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Abstract: The gross primary productivity (GPP) of vegetation stores atmospheric carbon dioxide
as organic compounds through photosynthesis. Its spatial heterogeneity is primarily influenced by
the carbon uptake period (CUP) and maximum photosynthetic productivity (GPPmax). Grassland,
cropland, and forest are crucial components of China’s terrestrial ecosystems and are strongly influ-
enced by the seasonal climate. However, it remains unclear whether the evolutionary characteristics
of GPP are attributable to physiology or phenology. In this study, terrestrial ecosystem models and
remote sensing observations of multi-source GPP data were utilized to quantitatively analyze the
spatio-temporal dynamics from 1982 to 2018. We found that GPP exhibited a significant upward
trend in most areas of China’s terrestrial ecosystems over the past four decades. Over 60% of Chinese
grassland and over 50% of its cropland and forest exhibited a positive growth trend. The average
annual GPP growth rates were 0.23 to 3.16 g C m−2 year−1 for grassland, 0.40 to 7.32 g C m−2 year−1

for cropland, and 0.67 to 7.81 g C m−2 year−1 for forest. GPPmax also indicated that the overall growth
rate was above 1 g C m−2 year−1 in most regions of China. The spatial trend pattern of GPPmax

closely mirrored that of GPP, although local vegetation dynamics remain uncertain. The partial
correlation analysis results indicated that GPPmax controlled the interannual GPP changes in most of
the terrestrial ecosystems in China. This is particularly evident in grassland, where more than 99%
of the interannual variation in GPP is controlled by GPPmax. In the context of rapid global change,
our study provides an accurate assessment of the long-term dynamics of GPP and the factors that
regulate interannual variability across China’s terrestrial ecosystems. This is helpful for estimating
and predicting the carbon budget of China’s terrestrial ecosystems.

Keywords: gross primary productivity; spatiotemporal evolutionary; interannual variability; carbon
uptake period; photosynthetic capacity; China’s terrestrial ecosystems

1. Introduction

Under the context of global climate change, there is growing attention on monitoring
the spatial and temporal dynamics of terrestrial ecosystem gross primary productivity
(GPP) and analyzing its attribution. Interannual variability serves as a crucial indicator
of vegetation stability in response to external perturbations, significantly contributing
to the assessment of the impacts of climate change on vegetation [1]. China is one of
the world’s fastest-greening countries, which alone accounts for 25% of the global net
increase in leaf area between 2000 and 2017 with only 6.6% of the global vegetated area [2].
However, the driving mechanism behind the interannual variability of total vegetation
primary productivity (GPPannual) in China remains unclear, which is crucial for predicting
the carbon cycle response to future climate change. Prior research has indicated that spatial
heterogeneity of GPP was predominantly influenced by the duration of the carbon uptake
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period (CUP) and the maximum photosynthetic productivity (GPPmax) [3]. Specifically, an
earlier start of the growing season (SOS) and a later end of the growing season (EOS) can
extend the duration of the growing season or alter the timing of photosynthesis activity [4,5],
elucidating the spatial heterogeneity of GPPannual from a mechanistic perspective. Currently,
plant phenology research, particularly focusing on SOS and EOS, has garnered widespread
attention [3]. However, there are a limited number of studies focusing on GPPmax, a
crucial factor in delineating ecosystem GPP capacity and influencing the seasonal patterns
of atmospheric CO2 concentrations, especially for terrestrial ecosystems of China with
significant seasonality.

Grassland, cropland, and forest are crucial components of terrestrial ecosystems,
playing a vital role in regulating greenhouse gas cycling and maintaining ecosystems’
carbon balance [6]. According to the bulletin of the third major national land survey
released by the State Forestry and Grassland Administration [7], grassland, cropland,
and forest in China collectively occupy 85% of the total land area, constituting the main
components of the terrestrial ecosystems. Given that most parts of China lie within the
monsoon zone, with significant seasonal climate variations, China’s terrestrial ecosystems
exhibits high sensitivity to both climate change and human-induced disturbances [8].
Hence, the precise evaluation of spatial and temporal variations, coupled with an analysis
of interannual GPP variability mechanisms in China’s terrestrial ecosystems under the
backdrop of climate change, can facilitate the estimation and prediction of carbon balance of
these terrestrial ecosystems. In this study, we utilized multi-source GPP data as a proxy for
vegetation growth to analyze the spatial and temporal characteristics of vegetation greening
in China’s terrestrial ecosystems over the past four decades. The GPPmax was determined
through the maximum value synthesis method, which illustrated the relationship between
plant photosynthetic capacity and spatial-temporal variations in GPP. Furthermore, we
further explored the mechanisms by which plant physiology and phenology influence GPP
changes across different vegetation types.

2. Materials and Methods
2.1. Mask Extraction of Grassland, Cropland, and Forest in China

Moderate Resolution Imaging Spectroradiometer (MODIS) Global Vegetation Clas-
sification product (MODIS Collection5 MOD12Q1, Land Cover Data) provides globally
categorized data classified by the International Geosphere-Biosphere Program (IGBP) Land
Classification Rules. This dataset (500 m, annual) comprises 17 land cover categories,
including 11 natural vegetation types, 3 categories for developed and urbanized areas, and
3 categories for non-vegetated land. Predominantly, these categories encompass grassland,
cropland, and forest. For this study, we chose three land-use categories from the dataset:
grassland, cropland, and forest. These categories were defined based on the IGBP land
classification standard, with grassland represented by code 10, cropland by 12, and forest
by codes 1, 2, 3, 4, 5, and 8.

Before evaluating the productivity of grassland, cropland, and forest in China, we
generated 0.5◦ and 0.05◦ masks for Chinese grassland, cropland, and forest. Initially,
utilizing the IGBP land classification system of the MOD12Q1 dataset spanning from 2001
to 2018, we systematically extracted image elements corresponding to land-use types across
China at a 500 m resolution annually. The components were then integrated into 0.05◦

resolution images utilizing ArcGIS 10.8. Subsequently, the extracted elements from these
images were spatially superimposed across multiple time periods. Elements present in
at least two-thirds of the 18-year period (i.e., 12 years) were designated as 0.05◦ masks
representing grassland, cropland, and forest [9].

To align with the 0.5◦ resolution data of the model GPP dataset, we constructed a 0.5◦

resolution grid of land use types for the Chinese region. The approach involved tallying
the proportion of grassland, cropland, and forest image elements (0.05◦) within each 0.5◦

grid cell. Subsequently, image elements corresponding to land use types exceeding 60%
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within each grid cell were filtered and designated as 0.5◦ grassland, cropland, and forest
masks. The processing details for this step are shown in Figure 1.
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Figure 2. Masking results at different resolutions for China’s terrestrial ecosystems. (a) is the map
with a resolution of 0.05◦; (b) is the map with a resolution of 0.5◦.

The above approach was taken mainly because the grassland, cropland, and forest
images have been converted to other land use types in the past 18 years in China. To
facilitate a more accurate study of the spatial and temporal dynamics of China’s terrestrial
ecosystems, it is imperative to disregard image elements exhibiting conspicuous alterations
in land use types. The 0.05◦ and 0.5◦ masks generated in this study were employed to
extract additional GPP and hydrometeorological data pertaining to China’s terrestrial
ecosystems [10,11].

2.2. GPP Data

The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is
a model comparison program aimed at developing globally gridded estimates of carbon,
energy, and hydrological fluxes among different models of land and atmosphere [12]. To
ensure consistent and comparable model results, the MsTMIP has assembled benchmark
reference driver data sets, including standard weather drivers, remotely sensed phenology,
biome classification, and land-use history to provide GPP output products in historical
periods [13]. In the newly released model simulation results (https://daac.ornl.gov/
NACP/guides/NACP_MsTMIP_TBMO_V2.html, accessed on 23 January 2024), MsTMIP
provides monthly data values at a spatial resolution of 0.5◦ and a temporal resolution
spanning from 1901 to 2010. Based on previous theoretical studies [14], four terrestrial

https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_TBMO_V2.html
https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_TBMO_V2.html
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ecosystem models were selected for inclusion in the MsTMIP multi-scenario model for this
study: Community Land Model version 4 (CLM4) [15], CLM4-Variable Infiltration Capacity
model (CLM4-VIC) [16], Dynamic Land Ecosystem Model (DLEM) [17], and Integrated
Science Assessment Model (ISAM) [18]. Despite the standardized protocol used to derive
initial conditions, different models show a high degree of variation for GPP, so we applied
an ensemble average of the four GPP model data to reduce the uncertainty of the GPP data.

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) also is a model com-
parison plan. The objective is to establish a framework for comparing risk models globally
and regionally across various sectors, facilitating coordinated multi-sectoral assessments
of diverse risks and their cumulative impacts to support decision-making on adaptation
and mitigation at both the global and regional levels [19]. This study selected four sets
of monthly GPP data, each with a spatial resolution of 0.5◦ and a temporal resolution
spanning from 1901 to 2005, adhering strictly to the ISIMIP2b standard protocol. The
meteorological forcing data utilized are from IPSL-CM5A-IR: CARbon Assimilation In
the Biosphere (CARAIB) [20], Lund-Potsdam-Jena: General Ecosystem Simulator (LPJ-
GUESS) [21], Lund-Potsdam-Jena managed Land (LPJmL) [22], and Organizing Carbon
and Hydrology in Dynamic EcosystEms: Dynamic Global Vegetation Model (ORCHIDEE-
DGVM) [23]. Similar to the handling of MsTMIP data, we applied an ensemble average of
the four GPP model data to reduce uncertainty of the GPP data.

Global Land Surface Satellite (GLASS) products, derived from multi-source remote
sensing data and ground-truthing data, offer long-term, high-precision global surface
remote sensing data. They serve as a dependable foundation for investigating global
environmental change, facilitating the global, intercontinental, and regional monitoring of
atmospheric dynamics, vegetation cover, water bodies, and more. These products, when
integrated with climate change parameters like temperature and precipitation, enable the
analysis of global change [24]. GPP, one of GLASS’s key products, spans a lengthy period
(1982–2018) with high temporal and spatial resolution (0.05◦, 8 days), making it optimal
for analyzing temporal and spatial variations in GPP. The GLASS GPP algorithm is based
on the Eddy Covariance-Light Use Efficiency (EC-LUE) model, which originally relies on
four variables: remotely sensed NDVI, PAR, air temperature, and Bowen’s ratio [25]. The
updated GLASS GPP product incorporates additional environmental variables, including
atmospheric CO2 concentration, direct and scattered radiation fluxes, and atmospheric
water vapor pressure deficit [26], to better capture long-term trends in GPP.

Additionally, to mitigate the uncertainty arising from individual remote sensing
datasets, we employed the Multisource Data Synergized Quantitative (MuSyQ) algorithm
for GPP assessment [27]. Unlike GLASS GPP, MuSyQ GPP incorporates a clear-sky index,
substantially enhancing GPP accuracy for remote sensing observations [28]. MuSyQ GPP
data (0.05◦, 8 days) are accessible at https://zenodo.org/records/3996814#.Y5V46FFBxD-,
accessed on 25 January 2024.

To verify the accuracy of the model and remote sensing data in estimating GPP, this
study utilized observation data from flux towers in China, comparing them with the
model and remote sensing data for validation. The flux tower data can be accessed at
https://fluxnet.org/, accessed on 23 June 2024. The methodology involved obtaining GPP
observation data from the flux towers and determining their corresponding longitude and
latitude. These coordinates were then used to locate the matching grids in the model and
remote sensing data, from which data for the same years were extracted for comparison
and analysis. The results (Figure 3) indicated that the GPP values from the flux tower data
closely match those from the model and remote sensing data, exhibiting similar variation
trends. This concordance verified the accuracy and reliability of the model and remote
sensing data used in this study.

https://zenodo.org/records/3996814#.Y5V46FFBxD
https://fluxnet.org/
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(91.0664◦ E, 30.4978◦ N); (c) represents the Dinghushan site (112.5361◦ E, 23.1733◦ N); (d) repre-
sents the Duolun_grassland (D01) site (116.2836◦ E, 42.0467◦ N); (e) resents the Haibei Alpine Tibet
site (101.1800◦ E, 37.3700◦ N); and (f) represents the Siziwang Grazed (SZWG) site (111.8971◦ E,
41.7902◦ N).

2.3. Calculation of Peak Photosynthesis Productivity and Carbon Uptake Period

Peak photosynthetic productivity, represented by the highest annual gross primary
productivity value, was obtained by synthesizing GPP data using the maximum value
synthesis method. The equation used to derive GPPmax data for the entire year is as follows.

GPPmax = Max(GPPi) (1)

where GPPmax represents the maximum value of GPP in the year corresponding to a given
grid, and GPPi is the ith eight-day (or monthly value) GPP data.

Piao et al. [29] proposed fitting the intra-annual vegetation GPP dynamics using the
monadic six-dimensional polynomial. They identified the start of the phenological period
(SOS) as the position with the largest derivative between days 30–180 and the end of the
phenological period (EOS) as the position with the smallest derivative between days 181
and 365 [30]. The phenological period length, also termed as the number of carbon dioxide
uptake days (CUP), was calculated as the difference between the EOS and SOS.

2.4. Partial Correlation Analysis

Partial correlation analysis aims to explore relationships among multiple variables by
isolating their direct associations from the influences of other variables, thereby enabling a
more precise evaluation of potential causal relationships. The relationship between GPP,
phenological period length, and peak photosynthesis productivity growth power was
examined for each grid using partial correlation coefficient analysis. The partial correlation
coefficient, denoted as ‘r’, ranged from −1 to 1, indicating the strength and direction of the
correlation. A positive ‘r’ value (>0) indicates a positive correlation between the variables,
while a negative ‘r’ value (<0) indicates a negative correlation.

rXY·Z =
rXY − rXYrXZ√(

1 − r2
YZ

)(
1 − r2

XZ
) (2)
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where rXY·Z represents the degree of correlation between another variable and GPP after
controlling for plant phenology or peak photosynthesis productivity growth force, and rXY,
rXZ, and rYZ represent the correlation coefficients between different variables, respectively.

We separately controlled for CUP and GPPmax and then compared the absolute values
of the partial correlation coefficients between GPP and GPPmax, as well as between GPP
and CUP. Then, we identified the elements dominating the interannual variation of GPP
for each grid.

3. Results
3.1. Spatio-Temporal Variation Characteristics of GPP from Different Data Sources

In terms of spatial variation characteristics (Figure 4), GPP simulated by ISIMIP for
grassland, cropland, and forest in China from 1982 to 2018 indicated that 71.99%, 51.97%,
and 98.49% area of grassland, cropland, and forest lands exhibited a rising trend, with the
proportions that showed a significant increasing trend being 58.89%, 20.79%, and 87.79%.
Similarly, in MsTMIP, 61.74%, 57.58%, and 58.36% of the area of grassland, cropland, and
forest lands showed increasing trends of GPP, with the proportions that showed a significant
increasing trend being 20.80%, 13.48%, and 11.71%. However, there was a decreasing trend
of grassland GPP in Xinjiang and cropland GPP in the North China plains, while MsTMIP
GPP showed a decreasing trend in the cropland of Northeast China and forest near the
Sichuan basin. The two remote sensing GPP datasets exhibited similar spatial variation
trends in grassland, with over 81% of the area displaying an increasing trend from 1982
to 2018, and the proportions of GLASS and MuSyQ grass GPPs that showed a significant
upward trend were 53.63% and 50.51%, respectively. However, the trends of cropland
and forest GPPs in China differed. In the MuSyQ dataset, a higher percentage of grid
points showed an increasing trend, reaching 89% for cropland GPP and 84% for forest GPP,
respectively. This phenomenon is likely due to the inclusion of the Clearness Index (CI)
in the MuSyQ dataset. The CI indirectly represents the varying proportions of direct and
indirect radiation in incident solar radiation, incorporating the impacts of light, moisture,
and temperature conditions on light energy utilization [28]. This leads to an enhanced
light use efficiency (LUE) when compared to the GLASS dataset, consequently affecting the
dataset’s GPP.

The absolute variation in GPP values across different sources was relatively large
(Figure 5), yet the overall trend was upward, reflecting the inter-annual fluctuations of
different vegetation types in China’s terrestrial ecosystems. Grassland GPP growth rates
in China ranged from 0.23 to 3.16 g C m−2 year−1 and cropland GPP growth rates in
China ranged from 0.40 to 7.32 g C m−2 year−1; the forest GPP in China exhibited the
most pronounced increasing trend, with an average growth rate ranging from 0.67 to
7.81 g C m−2 year−1 (Figure 5d). We observed a higher increasing rate in GPP in cropland
compared to grassland. The increase in cropland GPP is closely linked to human activities.
In recent years, modern farming practices like precision irrigation, optimal fertilization,
and the cultivation of high-yield crop varieties have significantly enhanced photosynthetic
efficiency and GPP [31]. Furthermore, climate change, including warmer temperature,
longer carbon uptake period, and higher CO2 concentration, has also occurred. Cropland
is more sensitive to temperature and CO2 levels [32], resulting in a higher GPP increase
compared to grassland. In summary, both model-based and remote sensing-based spatial
and temporal analyses confirmed a significant increase in GPP across China’s terrestrial
ecosystems over the last four decades, and these ecosystems have become more efficient
carbon sinks compared to the previous century.
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3.2. Spatial and Temporal Trends in GPPmax from Different Data Sources

Plant photosynthesis is crucial for understanding plant physiology and its response
to environmental changes. As the maximum photosynthetic carbon uptake represents the
important characteristics of plant photosynthesis, it can be used as an indicator of plant
physiology. The monthly-scale GPP data for China’s terrestrial ecosystems was analyzed to
extract the maximum value for each year, termed GPPmax, to map the spatial pattern of
long-term trends. The spatial patterns of the GPPmax trends derived from both model-based
simulations and remote sensing closely mirrored those of the overall GPP data. All trends
exhibited significant increases over time.

Discrepancies in GPPmax were observed between model simulations and remote
sensing data from different sources (Figure 6). In the ISIMIP dataset, GPPmax exhibited
rapid growth, averaging 1 g C m−2 year−1 across most regions except the Xinjiang and the
Loess Plateau grassland, with a particularly notable increase in the northeastern cropland,
whereas the MsTMIP GPPmax simulated by the same model exceeded 1 g C m−2 year−1

solely in the grassland areas of the southern Tibetan Plateau and the cropland of North
China plain, with a less pronounced upward trend in the Northeast cropland. The spatial
trend patterns of GPPmax in Chinese grassland derived from two remote sensing-based
models were largely consistent. Both models indicated a decline in GPPmax within the
grassland of eastern Inner Mongolia. Moreover, the forest of southeastern China exhibited
an increasing trend in GPPmax, which was not captured by the GLASS dataset. This
showed the inadequacy of relying solely on one data source for a comprehensive analysis
of GPP and GPPmax trends. Multiple GPP datasets are essential for comparison to achieve
a detailed understanding of the spatial and temporal dynamics of the ecosystem GPP
in China.

Land 2024, 13, x FOR PEER REVIEW 8 of 17 
 

3.2. Spatial and Temporal Trends in GPPmax from Different Data Sources 
Plant photosynthesis is crucial for understanding plant physiology and its response 

to environmental changes. As the maximum photosynthetic carbon uptake represents the 
important characteristics of plant photosynthesis, it can be used as an indicator of plant 
physiology. The monthly-scale GPP data for China’s terrestrial ecosystems was analyzed 
to extract the maximum value for each year, termed GPPmax, to map the spatial pattern of 
long-term trends. The spatial patterns of the GPPmax trends derived from both model-
based simulations and remote sensing closely mirrored those of the overall GPP data. All 
trends exhibited significant increases over time. 

Discrepancies in GPPmax were observed between model simulations and remote sens-
ing data from different sources (Figure 6). In the ISIMIP dataset, GPPmax exhibited rapid 
growth, averaging 1 g C m−2 year−1 across most regions except the Xinjiang and the Loess 
Plateau grassland, with a particularly notable increase in the northeastern cropland, 
whereas the MsTMIP GPPmax simulated by the same model exceeded 1 g C m−2 year−1 
solely in the grassland areas of the southern Tibetan Plateau and the cropland of North 
China plain, with a less pronounced upward trend in the Northeast cropland. The spatial 
trend patterns of GPPmax in Chinese grassland derived from two remote sensing-based 
models were largely consistent. Both models indicated a decline in GPPmax within the 
grassland of eastern Inner Mongolia. Moreover, the forest of southeastern China exhibited 
an increasing trend in GPPmax, which was not captured by the GLASS dataset. This showed 
the inadequacy of relying solely on one data source for a comprehensive analysis of GPP 
and GPPmax trends. Multiple GPP datasets are essential for comparison to achieve a de-
tailed understanding of the spatial and temporal dynamics of the ecosystem GPP in China. 

 
Figure 6. Spatial patterns of GPPmax changes in China’s terrestrial ecosystems over the past four 
decades based on model and remote sensing observations. (a,b) are the direction and magnitude of 
GPPmax changes averaged by the multi-model combinations of ISIMIP and MsTMIP, respectively. 
The dots in the graph represent that this point passes the significance test of p < 0.05. (c,d) are the 
direction and magnitude of GPPmax changes driven by GLASS and MuSyQ datasets, respectively. 
The regional average trend values are counted as box plots in the lower left corner. Data points that 

Figure 6. Spatial patterns of GPPmax changes in China’s terrestrial ecosystems over the past four
decades based on model and remote sensing observations. (a,b) are the direction and magnitude of



Land 2024, 13, 1346 9 of 17

GPPmax changes averaged by the multi-model combinations of ISIMIP and MsTMIP, respectively.
The dots in the graph represent that this point passes the significance test of p < 0.05. (c,d) are the
direction and magnitude of GPPmax changes driven by GLASS and MuSyQ datasets, respectively.
The regional average trend values are counted as box plots in the lower left corner. Data points that
are more than 1.5 times the interquartile range of the first and third quartiles are marked as outliers,
which are indicated by red dots in the figure.

When comparing the interannual changes in GPPmax of China’s terrestrial ecosystems,
differences emerged between the model and remote sensing GPPmax. Specifically, the
GPPmax values from MsTMIP for cropland and forest were lower than those from the
other three data sources, but overall, there was a more consistent fluctuating increase
(Figure 7). Grassland GPPmax ranges from 60 to 120 g C m−2, while cropland GPPmax
typically ranges between 180 and 240 g C m−2, with the exception of the MsTMIP dataset.
Forest remote sensing GPPmax remained relatively constant at approximately 250 g C m−2.
Most grassland areas and cropland as well as forest, except for individual data from a
few regions, exhibited GPPmax growth rates exceeding 0.15 g C m−2 year−1, 0.09 g C m−2

year−1, and 0.18 g C m−2 year−1, respectively.
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3.3. Plant Physiology, Not Phenology, Dominates GPP Variability

GPPmax is considered the most reliable proxy for peak photosynthetic productivity
and is closely related to plant physiology. CUP represents the duration of CO2 absorption
by vegetation throughout the year and is closely related to plant phenology. Although
the effects of plant phenology and physiology on the interannual variability of GPP are
evident, the magnitude of their influence remains uncertain [3]. Previous studies in North
America, at both the ecosystem and regional scales, have indicated that the long-term trend
and interannual variability of GPP is regulated by GPPmax [4], yet this assertion has not
been validated in China.

In this study, prior to assessing the impact of plant phenology and physiology on
interannual GPP, we conducted a comprehensive analysis of the temporal and spatial
variations in GLASS GPPmax at both the 8-day and monthly scales. The standardized
values of GPPmax over 8-day and monthly periods exhibited consistent trends, validating
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the suitability of the GLASS GPPmax dataset for subsequent analyses at an 8-day temporal
resolution (Figure 8).
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Next, we examined the spatial variation characteristics of 8-day GPPmax and observed
a pronounced increase in China’s terrestrial ecosystems’ GPPmax. The average inter-annual
variability of GPPmax was 0.026 g C m−2 year−1, 0.018 g C m−2 year−1, and -0.04 g C m−2

year−1 for grassland, cropland, and forest, respectively. In particular, the increasing trend
was evident in the grassland of the Loess Plateau, the grassland of Tibetan Plateau, and the
cropland of North China Plain (Figure 9a), where the GPPmax growth rate exceeded 0.1 g
C m−2 year−1 in most of these regions. This could be attributed to significant vegetation
restoration projects on the Loess Plateau, gradual climate warming and humidification on
the Tibetan Plateau, and agricultural expansion on the North China Plain, all contributing
to a faster increase in GPPmax in these regions compared to others [33,34]. Upon comparing
GPPmax changes over the past four decades, the emergence date of GPPmax in Chinese
grassland, cropland, and forest has not significantly shifted, except for a slight delay in
some Loess Plateau grassland and an earlier emergence in the grassland of Inner Mongolia
and the forest of southern China (Figure 9b). In summary, 8-day GPPmax served as a
reliable indicator of peak ecosystem productivity, allowing for the construction of stable
metrics using GLASS GPPmax to assess the influence of plant physiology and phenology
on interannual GPP in subsequent analyses.

Interannual changes of GPP in Chinese grassland were primarily controlled by GPPmax,
with very limited influence (less than 1%) from CUP (Figure 10a). This indicated that the
grassland ecosystems rely more on climatic factors such as precipitation and temperature,
while their capacity to utilize soil moisture and nutrients remains relatively stable. For crop-
land, GPP changes were predominantly influenced by GPPmax, with 8% of interannual GPP
changes attributed to CUP, mainly in the North China Plain (Figure 10b). In over 15% of
forested areas in China, CUP played a significant role, especially in the Qinling, Hengduan,
and Changbai mountain ranges, possibly due to the dominant role of physiological factors
in vegetation growth in these regions as a result of soil moisture and temperature conditions
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at high altitudes. The interannual variation of GPP in the remaining forested regions was
still mainly controlled by GPPmax (Figure 10c). There may be significant differences in the
drivers of GPP change across geographic regions and vegetation types, and these differ-
ences were influenced not only by geographic conditions but also by vegetation type and
region-specific ecosystem interactions. Overall, plant physiology, rather than phenology,
predominated in driving the interannual variation of GPP in China’s terrestrial ecosystems.
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4. Discussion
4.1. China’s Terrestrial Ecosystems’ GPP Growth Contributes to Global Warming Mitigation

Given China’s position as the world’s second-largest historical emitter of CO2 [35],
a precise evaluation of the CO2 absorption capacity within China’s terrestrial ecosys-
tems holds profound implications for future endeavors towards carbon neutrality, carbon
peaking, and environmental policy development. Our findings indicated a significant
increase in the GPP of China’s terrestrial ecosystems from 1982 to 2018, aligning with
prior research [36–38]. However, adverse changes were solely detected in the eastern Inner
Mongolian grassland and the North China Plain. Fang et al. reported that China’s terres-
trial ecosystems absorbed 20.8–26.8% of carbon emissions from Chinese industries [39],
implying that various management practices including afforestation, grassland protection,
agricultural system reform, and conservation tillage have been instrumental in carbon
sequestration since the mid-1970s [40]. Enhancing vegetation restoration can increase the
carbon sequestration capacity of terrestrial ecosystems, offering an effective approach to
tackle global climate change and attain carbon neutrality goals. In summary, over the past
four decades, China’s terrestrial ecosystems’ GPP has significantly increased, playing a
crucial role in mitigating the rate of global warming.

4.2. Multi-Source Data and Methods Reveal a More Comprehensive Picture in China’s
Terrestrial Ecosystems

Modeling and remote sensing data are commonly used to investigate ecosystem GPP
dynamics across various spatial and temporal scales. However, different GPPs are priori-
tized differently in estimation and monitoring [41]. Terrestrial ecosystem models driven
by meteorological factors are frequently employed for estimating terrestrial ecosystem
GPP. While these models can accurately simulate terrestrial ecosystem dynamics and their
interactions with other Earth systems, they are susceptible to uncertainties stemming from
the model’s sensitivity to meteorological parameters and the uncertainty associated with
meteorological datasets [42]. Furthermore, terrestrial ecosystem models are based on the
current academic knowledge of the processes of the global carbon cycle and may have some
limitations, which in turn lead to uncertainty in the model results [43]. Remote sensing
GPP products, on the other hand, rely on a globally parameterized GPP model and are
derived from long time series of remote sensing data, ultimately producing remotely sensed
products. However, these remote sensing data are prone to atmospheric interference and
may produce misleading signals under vegetation stress conditions, such as green canopies
that are not actively photosynthesizing [44]. Furthermore, satellite remote sensing data can
only offer momentary spectral information, and the GPP derived from sensor photography
and data processing remains inadequate.

Previous studies have shown that choosing only model data or remote sensing data,
but not both, to analyze vegetation dynamics can lead to controversial conclusions. There
are significant uncertainties among different datasets, and even within the same model
comparison program, GPP values can vary greatly between different models. In addition,
analyzing only spatial trends in GPP across grids and ignoring trend changes in annual
average GPP may lead to some uncertainty in the results of the study. Therefore, we sug-
gest utilizing multivariate data, including both models and remote sensing, to analyze the
spatial and temporal dynamics of past, present, and future GPP across China’s terrestrial
ecosystems, aiming to comprehensively assess the carbon balance dynamics. We also recom-
mend that a combination of annual average GPP and spatially gridded GPP trend analyses
should be used to jointly characterize the changing state of vegetation GPP in China’s ter-
restrial ecosystems. By avoiding reliance on a single data source and method, which could
potentially yield misleading conclusions, this paper aims to offer a more comprehensive
and realistic portrayal of productivity changes in China’s terrestrial ecosystems.
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4.3. The Physiological Role of Plant Should Be Given More Attention to Better Explain
Inter-Annual Variability in GPP

Previous research indicates that annual changes in GPP result from various biotic and
abiotic factors, primarily alterations in plant phenology and physiological processes [45,46].
In this study, through partial correlation analyses of plant phenology and peak photosyn-
thetic productivity with interannual GPP changes, we ascertained that plant physiology
outweighs phenology in determining GPP’s long-term trend. The importance of plant phe-
nology on seasonal and annual GPP variability has been shown in many studies [45,47,48],
Seasonal phenological events, such as leaf-out and senescence, directly influence the length
of the growing season and hence the period during which photosynthesis can occur. How-
ever, phenological changes cannot explain GPP reduction caused by climate extreme events,
which account for the majority of global inter-annual variability in GPP [49]. For instance,
extreme droughts or heatwaves can lead to immediate reductions in photosynthetic activity
due to stomatal closure and other stress responses, regardless of phenological stage.

Due to the direct correlation between photosynthetic physiology and carbon assimila-
tion, GPPmax in this study is closely related to GPP and accounts for most of its interannual
variability. The maximum rate of photosynthesis (GPPmax) is primarily determined by
factors such as leaf area index (LAI), chlorophyll content, and enzyme activities involved
in the Calvin cycle. Results from biased correlation analyses by Xia et al. [3] also indicated
that GPPmax contributes more to GPP’s interannual variability than CUP in most ecosystem
types. This suggest that while the duration of the photosynthetically active period (CUP) is
crucial, the efficiency and capacity of photosynthesis during this period are more significant
determinants of overall productivity.

It has been suggested that vegetation GPPmax has the potential to continue to increase,
and modern plant trait measurements have found that leaf photosynthetic capacity varies
greatly among vegetation functional types. These variations can be attributed to differences
in stomatal conductance, nitrogen use efficiency, and the capability of plants to acclimatize
to changing environmental conditions through physiological adjustments. Studies under
warming scenarios have also shown that the relationship between vegetation growth
activity and temperature variability tends to weaken, and so does the extension of the
CUP [50]. This may be due to the saturation of photosynthetic rates at higher temperatures
and the increased occurrence of thermal stress, which can offset the benefits of longer
growing seasons. The role of controlling vegetation carbon sequestration by GPPmax will
be further strengthened. Given that GPPmax exhibits trends over time, greater focus should
be placed on plant physiological changes to better explain GPP variability and enhance
monitoring in terrestrial ecosystems.

4.4. Limitations and Uncertainties

Firstly, this study focuses primarily on how plant physiology and phenology affect
GPP. However, ecohydrological factors, such as precipitation, temperature, and soil mois-
ture, are also crucial for GPP growth. The situation and determinants vary across different
vegetation types. For instance, Zhao et al. found that temperature is the primary factor
influencing grassland growth in China. As latitude decreases, the correlation between GPP
and temperature weakens, and moisture becomes the most significant limiting factor [51].
For cropland, Zhao et al. observed a significant positive correlation between GPP and
precipitation in over half of the agricultural areas. Soil moisture and temperature were key
determinants of GPP sensitivity to precipitation in Chinese agricultural systems. Addition-
ally, changes in management practices and cropping patterns may contribute to increased
GPP [52]. For forest areas, Li et al. identified precipitation, rather than temperature, as the
climatic factor most affecting the interannual variation of forest GPP [53]. Additionally,
afforestation projects promoted a shift from lower to higher forest GPP and supported
a consistent increase in GPP, thereby enhancing its stability [54]. This study focuses on
the effects of plant physiology and phenology on GPP changes but does not consider
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the response of GPP to various ecological factors. Future studies should integrate these
ecological factors into the model for comprehensive analysis.

Secondly, we used remotely sensed and modelled data as a source of data for the GPP
in this study. Terrestrial ecosystem models have significant uncertainties in model structure,
parameterization, and driving data, and the correction and deterministic assessment of
model data become important scientific issues [55,56]. He et al. found significant overes-
timation or underestimation of GPP in both ISIMIP and MsTMIP models, particularly in
low-GPP regions [11]. This discrepancy may stem from uncertainties in model input data as
well as the model itself. Factors such as climate information, system noise, and processing
bias can affect the accurate simulation of GPP at the regional scale [13,56]. Variations in
climate input parameters can lead to differing GPP outputs for Chinese grasslands between
the two model datasets. Additionally, differences in environmental drivers and related
data—such as time-varying atmospheric CO2 concentrations, nitrogen deposition, C3/C4
fractions, major crop distributions, phenology, and soil characteristics—also contribute to
GPP over- or underestimation in model simulations [57]. We used remotely sensed and
modelled data as a source of data for the GPP in this study; while ensemble average data
reduced data uncertainty to some extent, the impact of internal model elements on GPP
data was not addressed. Future uncertainty analyses should evaluate the influence of
different model components to identify sources of uncertainty in GPP data.

5. Conclusions

This study analyzed the long-term trends of GPP and GPPmax across China’s terrestrial
ecosystems over the past 40 years by integrating results from two sets of terrestrial ecosys-
tem models and two sets of remotely sensed datasets. Additionally, partial correlation
analysis was used to examine the factors affecting inter-annual variations in GPP for these
ecosystems; the study found different proportions of upward trends in GPP and GPPmax
across various datasets. Among the multi-source data, the highest proportions of datasets
with upward trends in China’s grassland, cropland and forest were 81%, 98%, and 84%,
respectively. The spatial patterns of GPPmax trends were closely related to those of overall
GPP data. There was notable spatial heterogeneity in the trends of GPP and GPPmax derived
from both models and remote sensing data. This finding underscored the insufficiency of
relying on a single data source for a comprehensive analysis of GPP and GPPmax trends. To
gain a detailed understanding of the spatial and temporal dynamics of ecosystem GPP in
China, it is essential to compare multiple GPP datasets. Therefore, the study recommended
using a combination of multiple data sources to evaluate the long-term dynamics of GPP. A
comparison of the effect sizes of CUP and GPPmax on interannual GPP variations using
partial correlation analyzes showed that GPPmax controlled interannual GPP variations in
most areas of China’s terrestrial ecosystems. This was particularly evident in grassland,
where more than 99% of the inter-annual variation in grassland GPP was controlled by
GPPmax. In conclusion, the integration of multiple data sources and the dominant role of
GPPmax highlighted the complex and critical factors driving the inter-annual variations
and long-term trends of GPP in China’s terrestrial ecosystems.
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