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Abstract: Ecosystem services (ESs) assessment plays a significant role in managing ecologi-
cal resources. Uncovering the complex interdependencies between ESs and their key drivers
is an essential preliminary step toward the coordinated management of ESs. Currently,
a major challenge lies in precisely evaluating trade-offs and synergies among ESs across
different spatial and temporal scales, particularly in capturing their dynamic evolution and
determinants. This study focuses on the Tuo River Basin in China, quantifying four key ESs,
namely, habitat quality (HQ), nitrogen export (NE), soil conservation (SC), and water yield
(WY), and assessing their interactions from 2000 to 2020 at both grid and county scales.
Moreover, this study explored the social-ecological driving factors influencing these ESs.
The results showed that (1) SC and WY in the region exhibited an increasing trend, HQ and
NE declined, and ESs at the county scale showed a central collapse feature; (2) synergies
between HQ–NE, HQ–WY, and SC–WY pairs generally increased, the relationships be-
tween NE–SC and NE–WY pairs showed slight fluctuations, and there was a decline in the
synergies within the HQ–SC pair; and (3) the interplay of all drivers positively affected ESs,
with land use/land cover being the most significant and GDP exerting a lower influence.
ES assessment results exhibited distinctive characteristics at two scales. Based on these find-
ings, management strategies that incorporate both scales and cross policy boundaries are
proposed to effectively meet management objectives. These results can facilitate improved
synergy between regional ecological protection and economic development.

Keywords: ecosystem services; scale effect; social–ecological driver; tradeoffs/synergies

1. Introduction
As the social economy progresses and the pace of urbanization rapidly increases, the

use of ecological resources by humans is increasing. Concurrently, global warming, water
shortages, and other environmental issues have become increasingly prevalent, placing the
ecological environment under serious threat [1–3]. Nowadays, the contradiction between
limited ecological resources and economic development has become one of the most
pressing global challenges. Ecosystem services (ESs), which provide various benefits that
humans derive, both directly and indirectly, from the structures, functions, and processes
of ecosystems, play a significant role in addressing this challenge. ESs serve as a major
link between social systems and natural ecosystems [4–6]. Optimizing the use of ESs can

Land 2025, 14, 103 https://doi.org/10.3390/land14010103

https://doi.org/10.3390/land14010103
https://doi.org/10.3390/land14010103
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-6460-2532
https://orcid.org/0009-0008-7200-6467
https://doi.org/10.3390/land14010103
https://www.mdpi.com/article/10.3390/land14010103?type=check_update&version=3


Land 2025, 14, 103 2 of 21

foster synergy between ecological conservation and economic growth. However, nearly
60% of global ESs are continuously deteriorating and weakening through land degradation
and biodiversity loss [7], mainly caused by deforestation, urban expansion, and industrial
development. The management of ESs is a substantial determinant of the status of these
services, significantly influenced by a confluence of intrinsic characteristics and extrinsic
environmental factors. Therefore, grasping the interactions between ESs and their social–
ecological driving factors is a prerequisite for enhancing the scientific management of ESs
to achieve the most beneficial use of ESs [8–11].

Understanding and exploring the interrelationships among ESs is fundamental to their
effective management. These relationships, however, are inherently complex, influenced by
various factors including the diversity and spatio-temporal heterogeneity of ESs, environ-
mental changes, and policy interventions [12]. These relationships are primarily expressed
as trade-offs and synergies [13]. Trade-offs occur when increasing one ES leads to a decrease
in another, showing competition, whereas synergies happen when multiple ESs improve
together, showing cooperation [14]. Synergistic relationships are usually considered posi-
tive, indicating a relatively balanced and healthy state with higher overall benefits from the
ES [15,16]. Correlation analysis currently stands as a prevalent method for quantifying the
general trade-offs and synergies among ESs [17,18]. Geographically weighted regression
(GWR), which accounts for the local effects of spatial entities, is commonly used to capture
the spatially explicit dynamics of interactions among ESs [19]. Numerous studies have
focused on analyzing these interactions. Li et al. investigated the interrelationships between
ESs in the Yinchuan Basin from 1993 to 2014 for land use planning [20]. Shao et al. assessed
the trade-offs and synergies between ESs and their driving mechanisms in the Yellow River
Basin [21]. Unfortunately, these prior studies have been constrained to a single spatial
scale [22,23]. They cannot elucidate the complexity of the interactions between ESs, because
they change their direction and strength with the joint changes in different temporal and
spatial scales [24].

The Tuo River Basin (TRB) acts as a significant ecological buffer in the Yangtze River
and connects the most important economic core cities—Chengdu City and Chongqing
City within the Chengdu–Chongqing Urban Agglomeration, regarded as the fourth pillar
of economic development in China. The region is prominent for advancing high-level
ecological conservation and high-quality economic growth in the upper reaches of the
Yangtze River. However, it faces significant challenges, including an exceptionally high
environmental load and a significant deficit of ecological resources [25]. Its per capita water
resources are only one quarter of the average in the Yangtze River basin. Despite having
only 3.5% of Sichuan Province’s water resources, the region supports approximately a
quarter of the population and contributes a third of the GDP [26]. Furthermore, it is afflicted
with a considerable degree of pollution, largely attributable to the application of manure,
pesticides, and fertilizers [27]. Although it has introduced a variety of environmental
protection measures, the implementation among counties is not sufficiently coordinated.
ESs have significant differences in different counties, and the relationship between ESs
here is very complex. In 2020, the Chengdu–Chongqing Twin Cities Economic Circle
Strategy rose to the National Strategy, and the development of TRB was on a new upswing;
however, the discrepancy between ecological conservation and economic growth is growing
more pronounced.

This study considers the research background and addresses the distinctive topo-
graphical features and critical ecological challenges of the TRB. It conducted a dynamic
evaluation of four representative ESs over the period from 2000 to 2020. Furthermore, it
systematically analyzed the spatial heterogeneity of social–ecological driving factors influ-
encing the distribution of ESs, comparing their driving intensities across grid and county
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scales. The primary research objectives are as follows: (1) to reveal the shifts in ESs within
the TRB and the trade-offs/synergies among them; (2) to identify the principal drivers
of spatio-temporal heterogeneity of ESs; (3) to evaluate the effects of different counties’
policies on ESs; and (4) to provide reference suggestions for regional management policies
and enhance synergies among ESs to achieve the most beneficial use of ESs. This study
contributes to promoting high-level ecological conservation and high-quality economic
growth in the Upper Yangtze River Economic Zone, while also providing insights for
managing other watersheds.

2. Materials and Methods
2.1. Study Area

The Tuo River, located in the east-central Sichuan Province of China, has its source in
Qingping Town, Mianzhu City. It flows in southeast for about 638 km through an area of
approximately 32,900 km2. The geographical coordinates of the area are 103◦38′~105◦50′ E
and 27◦50′~31◦41′ N. The river flows through seven large and medium-sized cities, including
Deyang, Chengdu, Ziyang, Meishan, Neijiang, Zigong, and Luzhou City. In accordance with
the Overall Program in TRB [28] and based on the principle that the watershed area exceeds
70% of the total administrative area, 27 counties from seven large and medium-sized cities
were selected for this study (Figure 1).
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Figure 1. Study area.

The region features a well-developed hydrological network, with the upper reaches
connected to the neighboring Min River system, while the middle and lower reaches ex-
hibit a symmetrical dendritic pattern of tributaries and the main watercourse, reflecting
a well-organized fluvial system. The terrain is diverse and complex, transitioning from
mountainous regions in the northwest to plains and hilly landscapes in the southeast, with
significant variations in topographic relief. The region is also home to several mountain
ranges, including the Minshan Mountains, Longmen Mountains, and Longquan Moun-
tains. The region’s vegetation is predominantly subtropical evergreen broad-leaved forests,
though the forest cover is relatively low at 6.1%. The regional climate transitions from a
plateau monsoon type in the northern areas to a subtropical monsoon climate in the south.
Precipitation within the region averages 1010 mm annually, with a gradual increase from
the northern to the southern parts.
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In 2020, the TRB had a total population of 21,008,900, of whom 18,686,600 are residents.
It is an important industrial agglomeration and agricultural products security base. The
GDP was 1.11 trillion CNY, with primary production accounting for only 11.85% and
tertiary industries accounting for 46.74% [26]. However, it faces significant environmental
challenges, and the ostensible discrepancy between ecological preservation and economic
advancement necessitates our attention.

2.2. Data Sources and Processing

This study employed a multi-source dataset to assess the spatial distribution of ESs
(Table 1), and all raster datasets, which varied in their original spatial resolutions, were
uniformly resampled to a standard resolution of 30 m × 30 m. The land use/land cover
(LULC) data were stratified into six distinct thematic classes: crop land, forest, grassland,
water body, barren land, and built-up area. Furthermore, the spatial analysis in this study
utilized the WGS_1984_UTM_Zone_48N projection coordinate system for all data to ensure
consistency and accuracy in the evaluation.

Table 1. Summary of the primary data.

Category Data Year Spatial
Resolution Data Source

Basic data Administrative
boundary 2020 -

National Earth System Science Data
Center (http://www.geodata.cn,

accessed on 27 February 2024)

Hydrological
data Water data 2017 -

National Platform for Common
GeoSpatial Information Services
(https://www.tianditu.gov.cn/,
accessed on 27 February 2024)

Land dataset Land use/land cover 2000, 2010, 2020 30 m Annual China Land Cover Dataset
from Wuhan University [29]

Road data Road 2000, 2010, 2020 -
National Earth System Science Data

Center (http://www.geodata.cn,
accessed on 1 March 2024)

Topographic
data Digital elevation model 2020 30 m

Geospatial Data Cloud
(https://www.gscloud.cn/, accessed

on 27 February 2024)

Soil charac-
teristics China Soil Database 1995 1 km

National Tibetan Plateau Data Center.
(https://data.tpdc.ac.cn/, accessed on

26 March 2024)

Climate data

Annual average
temperature

2000, 2010, 2020 1 km
National Tibetan Plateau Data Center.
(https://data.tpdc.ac.cn/, accessed on

26 March 2024)

Annual average
precipitation

Annual average
potential

evapotranspiration
Annual sunshine hours 2000, 2010, 2020 1 km Resource and Environmental Science

Data Platform
(https://www.resdc.cn/, accessed on

8 June 2024)
Socio-

economic
data

GDP 2000, 2010, 2020 1 km

Population density 2000, 2010, 2020 1 km
Oak Ridge National Laboratory

(https://landscan.ornl.gov/, accessed
on 8 June 2024)

http://www.geodata.cn
https://www.tianditu.gov.cn/
http://www.geodata.cn
https://www.gscloud.cn/
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
https://www.resdc.cn/
https://landscan.ornl.gov/
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2.3. Method
2.3.1. ESs Assessment

In this study, the criteria for the ESs were primarily informed by three key consid-
erations: (1) alignment with the Millennium Ecosystem Assessment and previous stud-
ies [30,31]; (2) representativeness of ESs with watershed characteristics and concern for
ecological protection and economic development conditions of the region [25]; (3) avail-
ability and practicality of data. We selected four typical ESs, namely, habitat quality (HQ),
nitrogen export (NE), soil conservation (SC), and water yield (WY). Among them, HQ
(Tables A1 and A2) is used to assess the suitability of the living environment [32], and it can
visually encapsulate the ecological environment’s present condition. NE (Table A3) is in-
dicative of regional water quality [33], and lower NE indicates a stronger water purification
capacity and a higher quality of water environment [34]. It is significantly influenced by
pollutant emissions and the use of fertilizers and pesticides, which can reflect the current
situation of agriculture and industry. SC (Table A4) plays a significant role in maintaining a
healthy agricultural ecosystem [35] and is associated with regional vegetation cover. WY
(Table A5) is an important indicator of ecological water use and can be used for irriga-
tion supply [36]. It is also associated with man-made land surface and vegetation. ESs
were initially quantified at the grid scale for the years 2000, 2010, and 2020. Subsequently,
the mean values of these services were aggregated to the county scale using the Zonal
Statistics toolbox within the ArcGIS 10.5 platform. All the ESs were calculated using the
InVEST 3.14.0 model, and detailed ES assessment parameter settings are presented in
Appendix A Tables A1–A5.

2.3.2. Quantification of Trade-Offs/Synergies Among ESs

Correlation analysis is a key tool for quantifying the intricate dynamics between
ESs [37]. Negative correlations between ESs often signify trade-offs, whereas positive
correlations suggest synergistic relationships. We employed Pearson correlation analysis
at two scales across three key years, namely, 2000, 2010, and 2020, using the “corrplot”
package in R 4.4.0 software [38].

Beyond the insights gleaned from correlation analysis regarding the general trade-offs
and synergies, we deployed the GWR model to delve into the spatial heterogeneity within
these interactions. The concurrent influence of a single driving factor on various ESs is
a key determinant of the trade-offs or synergies observed among them. Accordingly, the
spatial variability among the driving factors leads to a corresponding spatial variability in
the trade-offs and synergies of these services [39]. The GWR model adapts the conventional
regression framework to test for spatial non-stationarity [10]. In the model configuration,
we strategically employed ES variables exclusively as either independent variables or
dependent variables, thereby avoiding potential multicollinearity issues among the ex-
planatory factors. This study used the ‘GW model’ package [40] within the R 4.4.0 software
environment to perform the GWR analyses at both grid and county scales for the years
2000, 2010, and 2020. The GWR model’s calculation formula is as follows:

yi = β0(ui, vi) +
p

∑ βk
k=1

(ui, vi)xjk + εi (1)
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In Equation (1), yi is the ES at position i. p indicates the total count of independent
variables considered in the model. xjk refers to the remaining ESs at position i. (ui, vi)

signifies the geographic coordinates of the sampling point i. β0(ui, vi) is the local intercept
term. βk(ui, vi) corresponds to the regression coefficient associated with each independent
variable. εi represents the error term.

2.3.3. Critical Driver Analysis of ESs

To delve into the influence of driving factors on the spatial distribution of ESs, we
employed GeoDetector (GD) analysis to assess the relative importance of potential social–
ecological determinants. Our selection of indicators was guided by the following cri-
teria: (1) based on previous research [38,41]; (2) considers the current ecological and
economic conditions of the area; and (3) the widespread use and interpretability of the
indicators for both researchers and planners [42]. Consequently, we identified eight repre-
sentative driving factors as variables: LULC, GDP, population density (PD), precipitation
(PRE), temperature (TEM), evapotranspiration (EVP), sunlight (SUN), and the digital el-
evation model (DEM). ESs were used as dependent variables, and the ‘GD’ package in
R 4.4.0 software was utilized for the geographical detector analysis.

The GD is an analytical instrument specifically designed to identify spatial hetero-
geneity and to expose the key factors that drive it. The fundamental postulate of this
approach is that there should be a congruence in the spatial distributions of an independent
variable and a dependent variable if the former significantly influences the latter [43]. The
factor detector component of the GD employs the q value to gauge the degree to which a
specific driving factor accounts for the spatial heterogeneity of ESs. This is achieved by
comparing the variance in the factor within a localized subregion against its variance when
considered over the entire region, thereby quantifying the factor’s influence on the spatial
heterogeneity of ESs [44]. The calculation formula is as follows:

q = 1 −

L
∑

h=1
Nhσ2

h

Nσ2 (2)

In Equation (2), the q value quantifies the explanatory power of driving factors, where
q ranges from 0 to 1. An increased q value signifies a greater impact of the factor. L refers to
the total count of administrative units within the study area. h signifies the stratum of the
driving factor. N is the total number of sample units, and Nh represents the size of layer h.
Similarly, σ2 is the total variance in the region, while σ2

h represents the variance in layer h.

3. Results
3.1. Spatio-Temporal Variations of LULC

LULC types in this region include crop land, forest, grassland, water body, barren land,
and built-up area (Figure 2). Cropland is the predominant LULC type, covering approxi-
mately 80% of the region, while barren land has the smallest area, primarily found in the
high-altitude northern regions. In the northern mountainous regions and the southwestern
hilly areas, forests and grasslands are predominantly found, with notable concentrations
in the Longmen and Longquan Mountains. The main water body is the Tuo River, which
traverses the area from north to south. Built-up areas are primarily located along the
Tuo River, with a significant concentration observed in the northern region near Chengdu
City (Figure 2).
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Regarding LULC changes, the TRB has experienced shifts in various LULC types.
The area of crop land demonstrated a decreasing trend; conversely, other LULC types,
especially the built-up area, experienced a rise (Figure 2). Between the years 2000 and
2020 the built-up area notably expanded by 757.99 km2, almost tripling in size and mainly
replacing crop land. There was significant conversion between forest and crop land, and
then more crop land was converted to forest in the period from 2010–2020. The total forest
area increased by 564.53 km2, representing a growth of 20.67%. While the total crop land
area decreased by 1364.09 km2, the overall reduction was 4.33%. The reduction in crop
land was more pronounced in the north than in the south. Other LULC types exhibited
relatively minor fluctuations. Overall, the TRB showed more significant changes in the
latter decade compared to the former decade (Figure A1).
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3.2. Spatio-Temporal Variations in ESs

The findings revealed that ESs within the TRB exhibited spatio-temporal heterogeneity,
yet their spatial configurations were relatively consistent over time (Figure 3). Regions
with high ES provision were chiefly located in the northern mountainous areas and the
southwestern hilly regions, which are characterized by high vegetation cover dominated
by forest and grassland. HQ and SC values were generally high, while the low NE values
indicated better water purification capacity in these regions. However, WY values were
very low. HQ and NE showed notably lower values in specific northern and central areas
subjected to significant human disturbance. Additionally, at the county level, there was
an observable trend of declining ESs from the peripheral counties toward the central
counties (Figure 3).

From 2000 to 2020, the ESs in the TRB showed an improving trend. There was a
significant surge in SC and WY, with the most substantial increase occurring in SC, where
the average value rose from 3870.07 t/km2 to 5286.49 t/km2, representing a growth of
36.59%. At the same time, the growth of WY was 27.38%, with the average value increasing
from 710.90 mm to 905.53 mm. Additionally, the water purification capacity also increased,
with the average NE value decreasing from 625.06 kg/km2 to 597.95 kg/km2. However,
this could also be a temporary effect of rainy years. From 2000 to 2020, the annual average
precipitation in the region increased, meaning that the NE decrease might be an effect of
dilution, as more water usually also means clearer water. There was a slight decrease in
HQ, with the average value decreasing from 0.3739 to 0.3558. Spatially, the changes in
ESs in the TRB were found to be relatively consistent across both spatial scales examined
(Figure 4). At the grid scale, all ESs exhibited significant changes in areas characterized
by forest and grassland, such as the northern Longmen Mountains, Longquan Mountains,
and southwestern hilly regions. In the regions dominated by built-up areas, particularly
in the north and central parts, there was a notable decrease in the values of HQ, NE, and
WY. Additionally, HQ values showed a linear decrease in some central areas where road
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networks are concentrated. At the county scale, the reduction in ESs was more pronounced
in the northern counties, particularly those in close proximity to the city of Chengdu, such
as Xindu County, Longquanyi County, and Pengzhou County (Figure 4). Furthermore,
the HQ of Jianyang County also showed a considerable reduction from 2010 to 2020 in
comparison to the preceding decade. Conversely, the HQ and water purification capacity
of several counties in Zigong City have demonstrated an upward trajectory. Moreover, the
overall NE values increased in the downstream counties, while a decrease was observed in
the northern counties. In general, the ESs in the TRB demonstrated an upward trajectory
over the past two decades (Figure 4). However, there was a notable decline in the ESs from
2010 to 2020, particularly in the northern region.
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3.3. Trade-Offs/Synergies Between ESs
3.3.1. Correlation Analysis

Overall, ES pairs generally exhibited statistically significant correlations (Figure 5). At
the grid scale, a total of six correlations showed significant indices with p-values less than
0.05. At the county scale, most ES pairs had p-values less than 0.05. In general, a significant
proportion of the ES pairs successfully met the criteria of the significance test.

Consistent correlations were observed across the two spatial scales throughout the
20-year period. It was determined that only the HQ–SC and NE–WY pairs exhibited a
positive correlation, whereas the other four ES pairs were negatively correlated. It may
be posited that a high-quality ecological environment is enhanced by healthy vegetation
and soil structure, where plant roots effectively fix soil and reduce erosion. However, the
observed synergistic relationship between NE and WY may be attributed to the increased
water production accompanied by surface runoff, which brings out more nitrogen fertilizer.
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Between 2000 and 2020, most ES pairs exhibited a rising trend in synergy, but the
synergy of the SC–HQ pair, which was originally synergistic, decreased. At the grid
scale, the increase in synergy was more moderate. The largest decrease in the trade-off
relationship was observed in the HQ–WY pair, with a decrease of 32%, and the smallest
decrease was seen in the NE–SC pair, with a decrease of only 11%. At the county scale, the
SC–WY pair exhibited the greatest decline in the trade-off relationship, with a decrease of
71%. Even the smallest drop in the HQ–NE pair represented a decrease of 28%. Notably,
the increase in synergies became particularly evident when comparing the period from
2010 to 2020 with the period from 2000 to 2010.

3.3.2. Spatio-Temporal Patterns of Trade-Offs/Synergies Between ES Pairs

The GWR disclosed that the spatial dynamics of trade-offs and synergies among ES
pairs demonstrated variability across spatial scales (Figure 6). The spatial relationships for
the majority of ES pairs were consistent between the two scales, except for the NE–SC and
SC–WY pairs, exhibiting distinct patterns of spatial interactions.

At the grid scale, the spatial synergy was more pronounced than the spatial trade-off
for HQ–SC, NE–SC, and NE–WY pairs. The NE–WY pair exhibited the greatest spatial
synergy proportion, approaching 100%. At the same time, the average spatial synergy
proportions of the HQ–SC and NE–SC pairs were 62.58% and 68.02%, respectively. Con-
versely, the HQ–NE, HQ–WY, and SC–WY pairs had lower spatial synergy ratios than
spatial trade-off proportions, with average spatial synergy ratios of 33.23%, 24.20%, and
34.13%, exhibiting spatial trade-off characteristics. Contrasting with the findings observed
at the grid scale, ES pairs including HQ–SC, NE–WY, and SC–WY predominantly showed
spatial synergies, except for the SC–WY pair, while the spatial synergy ratios of the other
two ES pairs approached 100%. In contrast, the HQ–NE, HQ–WY, and NE–WY pairs ex-
hibited characteristics of spatial trade-offs, with average spatial synergy ratios amounting
to 12.69%, 42.21%, and 18.45%, respectively. From 2000 to 2020, the majority of ES pairs
exhibited an overall increasing trend in synergy areas at both scales.
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Spatially, there were high spatial synergies (e.g., HQ–SC, NE–WY) and high spatial
trade-offs (e.g., HQ–NE, HQ–WY) in the northern Longquan Mountains, the Longmen
Mountains, and the southwestern hilly regions characterized by a particularly high level
of vegetation cover. Conversely, the northern areas, marked by significant built-up ar-
eas and high anthropogenic interference, exhibited high spatial synergies (e.g., HQ–NE,
HQ–WY). At the county scale, high spatial trade-offs (e.g., HQ–NE, SC–WY) and high
spatial synergies (e.g., HQ–SC, NE–WY) were more prevalent in the upstream counties,
particularly in Chengdu and Deyang City.

3.4. Drivers of ESs

All eight selected driving factors exerted a significant impact on ESs in the TRB, with
all p-values < 0.01 for each factor.

The single-factor detector results (Figure 7) indicated that the driving factors had a
larger influence on HQ and WY, with an explanatory power of more than 40%, except for
the GDP, and a relatively small effect on NE and SC, with an explanatory power of less
than 20%, except for the LULC. Overall, the LULC exerted the most significant influence on
ESs, whereas GDP had the least impact. The LULC was the main driving factor for all ESs,
demonstrating its most substantial explanatory power on HQ, with average q-values of
0.76. DEM was the second driver for all ESs except WY. TEM and SUN were identified as
the primary drivers of HQ, each exhibiting average q-values of 0.56 and 0.51, respectively.
Additionally, PRE exerts a direct influence on WY. The average q-value was 0.53 for WY,
ranked the second highest. In addition, PD ranked in the middle in terms of explanatory
power for all ESs. However, the role of GDP was relatively minor, with an explanatory
power of less than 10%.

According to the interaction detector results (Figure 8), the interaction between driving
factors generally exhibited an enhancement effect, primarily as a two-factor enhancement.
This indicates that factor interactions are crucial for understanding the spatial variance in
ESs within the study area. The interplay between LULC and other variables, particularly
ecological factors, was substantial. For HQ, the combined explanatory power derived from
the interaction of the LULC with other factors is above 80%. Furthermore, the interaction
influences of the LULC and PRE were particularly prominent for WY, with an explanatory
power of around 90%.
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Despite some annual variations, the stability of the driving factors remained largely
unchanged, with no significant changes in the ranking based on q-values. In general, the
explanatory power of all driving factors tended to decrease over time, with the exception
of the PRE factor.

4. Discussion
4.1. Characteristics of ESs

The ESs exhibited spatio-temporal heterogeneity, with the four ESs displaying anal-
ogous spatial distribution patterns. This finding aligns with the outcomes of preceding
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studies [45,46]. Regions with superior ESs were predominantly situated in mountainous
and hilly areas, which have a richer ecological environment and stronger soil retention
capacity, minimal pollution in the water environment, and reduced surface runoff resulting
from the robust water storage capacity of plants. However, it is also important to note
that these regions, despite their high SC values, are also at a higher risk of soil erosion,
particularly in sloped areas [47]. This highlights the complex interplay between soil conser-
vation and erosion dynamics in these areas. In contrast, areas with lower ESs were mainly
found in places of high anthropogenic interference, which demonstrated particularly high
habitat fragmentation, high pollutant emissions from fertilizer and pesticide use [48], and
reduced surface water due to limited infiltration caused by buildings and roads. At the
county level, the ESs in the central region of the TRB are noticeably lower compared to the
peripheral areas, showing a characteristic central collapse. This phenomenon aligns with
the regional economic pattern, where central areas exhibit lower values while the periph-
eries show higher values. The TRB connects the most crucial economic cores of Chengdu
and Chongqing City yet experiences lagging economic development. This situation may
be because the LULC in these areas is dominated by the built-up area and the vegetation
cover is notably lower than that in marginal counties.

In terms of correlation analyses, within the TRB, the trade-off relationship dominated
among the ESs, with only synergistic relationships between HQ and SC and between
NE and WY. This phenomenon exhibits some differences from the findings of previous
studies [39,41], where the relationships between HQ–WY and SC–WY pairs were generally
synergistic. The phenomenon in which the improvement of one ES may come at the cost of
the degradation of others is particularly pronounced in the TRB region, which reveals that
the TRB has more prominent regional ecological resource utilization issues. In addition, at
the county scale, northern counties showed a prominent high spatial correlation, which
may be due to the fact that northern counties, such as Xindu County, Longquanyi County,
and Jianyang County, generally have significantly denser built-up. Some counties in the
north also have superior ecological system quality, such as Pengzhou County, Shifang
County, and Mianzhu County.

The spatial patterns of ESs are significantly determined by factors such as LULC, PD,
and ecological factors, a finding that corroborates the outcomes of several studies in the
field [49,50]. This is because LULC dictates patterns of land utilization, exerting a profound
and direct influence on ESs, while a higher PD is accompanied by a greater number of
human activities, which indirectly affect the supply and quality of ESs. Regarding ecological
factors, DEM significantly impacts hydrological processes and vegetation distribution.
TEM and SUN exert a considerable influence on plant growth and biodiversity. However,
the impact of low GDP on ESs is particularly pronounced, which differs from previous
studies that mostly indicate a significant influence of GDP on ESs [38,41]. This may be
attributed to the relatively minor contribution of built-up areas within the watershed and
the concentration of economic activities at the local level. Furthermore, from 2000 to 2020,
the regional economy remained underdeveloped, thereby limiting the influence of GDP. As
the regional economy develops, it is important to continue to emphasize the influence of
GDP on ESs.

4.2. Analysis of Policy Influence on ESs

From 2000 to 2020, the TRB has taken a large number of policies and initiatives on
both ecological conservation and economic growth. The implementation of policies has a
large effect on LULC, which is the most critical driver of ESs. The results of the comparison
between the two scales clearly shows that ESs are characterized by significant differences
between the counties. This is because counties possess disparate administrative units,
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which are governed by distinct management structures and adhere to varying policies and
action priorities.

In terms of ecological protection, the TRB has adopted a series of policies on water
pollution control, such as the implementation of zero-growth action regarding fertilizers,
pesticide reduction, and sea control action. In 2017, it made a prevention planning program
aimed at constructing several high-quality water sources. By 2020, the region had achieved
a water quality compliance of 92.3%, up from 52% in 2016. The improvement in water
environmental quality is also reflected in the ESs assessment result, where NE shows a
significant reflection. In terms of soil conservation, in 2012, Sichuan Province established
measures for soil and water conservation. Since 2016, it has completed the comprehensive
treatment of soil and water erosion in an area of 19,000 km2. The effectiveness of the action
can also be reflected in the rising trend of SC. Additionally, the initiative to convert crop
land back to forest may be a primary driver for the improvement of regional ESs [51],
because it hugely increased the forest coverage. This policy was initially put into effect in
1999 and strengthened in 2007, and it slowed down the loss of forests in northern counties
that are predominantly forested, such as Pengzhou County, Shifang County, and Mianzhu
County. As a result, the decline in HQ in these counties slowed down after 2010, and there
was a significant increase in SC. In addition, the southern counties, such as Zigong City,
carried out provincial forest city construction action in 2014 and took large-scale greening
action in 2017. These actions continued to increase the HQ in some counties of the city and
were promoted more significantly from 2010 to 2020.

Meanwhile, the TRB has also experienced economic expansion, especially in counties
near Chengdu City and Chongqing City. In 2011 the Chengdu–Chongqing Twin Cities
Economic Circle Strategy was gradually implemented. In the same period, Chengdu City
planned to renovate 61,500 km2 land and increase the 91.6 km road network in the northern
area, with Xindu County and Qingbaijiang County as the key targets. In 2012, Longmatan
County also continued to increase the construction of its transport infrastructure. In 2016,
Jianyang County was formally assigned to Chengdu City, and later in 2017, Xindu County
and Longquanyi County were assigned to the Chengdu City center county. These policies
increased the built-up area and affected population distribution, impacting ES results. Their
HQ declined significantly, and Ziyang City, Jianyang County, and Longmaitan County had
a more significant decrease from 2010 to 2020 compared to the previous 10 years.

Overall, the supply of ESs in the TRB has improved, as well as the synergy between
ESs, which reflects the effectiveness of regional ecological protection work. However, the
HQ of the region has slightly declined, the trade-off relationships are dominant, and some
of the synergistic relationships have been weakened. In addition, the different changes in
the ESs in various counties are notable. This shows that the problem of irrational use of
resources in the TRB is prominent, the efforts of counties are uneven, and there is still a gap
in the overall integration of the region [52]. However, it is also important to recognize that,
under certain circumstances, the divergence among counties, if properly managed and
leveraged, can be a resource and advantage, contributing positively to regional coordinated
development and spatial sustainability [53]. Therefore, it needs more targeted management
measures and policies.

4.3. Management Insights and Policy Implications

In light of the considerable scale variability observed in ESs, it is imperative to im-
plement targeted strategies at varying spatial scales. The grid-scale breaks through the
limitations of policy boundaries, treats the watershed as a whole, and emphasizes the pro-
tection of patches in the wide-area scale, which is important for the preservation of forest
lands. The county scale emphasizes the role of policy formulation and puts forward-focused
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strategies to address the ecological background, ecology, and developmental status of dif-
ferent regions. We proposed management strategies for both grid and county scales, linking
the two scales, and considered the potential use of ES-related research in policy-making
and regional refinement.

At the grid scale, areas dominated by forest and grassland, especially in the northern
and southwestern regions characterized by mountainous and hilly terrain with intricate
topography, should mainly enhance vegetation cover and richness, increase green patches,
and connect dispersed high-quality habitats to establish ecological corridors and form green
networks, protect rare and endangered species and minimize human interference, and
promote the regulation of the water cycle and the stability of ecosystems. These activities
will improve the microclimate and thus further enhance habitat amenities and increase
biodiversity. There will be an enhancement of HQ and SC and a reduction in NE, promoting
synergies between HQ, SC, and water quality purification. In areas dominated by crop
land, it is important to enhance soil fertility and health while ensuring food security. In
addition, sustainable agriculture and efficient water-saving irrigation systems should be
promoted to reduce water wastage and curtail the reliance on chemical fertilizers and
pesticides, especially in the crop land along the river. This can reduce NE and protect soil
quality and the water environment, thus increasing the synergy between WY and water
purification. In areas with a concentration of built-up areas, the PD has a greater impact
on ESs. As the heat island effect makes the microclimate unfavorable, it may also have
some effect on ESs. These areas should build urban ecological corridors and increase urban
green space to improve the microclimate. Moreover, they can reduce urban surface runoff
and promote rainwater infiltration by promoting green building and permeable surface
technology. In addition, strict control of industrial and domestic pollutant discharges is also
needed. These measures will help to enhance HQ and SC and reduce NE. In areas domi-
nated by water bodies, especially along the mainstream and tributaries of the Tuo River,
the integrity of the water environment must be ensured. The establishment and protection
of water source conservation areas are essential. The preservation of existing wetlands is
imperative for maintaining ecological balance. Moreover, strengthening the surveillance of
water quality is crucial for the timely detection and treatment of pollution sources. Further-
more, the riparian zones should be rehabilitated and protected with vegetation to reduce
riverbank erosion.

At the county scale, counties with good ecological backgrounds in the north, such
as Pengzhou County, Shifang County, and Mianzhu County, can consider developing
eco-tourism, developing the level of the economy based on the protection of the existing
ecological background. Central counties with faster economic development, such as coun-
ties in Chengdu City, should focus on ecological protection while enhancing GDP as well.
The northern upstream counties should strictly control the water quality and promote
soil and water conservation. The economic and ecological environment in the middle of
the collapse features is more significant in central areas such as Neijiang City, a generally
agricultural aggregation; they should abate farmland surface pollution and explore ecolog-
ical governance and industrial development combined with a sustainable development
model. They can consider the development of agricultural tourism. Moreover, they should
also improve infrastructure and promote industrial transformation to high value-added
industries producing low pollution. Counties with high vegetation cover in the south, such
as Zigong’s Rong County and Weiyuan County, should strengthen efforts to construct forest
city clusters with nearby counties. Counties with serious downstream water pollution
problems should invest more in comprehensive water environment management. On the
whole, counties should also strengthen collaborative governance among themselves and es-
tablish cross-regional mechanisms for ecological environmental protection and governance;
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for example, they could incorporate water environmental protection into the important
content of economic cooperation between them, encourage the sharing of environmental
protection infrastructures among neighboring counties, and carry out joint law enforcement
and cross-enforcement.

4.4. Limitations and Prospects

Although this research offers an analytical framework and theoretical insights that
contribute to the management of ESs in the TRB, it is essential to acknowledge the existence
of certain constraints. Firstly, different parameter settings can lead to potential variations in
ES value quantification results. The parameter settings in the ES assessment model InVEST
used in this study are primarily derived from the literature corresponding to regions with
analogous environmental contexts. Although these parameters have been validated in prior
studies, the lack of observational data still hinders comprehensive validation. A crucial
step in future research will involve conducting comparative experiments that encompass a
range of parameter settings and selecting typical areas for field studies to validate the model
results. This will lead to an improvement in the model performance and an enhancement
of the overall reliability of the model results.

Moreover, this study only considers the temporal scale effects in exploring driving
factors and does not delve into the complex relationships between ES spatial distributions
at different spatial scales and various driving factors. Consequently, subsequent research
should expand upon the discoveries of this study to incorporate comparative spatial scale
investigations into driver exploration. This approach will contribute to a more accurate
understanding of dynamic changes in ES driver dynamics at the scale, thereby enhancing
targeted management policy references.

5. Conclusions
This study compared the ESs in the TRB and the interrelationships among these ser-

vices at the grid and county scales. Additionally, it identified the critical social–ecological
driving factors of ESs. It aims to guide the management of these services in the TRB.
(1) Firstly, a general upward trend was observed in most ESs across the region, although
the HQ slightly deteriorated. The ESs were more prominent in the northern mountain-
ous and southwestern hilly regions, while the county scales displayed central collapse
characteristics. (2) Secondly, trade-offs predominated between ESs in the TRB; synergistic
relationships only existed in the HQ–SC and NE–WY pairs. Generally, an upward trend in
synergies was observed. High trade-offs and synergies existed mainly in forest, grassland,
and built-up areas, as well as at county scales mainly in the northern counties. (3) The
interaction of all the social–ecological driving factors exerted an enhancement effect. LULC
was the most dominant driver, while only the GDP had a relatively small driver effect for
ESs. Additionally, notable discrepancies were identified in the ES assessment outcomes
at two scales. Based on these findings, management strategies for these two scales are
proposed in this study.
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Appendix A.2. Ecosystem Service (ES) Assessments

We used the Habitat Quality module of the InVEST model to calculate by combining
the sensitivity of land use types and the intensity of external threats, and the model
parameters were set with reference to existing research results [54]. Table A1 presents the
threat source data, while Table A2 demonstrates the habitat types and their sensitivity to
threat sources. HQ was calculated using the following formula:

Qxj = Hj

(
1 −

Dz
xj

Dz
xj + k2

)
(A1)

where Qxj is HQ value of grid x; Hj is the habitat suitability of LULC type j; Dxj signifies
the distance to threats to land use type j; z is a scaling parameter which was set at 2.5; and
k is the half-saturation constant, which was set at 0.5.

Table A1. The sensitivity of habitat types to each threat factor.

Threat Factors Maximum Distance of Influence Weights Spatial Decay Types

Crop land 2.6 0.26 exponential
Built-up area 5.8 0.73 linear
Barren land 2 0.25 exponential

Road 4 0.4 linear
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Table A2. Habitat suitability and sensitivity of habitat types to each threat factor.

Habitat Type Habitat Suitability Score Sensitivity to Threats
Crop Land Built-Up Land Barren Land Road

Crop land 0.4 0.3 0.5 0.2 0.2
Forest 0.91 0.56 0.84 0.3 0.8

Grassland 0.7 0.46 0.8 0.15 0.2
Water body 0.93 0.63 0.86 0.33 0.5
Barren land 0 0 0 0 0

Built-up area 0 0 0 0 0

NE was calculated using the Nutrient Delivery Ratio (NDR) module of the InVEST
model, with model parameters referenced to existing similar research results [55] and
the InVEST user guide. The biophysical attributes of various land use/cover types are
presented in Table A3. NE was calculated using the following formula:

Xexporti
= loadsur f ,i × NDRsur f ,i + loadsubs,i × NDRsubs,i (A2)

Xexporttot
= ∑

i
Xexporti

(A3)

where, Xexporti
is the annual nitrogen export of per unit grid; loadsur f ,i and NDRsur f ,i are

the surface nitrogen load and nitrogen export load factor on the unit grid; loadsubs,i and
NDRsubs,i are the subsurface nitrogen load and nitrogen export load factor; and Xexporttot

denotes the total amount of nitrogen exported from a certain plot.

Table A3. Biophysical parameters in the NDR module.

LULC Name Load_n Eff_n Crit_len_n Proportion_Subsurface_n

Crop land 24.2 0.25 25 5.75
Forest 3.68 0.8 150 0.28

Grassland 8.5 0.4 100 0.55
Water body 0.01 0.05 15 0.01
Barren land 6 6.25 0.05 5

Build-up area 7 14.5 0.05 10

SC was calculated using the Sediment Delivery Ratio module (SDR) in the InVEST
model, and the model parameters were set according to the research results [56] and the
InVEST model user guide. The biophysical attributes of various land use/cover types are
presented in Table A4. SC was calculated using the following formula:

SD = R × K × LS × (1 − C × P) (A4)

where SD represents soil retention, R denotes rainfall erosion, K signifies soil erodibility,
LS represents slope length and steepness, C represents vegetation cover and management,
and P represents soil retention practices.
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Table A4. P value and C value of different land use types.

LULC Name usle_c usle_p

Crop land 0.22 0.35
Forest 0.05 1

Grassland 0.25 1
Water body 0 0
Barren land 1 1

Build-up area 1 0

WY was calculated based on the water balance equation using the Water Production
module in the InVEST model, and the model parameters were set with reference to the
results of the study [57] and the InVEST model user guide. The biophysical table required
for the module can be found in Table A5. WY was calculated using the following formula:

Y(x) =

(
1 −

AET(x)

P(x)

)
× P(x) (A5)

where Y(x) is the annual water yield of regional cell x and P(x) and AET(x) are the annual
rainfall and actual evapotranspiration of grid x.

Table A5. Biophysical parameters in the water yield module.

LULC Name root_Depth Kc LULC_veg

Crop land 500 0.6 1
Forest 5000 1 1

Grassland 300 0.7 1
Water body 5000 0.95 1
Barren land 1 1 0

Build-up area 100 0.2 0
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