
RLD-WofE 0.680 0.760 0.717

The following figures (Figures 9 and 10) illustrate the results of our field investiga-
tion, where we identified landslide occurrences along the road network within the study
area. The central map highlights the locations of observed landslides, represented by red
marks, corresponding to actual sites examined during the field trip. Each of the images
surrounding the map provides visual documentation of the landslides at specific locations,
further validating the accuracy of our remote sensing and landslide detection methods.
These photos offer a clear representation of the various types of landslide activity, including
slope failures and erosion near infrastructure, confirming the effectiveness of the applied
detection models and reinforcing the importance of monitoring these high-risk zones.



Land 2025, 14, 21 22 of 30

Land 2025, 14, x FOR PEER REVIEW 23 of 31 
 

 

 

Figure 9. Field surveys—ground truth evidence—high and very high susceptibility zones. 

 

Figure 9. Field surveys—ground truth evidence—high and very high susceptibility zones.
Land 2025, 14, x FOR PEER REVIEW 24 of 31 
 

 

Figure 10. Field surveys—ground truth evidence—high and very high susceptibility zones. 

5. Discussion 
As mentioned by Ray et al. [95], traditional methods for studying the manifestation 

and the evolution of landslides, such as analyzing aerial photographs and conducting ex-
tensive field surveys, are time-consuming and costly. On the other hand, timely and ac-
curate information about landslide occurrences and their evolution is critical not only dur-
ing the emergency phase, allowing for better crisis management by decision-makers, but 
also in the recovery phase. To address these challenges and provide faster, more accurate 
insights into landslide dynamics, new technologies have emerged that offer more efficient 
methods of data collection and analysis. Advanced remote sensing technologies, which 
may offer high spatial and temporal resolution, make landslide studies more efficient and 
scalable. A recent study by Peters et al. [39] emphasizes the significant potential of using 
advanced remote sensing and machine learning techniques to enhance landslide detec-
tion, suggesting further improvements through finer spatial resolution data, more precise 
landslide inventory boundaries, and additional data layers such as soil moisture and ge-
ological structure. 

Our study introduces a cloud-based application of satellite-based remote sensing, 
implemented in the GEE platform using optical and SAR imagery. The success of imple-
menting the GEE platform in landslide detection lies in its robust computational power 
hosted in the cloud, allowing for the efficient processing of large-scale geospatial datasets 
[41]. Similarly, Singh et al. [96] report that the ability to handle large datasets and perform 
complex computations quickly made the GEE platform an ideal tool for conducting rapid, 
accurate assessments of landslide susceptibility and detection following extreme natural 
phenomena. Our methodology goes beyond simple remote sensing analysis by integrat-
ing these indices with the outcomes of a WofE model. The WofE model, a widely utilized 

Figure 10. Field surveys—ground truth evidence—high and very high susceptibility zones.



Land 2025, 14, 21 23 of 30

5. Discussion
As mentioned by Ray et al. [95], traditional methods for studying the manifestation

and the evolution of landslides, such as analyzing aerial photographs and conducting
extensive field surveys, are time-consuming and costly. On the other hand, timely and
accurate information about landslide occurrences and their evolution is critical not only
during the emergency phase, allowing for better crisis management by decision-makers,
but also in the recovery phase. To address these challenges and provide faster, more
accurate insights into landslide dynamics, new technologies have emerged that offer more
efficient methods of data collection and analysis. Advanced remote sensing technologies,
which may offer high spatial and temporal resolution, make landslide studies more efficient
and scalable. A recent study by Peters et al. [39] emphasizes the significant potential of
using advanced remote sensing and machine learning techniques to enhance landslide
detection, suggesting further improvements through finer spatial resolution data, more
precise landslide inventory boundaries, and additional data layers such as soil moisture
and geological structure.

Our study introduces a cloud-based application of satellite-based remote sensing, im-
plemented in the GEE platform using optical and SAR imagery. The success of implement-
ing the GEE platform in landslide detection lies in its robust computational power hosted in
the cloud, allowing for the efficient processing of large-scale geospatial datasets [41]. Simi-
larly, Singh et al. [96] report that the ability to handle large datasets and perform complex
computations quickly made the GEE platform an ideal tool for conducting rapid, accurate
assessments of landslide susceptibility and detection following extreme natural phenomena.
Our methodology goes beyond simple remote sensing analysis by integrating these indices
with the outcomes of a WofE model. The WofE model, a widely utilized approach for
analyzing landslide susceptibility, allowed us to incorporate geomorphological variables,
such as slope, aspect, plan and profile curvature, and stream power index, to identify
regions that are characterized by high and very high susceptibility values. By combining
these susceptibility maps with changes in NDVI, NDMI, BSI, and SAR amplitude ratio, we
were able to mask out areas of low susceptibility, focusing our analysis on regions more
likely to experience landslides.

Concerning the use of the optical satellite indices, NDVI, NDMI, and BSI enhanced
this analysis by offering additional layers of information on vegetation health, soil moisture,
and exposed soil areas, respectively. NDVI was found to be a significant parameter for
monitoring vegetation density, which can serve as an indicator of underlying slope surface
instability. NDMI provides insights into moisture content in vegetation and the upper
soil layer, a crucial factor in assessing landslide risk post-rainfall. From a hydrogeological
perspective, both groundwater and surface water infiltrate the loose materials of the soil
mantle, weathering zone, and colluvium. This infiltration increases the pore pressure and
decreases the shear strength of these geological formations, leading to their failure.

In our study, the BSI successfully identified areas where vegetation had been stripped
away, exposing potentially unstable bare soil surfaces. However, as reported by Ariza
et al. [18], the BSI can serve as a complementary method to support traditional interfero-
metric SAR analysis. By incorporating additional remote sensing indices, such as NDVI
or SAVI (Soil-Adjusted Vegetation Index), using pre- and post-event imagery, the effects
of vegetation change can be mitigated. This approach leads to improved BSI values more
accurately linked to landslide-prone areas.

In reference to the SAR imagery, our outcomes align with Mondini et al. [15], who
report that SAR amplitude changes, as seen in pre- and post-event Sentinel-1 images, can
effectively detect landslides in various terrains and conditions. In most cases, the observed
decrease in SAR amplitude was attributed to landslide scars and damage, which reduce
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backscattering reflectance relative to the pre-failure ground surface [44]. However, we also
identified numerous instances where SAR amplitude changes were not related to landslides.
Often, these changes occurred in farmlands, where regular ground surface alterations and
significant variations in water content due to flooding can affect SAR reflectivity [35,36,44].
This highlights the importance of careful interpretation of SAR data to distinguish between
true landslide events and other surface changes.

The results of the WofE landslide susceptibility map offer detailed insights into how
various terrain and hydrological factors influence landslide occurrence, with notable pat-
terns emerging across different variables. As expected, steeper slopes show a higher
susceptibility to landslides, with slopes greater than 35◦ having the highest positive con-
trast (C = 0.164). This confirms that steeper gradients are more prone to landslides due to
increased gravitational stress. In contrast, gentler slopes (0◦–13◦) exhibit negative contrast
values (C = −0.480), indicating low landslide susceptibility in flatter areas. Southern-
facing slopes, especially those facing southeast (C = 0.825) and south (C = 0.788), exhibit
significantly higher susceptibility, likely due to increased solar radiation that accelerates
weathering and drying, making the soil more unstable. In contrast, northwest-facing slopes
(C = −0.638) show the least susceptibility, perhaps due to lower solar radiation and reduced
weathering effects.

Plan curvature results indicate that concave surfaces (<−0.2) have a positive correlation
with landslides (C = 0.169), suggesting that these areas accumulate water, contributing
to increased erosion and instability. Conversely, profile curvature shows that convex
areas (>0.2) are slightly more susceptible (C = 0.103), potentially due to surface runoff
accumulation that weakens the slope material.

Areas with moderate to high SPI values (6.610–12.818) show the strongest positive
correlation (C = 0.849), indicating that regions with significant water flow and erosion
energy are more prone to landslides. Extremely high SPI values (>109.296), however,
exhibit negative contrast (C = −0.266), suggesting that while erosion is important, too
much flow energy might not correlate directly with landslide occurrences, possibly due to
changes in terrain characteristics.

Overall, the developed methodology demonstrated satisfactory detection capability,
as 69% of the relative density of landslides recorded during an extensive field survey
along the main road network in the research area were correctly identified within regions
characterized by high to very high potential. The ROC curve analysis further confirmed
the detection capability when compared to the performance of the other models. The
RLD-WofE model achieved an AUC value of 0.758, outperforming the RLD model, which
had an AUC value of 0.696, and the RLD-Slope model, which reached a value of 0.719.
The pairwise comparison of the ROC curves revealed a statistically significant difference
between all models, confirming the improved performance of the RLD-WofE model in
accurately detecting landslide-prone areas. Furthermore, considering the performance
of the proposed model in reducing false positives, the RLD-WofE model was better, as
evidenced by its higher precision (0.680) compared to the RLD-Slope model (0.651) and
the RLD model (0.642). The significant increase in recall, as reflected in the higher value
(0.760, highlights the better performance of the RLD-WofE model in detecting real land-
slides overall. Correspondingly, the higher F1 score (0.717) further confirms the balanced
performance of the RLD-WofE model.

Regarding the use of the WofE model for landslide susceptibility assessment, its effec-
tiveness was demonstrated in reducing false positive cases identified in the first phase of the
developed methodology. While Machine Learning methods, including deep learning, have
shown high accuracy in landslide susceptibility assessment and, in some cases, landslide
detection using high-resolution satellite imagery, their application often demands extensive
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preparation. A critical requirement for these models is the creation of balanced datasets
comprising both landslide and non-landslide cases, which can be challenging in regions
with limited data availability or uniform geological and environmental characteristics. In
contrast, the WofE model employed in this study does not rely on non-landslide data,
making it particularly well-suited for areas such as our study region, where all observed
landslide events occurred within a single geological formation, and historical landslide
data were readily available. This practical and adaptable approach allows for rapid im-
plementation, ensuring effectiveness in time-sensitive scenarios, such as those following
extreme rainfall events.

However, certain limitations must be acknowledged. First, the accuracy of the land-
slide detection is dependent on the spatial and temporal resolution of the satellite data,
which may miss smaller or rapidly evolving landslides. Notti et al. [41] report that in their
GEE-based landslide detection model, the success rate of detection drops 20% regarding
small landslides (less than 100 m2). Additionally, the effectiveness of the indices used,
such as NDVI and NDMI, can be influenced by vegetation regrowth, which may obscure
signs of landslides in post-event imagery. Another serious drawback is the difference that
may be crucial in the land use cover. In our case, the methodology works well in areas
of forest and less accurate in cultivated areas. Furthermore, the integration of the Weight
of Evidence model relies on historical landslide data, which may not always be available
or sufficiently detailed for certain regions, potentially limiting the transferability of the
methodology to areas with less robust historical data. Finally, while the use of SAR and
optical data provided robust results, atmospheric interference and dense cloud cover can
occasionally limit the quality of optical imagery [61].

Despite these limitations, the methodology presents a valuable tool for rapid, large-
scale landslide detection, especially in regions where field surveys are impractical or
infeasible. Future work could focus on addressing the limitations encountered in this study
and further refining the methodology. One potential improvement lies in incorporating
higher-resolution satellite imagery to enhance the detection of smaller and more localized
landslides, which are often missed in lower-resolution data. Additionally, integrating
machine learning techniques, such as deep learning models, could help automate the
classification process, improve the detection accuracy, and reduce reliance on manually
defined thresholds for indices like NDVI, NDMI, and BSI. In particular, in areas with
adequate data availability, the integration of deep learning models could be explored to
automate the classification process and improve detection accuracy. In areas where the
formation of a balanced database is feasible in combination with the utilization of high-
resolution datasets for landslide detection, the application of deep learning techniques may
exceed the performance of traditional methods. Finally, expanding the methodology to
other regions with varying climates, geological conditions, and topography could enhance
its adaptability and generalizability. This would allow for the validation of the approach
across different environments and ensure its effectiveness on a global scale.

6. Conclusions
The current study successfully demonstrates the potential of integrating satellite-

based optical and SAR data, processed through the GEE platform, for the rapid detection
of landslides caused by extreme rainfall events. By utilizing NDVI, NDMI, BSI, and SAR
amplitude ratio, we were able to efficiently assess vegetation health, soil moisture, and
exposed soil conditions before and after the event. The combined analysis of SAR amplitude,
NDVI, NDMI, and BSI index effectively identified potential landslide zones in the study
area following an extreme rainfall event. The steepest slopes, particularly those exhibiting
significant SAR amplitude changes and a notable increase in the BSI, suggest terrain
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disturbances indicative of landslides. Further validation was provided by the observed
decrease in vegetation (NDVI) and potential moisture loss (NDMI) in these regions. The
integration of these indices with the WofE model, based on morphological parameters such
as slope, aspect, and curvature, provided a robust framework for identifying areas with high
and very high landslide susceptibility. Our methodology, applied to the real-world scenario
of Storm Daniel in central Greece, yielded significant insights into landslide-prone regions.
The detection of landslide events with a relative density of 69% within regions characterized
as having high to very high susceptibility underscores the practical applicability of the
approach. Furthermore, the use of pre- and post-event imagery, coupled with the WofE
model, allowed for an accurate focus on regions where landslides were most likely to
occur, minimizing false positives and improving detection accuracy. Despite the limitations
of the developed methodology, which include the ability to detect small landslides (less
than 100 m2) and the dependence on the availability of historical data related to landslide
phenomena in the study area, the methodology demonstrates significant potential for
rapid, large-scale landslide detection. Possible future improvements of the methodology,
such as the integration of higher resolution satellite images as well as the use of advanced
machine learning techniques, could improve the detection accuracy. The possibility of
extending the approach to different study areas where different geoenvironmental and
climatic conditions prevail will also be important and will further validate the adaptability
and global applicability of the developed methodology. The successful application of this
methodology during Storm Daniel highlights its potential to significantly improve disaster
management strategies in regions vulnerable to extreme weather events, offering a practical
solution for timely response and mitigation efforts.
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