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Abstract: As climate change intensifies, drought has become a major global engineering and envi-
ronmental challenge. In critical areas such as agricultural production, accurate drought monitoring
is vital for the sustainable development of regional agriculture. Currently, despite extensive use of
traditional meteorological stations and remote sensing methods, these approaches have proven to
be inadequate in capturing the full extent of drought information and adequately reflecting spatial
characteristics. Therefore, to improve the accuracy of drought forecasts and achieve predictions
across extensive areas, this paper employs deep learning models, specifically introducing an attention-
weighted long short-term memory network model (AW-LSTM), constructs a composite drought
monitoring index (CDMI) and validates the model. Results show that: (1) The AW-LSTM model
significantly outperforms traditional long short-term memory (LSTM), support vector machine (SVM)
and artificial neural network (ANN) models in drought monitoring, offering not only better ap-
plicability in meteorological and agricultural drought monitoring but also the ability to accurately
predict drought events one month in advance compared to machine learning models, providing a
new method for precise and comprehensive regional drought assessment. (2) The Huang-Huai-Hai
Plain has shown significant regional variations in drought conditions across different years and
months, with the drought situation gradually worsening in the northern part of Hebei Province,
Beijing, Tianjin, the southern part of Huai North and the central part of Henan Province from 2001
to 2022, while drought conditions in the northern part of Huai North, southern Shandong Province,
western Henan Province and southwestern Hebei Province have been alleviated. (3) During the
sowing (June) and harvesting (September) periods for summer maize, the likelihood of drought
occurrences is higher, necessitating flexible adjustments to agricultural production strategies to adapt
to varying drought conditions.

Keywords: deep learning; long short-term memory networks; drought monitoring; Huang-Huai-Hai
Plain

1. Introduction

Drought, as an extreme climatic event, poses a serious challenge to global food secu-
rity [1,2]. As global warming intensifies, water scarcity is becoming more acute, leading to
an increase in the intensity, frequency and duration of droughts, making drought trends a
global concern [3]. China, a major agricultural country, suffers significant losses in agricul-
tural production and national economic development due to frequent droughts caused by
the instability of annual monsoons and the complexity of natural geographical features,
resulting in uneven distribution of water and heat [4,5]. According to statistics, since the
21st century, food losses have doubled compared to the 1980s, with an annual average food
loss due to drought of 37.284 million tons [6]. In 2022, droughts in China affected an area of
6.09 million hectares of crops, accounting for 50.45% of the total area affected by natural dis-
asters that year; food losses amounted to 5.744 million tons, economic crop losses reached
CNY 14.944 billion and the direct economic losses were up to CNY 51.285 billion [7]. This
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shows that drought has a severe impact on agricultural production in China, posing a
serious threat to China’s food security and sustainable development. Therefore, under-
standing the changes and trends in agricultural drought problems, improving the effective
monitoring and accurate prediction of drought and minimising the economic and social
losses caused by drought are of great importance to national and social stability.

Current drought monitoring methods include traditional meteorological monitoring
and remote sensing [8–10]. Meteorological monitoring offers high accuracy and ease of data
acquisition but lacks spatial continuity and cannot precisely monitor the spatial distribution
of drought conditions; remote sensing can collect surface parameters in real-time over large
areas, helping to comprehensively reflect the moisture conditions of soil and vegetation and
reveal actual imbalances in water balance, but it is often limited to single or few indicators,
overlooking the multifactorial complexity of droughts. To overcome these limitations,
many scholars have recently endeavoured to combine various factors influencing drought
to construct comprehensive monitoring models [11–14]. For example, Wang and others [15]
in the North China Plain integrated seven drought indices to create the Aggregate Drought
Index (ADI), which was then used to quantitatively analyse the impact of drought on crop
yields, especially examining the relationship between climate yield variability of winter
wheat and ADI values through time series and panel regression models. Similarly, Yu
Haozhe and colleagues [16] combined indices such as the Precipitation Condition Index
(PCI), Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) through a
multivariate linear regression model to create the Comprehensive Drought Index (CDI),
which allows for more accurate monitoring of drought conditions in the Jing-Jin-Ji region.
In another study, Xu and others [17] utilized the Copula function and data on precipitation,
potential evapotranspiration and soil moisture to develop the Standard Precipitation,
Potential Evapotranspiration and Root-Zone Soil Moisture Index (SPESMI) for Henan
Province, highlighting its applicability in agricultural drought monitoring and its ability
to capture seasonal variations. Furthermore, ArunKumar and colleagues [18] integrated
indices such as the Precipitation Condition Index (PCI), Temperature Condition Index (TCI),
Soil Moisture Condition Index (SMCI) and Vegetation Condition Index (VCI), applying
principal component analysis to develop the Integrated Drought Monitoring Index (IDMI),
effectively used for assessing and monitoring agricultural drought in southeastern India.

Although current drought monitoring research has made some progress, there are still
significant shortcomings: traditional regression methods rely on multiple experiments to
determine weights and assume that drought-causing factors are limited, which restricts
their ability to handle complex environments; moreover, although traditional machine
learning methods can process multidimensional data, they require tedious feature selection
and dimension reduction in practical applications [19,20]. In contrast, deep learning can
automatically learn and extract data features through a layered neural network structure,
thus avoiding manual intervention and improving prediction accuracy. In building com-
prehensive drought monitoring models, deep learning algorithms can extract more useful
features from a multitude of drought factors [21,22]. For example, Dikshit and others have
demonstrated that using recurrent neural networks (RNNs) and long short-term memory
networks (LSTMs) can effectively predict drought [23]. However, most current research
applying deep learning to drought monitoring remains limited to basic model stages. Most
existing studies focus on implementing and testing standard neural network models, such
as basic RNNs and LSTMs, without delving into or customizing more complex network
structures and algorithm optimizations to meet the specific needs and challenges of drought
prediction. Therefore, this study enhances the LSTM model by further optimizing it and
introducing an attention mechanism to improve the model’s efficiency in recognizing
key features over long time sequences, aiming to significantly increase the accuracy and
practicality of drought predictions.
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2. Materials and Methods
2.1. Study Area

The Huang-Huai-Hai Plain is one of the three major plains of China and is the most
populous. The plain is located between 32~40◦ N and 114~121◦ E [24]. A map of the study
area is shown in Figure 1. This region has a temperate monsoon climate, with hot and
humid summers, cold and dry winters and distinct seasons. Average annual rainfall is
480–1050 mm [25], unevenly distributed across the region, with less in the north and more
in the south. The terrain is mainly plain, but includes some low mountainous and hilly
areas, with an overall flat topography and low elevations. The region is traversed by rivers
such as the Yellow, Huai and Hai Rivers, which form a rich network of water systems across
the plains and play a crucial role in local irrigation and agricultural development [26].
The total arable land area of the Huang-Huai-Hai Plain is 214,000 square kilometres, of
which 40.15% is first- to third-class arable land, 49.22% is fourth- to sixth-class arable
land and 10.64% is seventh to tenth class arable land [27]. Corn is grown on an area of
60,000 square kilometres, with a total production of around 2.2 billion tonnes, mainly
planted between June and September [28]. The excellent geographical conditions of the
region greatly enhance agricultural production.
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Figure 1. Overview of the study area. (a) Geographic location of the study area. (b) Administrative
division map of the study area. (c) Elevation map and distribution of meteorological stations in the
study area. (d) Rainfall distribution in the study area.

2.2. Data Preparation and Processing
2.2.1. CRU_TS Data

This study uses the CRU_TS (Climatic Research Unit Gridded Time Series) data
produced by the Climate Research Unit of the University of East Anglia in Norwich,
England. This dataset has a resolution of 0.5◦, covers all land areas of the globe except
Antarctica, spans 1901 to 2022 and includes ten observed and derived variables, with
some missing values within regions. The CRU_TS dataset has been widely used for
drought monitoring and has undergone comprehensive review and validation [29,30]. The
dataset can be downloaded from the East Anglia University Climate Research Unit website
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(https://catalogue.ceda.ac.uk), accessed on 14 April 2024. This research selected seven
variables from the dataset, categorized into primary variables (precipitation and average
temperature), secondary variables (vapor pressure and cloud cover) and derived variables
(minimum temperature, maximum temperature and potential evapotranspiration). Addi-
tionally, this study utilized the global SPEI (Standardized Precipitation Evapotranspiration
Index) database from the CRU dataset, downloading global SPEI data on a three-month
timescale, available at https://spei.csic.es/database.html, accessed on 14 April 2024.

2.2.2. Land Use Data

The land use data utilized in this study come from two significant databases. The land
use data from 1980 to 2015 were provided by the National Tibetan Plateau Data Centre
(https://data.tpdc.ac.cn, accessed on 14 April 2024) issued every five years, totalling seven
periods, with a spatial resolution of 1 km. The global land use classification maps from 2017
to 2021 were supplied by the Environmental Systems Research Institute (ESRI), available
at (https://livingatlas.arcgis.com, accessed on 14 April 2024) with data released annually
and a spatial resolution of 10 m. In this study, covering the period from 2001 to 2022, land
use classification maps from 2000 and 2021 were specifically selected as key time points
for analysis. The 2000 data serves as the starting point for the study period and the 2021
data represents the most recent land use data in the dataset. The analysis of land use
differences between these two times discusses the potential impacts these differences might
have on drought trend analysis. Land use classification maps for 2000 and 2021 are shown
in Figure 2.
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2.2.3. Meteorological Data

The meteorological data used in this study include monthly precipitation, average
monthly temperature and 10 cm soil moisture data, covering 30 weather stations across the
Huang-Huai-Hai Plain, from January 2001 to December 2022. Detailed information on the
meteorological observation stations involved in the study can be found in Table 1. The data
were sourced from the China Meteorological Data Network (http://data.cma.cn/, accessed
on 14 April 2024).

https://catalogue.ceda.ac.uk
https://spei.csic.es/database.html
https://data.tpdc.ac.cn
https://livingatlas.arcgis.com
http://data.cma.cn/
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Table 1. Information on meteorological observation stations in the study.

Area Station Name Longitude Latitude Area Station Name Longitude Latitude

Bozhou 115.44 33.47 Nanyang 112.29 33.06
Fuyang 115.44 32.52 Xihua 114.31 33.47
Beijing 116.28 39.48 Yongcheng 116.27 33.58
Xingtai 114.22 37.11 Pizhou 118.01 34.24

Qinglong 118.57 40.25 Xuzhou 117.09 34.17
Tangshan 118.06 39.39 Guanyun 119.14 34.15
Baoding 115.29 38.44 Lingcheng 116.31 37.19

Botou 116.33 38.05 Zhangqiu 117.33 36.41
Huanghua 117.19 38.24 Kenli 118.33 37.35
Nangong 115.23 37.22 Yiyuan 118.1 36.11
Anyang 114.08 36.03 Weifang 119.12 36.45
Mengjin 112.28 34.48 Qingdao 120.2 36.04

Zhengzhou 113.39 34.43 Dingtao 115.31 35.05
Kaifeng 114.18 34.47 Yanzhou 116.51 35.34

2.2.4. Other Data

Other data include summer maize yield data, agricultural water usage data, population
data and GDP data. Statistics from 2006 to 2021 for the five provinces of the Huang-Huai-
Hai Plain (Shandong, Hebei, Henan, Beijing, Tianjin) on summer maize planted area yield,
population, GDP and agricultural water usage are all sourced from the China Statistical
Yearbook (https://www.stats.gov.cn, accessed on 14 April 2024).

2.2.5. Data Preprocessing

(1) CRU_TS Data Processing

Verify the time and spatial match of the data, check for missing and outlier values
and confirm the consistency of measurements and units across all data sources. Convert
NETCDF4 data format uniformly to TIF format and define the WGS84 coordinate system
for the data. Background values are set to an extreme value and ignored during processing.
Check the shape of input data to ensure all data have the same shape for reshaping. In
machine learning and deep learning, input values of different proportions need to be
normalized. Normalization ensures that observations follow a Gaussian distribution, using
their mean and standard deviation rather than extreme values to ensure the robustness
of new data. This study uses sklearn’s StandardScaler to normalize the dataset, ensuring
consistent interpretation and evaluation standards for all features.

(2) Land Use Data Processing

This study standardized the land use data for 2000 and 2021 to the WGS-84 coordinate
system and resampled the spatial resolution of 2021 data to 1 km to match the resolution of
2000 data. Land cover types were categorized into five classes: forests, grassland, water,
urban and farmland.

2.3. Modelling of Attention-Weighted Long- and Short-Term Memory Networks

Machine learning models analyse and train large datasets of disaster-causing factors
to reveal the interrelationships among these factors. RNNs consider both current and
previous input data to map target vectors, offering significant advantages over traditional
neural network models that rely solely on weight multiplication. Additionally, RNNs
can store internal memories of previous inputs, allowing them to reflect on past events,
which is crucial in fields like drought prediction [21]. However, RNNs may face issues of
vanishing and exploding gradients when stacked, a problem effectively addressed by the
introduction of long short-term memory networks (LSTMs) [31]. LSTMs were proposed
by Hochreiter and Schmidhuber in 1997 [32] and have been extensively developed and
applied in subsequent research.

https://www.stats.gov.cn
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Recurrent neural networks utilize a chain of repeated neural network modules. For
example, in a standard RNN, this repeating module structure is very simple, containing
only a tanh layer. LSTMs also adopt a chain-like structure, but their repeating module
is constructed differently, consisting of four interacting layers instead of a single neural
network layer. In LSTMs, the core components are gate structures that control the flow
of information. These include the forget gate (deciding which information to discard),
the input gate (selecting information to update the memory state) and the output gate
(determining the output based on the input and memory state). The forget and input
gates are responsible for updating the internal state, while the output gate controls the
final output. The functioning of the gates and the information flow can be represented by
specific mathematical equations [33,34]. The formulas are as follows:

ft = σ(W f [ht−1, xt] + b f ) (1)

it = σ(Wi[ht−1, xt] + bi) (2)

C̃t = tanh(WC[ht−1, xt] + bC) (3)

Ct = ft × Ct−1 + it × C̃t (4)

ot = σ(Wo[ht−1, xt] + bo) (5)

ht = ot × tanh(Ct) (6)

where xt is the input vector at time t, σ is the activation function such as sigmoid, Relu
function. W f , Wi, WC and Wo are the weights of the new input xt and the output ht−1 from
the previous unit, where b f , bi, bC and bo are the corresponding biases. ft, it and ot are the
outputs of the three sigmod σ functions and have values in the range 0–1.

This study proposes a new network model—attention-weighted long short-term
memory (AW-LSTM)—by integrating an attention mechanism into the long short-term
memory network (LSTM) to enhance the model’s performance and improve its ability to
recognize long-distance dependencies. The model structure is shown in Figure 3. The
model consists of two parts:

(1) The first part is the channel attention mechanism, which emphasizes key features and
weakens others by assigning weights to the feature sequence. The weight coefficients
are calculated through two fully connected layers after average pooling. The first
fully connected layer uses a RELU activation function and the second uses a Sigmoid
activation function. Initially, the average pooling layer reduces the dimensions and
captures global features; then, two fully connected layers process the pooled data,
where the first layer reduces dimensions and the second restores them, outputting
attention scores for each channel.

(2) The second part is the LSTM layer, a recurrent neural network layer for processing
time series. In the model, the channel attention mechanism first weights the input
data, which is then fed into a two-layer LSTM structure. The first layer has a hidden
dimension of 50, utilizing the LSTM’s temporal processing capabilities to extract
features from sequence data. The second layer, with a hidden dimension of 25, helps
capture more complex temporal dependencies and enhances model performance.
Finally, after passing through a fully connected layer, the output layer produces
the predicted values. Repeated experiments have shown that this structural design
achieves optimal predictive performance.
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Regarding dataset division, data from 1901 to 2000 is used for training, while data
from 2001 to 2022 is used for validation. The input to the network is in the form of a 3D
tensor, represented as [sample_size, time_steps, features]. Here, sample_size is the training
data, monthly data from 1901 to 2000. time_steps is the size of the time window used for
predicting CDMI, set to 3, meaning the parameters from the previous three months are
used to predict the Composite Drought Monitoring Index (CDMI) for the fourth month.
features represents the number of weather variables used to predict CDMI; in this study,
7 variables are used, thus the value is 7. In the model, a dropout mechanism is added
to prevent overfitting during training; repeated experiments have found that setting it to
0.1 yields the best effect.

2.4. Precision Evaluation Index

In this paper, the coefficient of determination R2 (R-squared), the root mean square
error RMSE (root mean square error) and the mean absolute error MAE (mean absolute
error) are used to evaluate the model fitting accuracy. R2 is commonly used to measure the
model’s ability to account for variation, but is not suitable for comparing the performance
of different models. RMSE and MAE, on the other hand, are more commonly used to
evaluate the accuracy of predictive models, with RMSE being more sensitive to outliers
and MAE providing an intuitive way to measure model error. The larger the R2 value the
better the model performance. the smaller the RMSE and MAE values the better the model
performance. The formulas are shown below:

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (7)

RMSE =

√
1
n

n

∑
i−1

(yi − ŷi)
2 (8)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (9)

where yi is the true value; ŷi is the predicted value; y is the average of the true values.

3. Results
3.1. Model Accuracy Assessment

The model was validated on training and validation sets using R2, RMSE and MAE
and compared with commonly used machine learning models in drought monitoring such
as support vector machine (SVM) [35] and artificial neural network (ANN) [36] as well as
the original unimproved LSTM model [37], as shown in Table 2. The results indicate that
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the R2 between the estimated CDMI values and the measured SPEI on the training set is
0.991 and on the validation set is 0.982; RMSEs are 0.094 and 0.141, and MAEs are 0.070 and
0.098, respectively, for the test and training sets. The model performs comparably on both
the training and validation sets and shows significant improvements over the unimproved
LSTM, SVM and ANN models. This demonstrates the high simulation accuracy of the
AW-LSTM model, with good fitting and generalization capabilities on new data.

Table 2. Accuracy evaluation of AW-LSTM, LSTM, SVM and ANN models on validation and
training sets.

Model
Train Validation

R2 RMSE MAE R2 RMSE MAE

AW-LSTM 0.991 0.094 0.070 0.982 0.141 0.098
LSTM 0.959 0.102 0.076 0.947 0.149 0.105
SVM 0.789 0.129 0.088 0.774 0.177 0.125
ANN 0.882 0.112 0.081 0.866 0.162 0.114

The AW-LATM model demonstrates clear advantages over traditional machine learn-
ing models in drought monitoring for the following reasons: (1) The AW-LSTM enhances
the LSTM’s ability to process time-series data through the attention mechanism, enabling
the model to focus on time points that have the greatest impact on the prediction outcome,
thus improving accuracy. (2) The AW-LSTM model emphasizes key information in the
time series by dynamically allocating weights, rather than treating all data points equally.
This approach is particularly effective in capturing complex drought development pat-
terns. (3) AW-LSTM uses regularization techniques and built-in gating mechanisms to
prevent overfitting during model training, ensuring the model’s generalization ability on
unseen data.

Referring to the SPEI drought classification standard [38], CDMI values are catego-
rized into extreme drought, severe drought, moderate drought, mild drought, normal,
mildly moist, moderately moist, severely moist and extremely moist (Table 3). This paper
calculated the concordance rate between the SPEI actual values and AW-LSTM model esti-
mated values for drought grades, as shown in Table 4, where the concordance rate between
actual SPEI values and training set estimated values (CDMI) is 89.2%, and between actual
SPEI values and validation set estimated values (CDMI) is 87.8%. Additionally, we focused
on analysing the spatiotemporal variations during the summer maize growing season
(June–September) from 2018 to 2019, as shown in Figure 4, where (a) represents AW-LSTM
model estimated values (CDMI) and (b) represents SPEI actual values. The analysis of
this period can be considered a good estimate of the model’s predictive ability for other
periods. The diagram shows a high degree of consistency between model estimated values
(CDMI) and SPEI actual values, with only minor differences in rare cases. For example, in
September 2019, in southern Shandong Province, southern Henan Province and northern
Huai North area, CDMI predicted severe drought while SPEI mostly indicated moderate
drought, showing CDMI values were drier than SPEI values. Such local differences are
common in predictions and are insufficient to affect the overall assessment and understand-
ing of widespread drought trends. Overall, the model has high simulation accuracy and
good predictive ability for new data, making it an effective tool for drought monitoring
in the region, providing a favourable scientific basis for the prevention and mitigation of
drought in the Huang-Huai-Hai Plain.
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Table 3. Standardized Precipitation Evapotranspiration Index (SPEI) drought classification.

Level Drought Type SPEI Value

1 extremely moist SPEI ≥ −2
2 severely moist 1.5 < SPEI < 2
3 moderately moist 1 < SPEI < 1.5
4 mildly moist 0.5 < SPEI < 1
5 normal −0.5 < SPEI < 0.5
6 mild drought −1 < SPEI ≤ −0.5
7 moderate drought −1.5 < SPEI ≤ −1
8 severe drought −2 < SPEI ≤ −1.5
9 extreme drought SPEI ≤ −2

Table 4. Analysis of consistency rates for AW-LSTM model predictions in training and validation
sets.

Consistency Rate

Training Set 89.2%
Validation Set 87.8%

Figure 4. Drought monitoring during the summer maize growing season (June–September) from
2018 to 2019. (a) Model estimated values (CDMI). (b) SPEI actual values.

3.2. Correlation Analysis Based on Meteorological Drought

To validate the model’s capability in meteorological drought monitoring, this study
used monthly temperature and precipitation data from 30 stations across the Huang-Huai-
Hai Plain to calculate the Standardized Precipitation Evapotranspiration Index (SPEI)
and conducted a validation analysis of the Composite Drought Monitoring Index (CDMI)
estimated by the AW-LSTM model. SPEI integrates two key variables—precipitation
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and temperature—not only sensitively reflecting changes in potential evaporation due to
temperature changes but also the impact of precipitation amounts. SPEI has been widely
used in global drought monitoring. Research shows that the SPEI-1, with a one-month
timescale, is particularly suitable for monitoring meteorological drought because it can
sensitively reflect short-term climatic changes and precipitation anomalies [39]. During the
summer maize growing season from 2001 to 2022 (June to September), a correlation analysis
between CDMI and SPEI-1 was conducted, with a scatter plot shown in Figure 5. The results
indicate that CDMI has a strong correlation with SPEI-1, with all R2 values above 0.85,
except for June, which had an R2 of 0.776, and all months passed the significance test with
p < 0.01. This emphasizes the significant correlation between the CDMI constructed by the
AW-LSTM model and the meteorological drought index during the summer maize growing
season in the Huang-Huai-Hai Plain, demonstrating the model’s excellent potential in
meteorological drought monitoring.

Figure 5. Scatter plot of CDMI versus SPEI with a one-month timescale.

3.3. Correlation Analysis Based on Agricultural Drought

To validate the model’s applicability in agricultural drought monitoring, this study
calculated the SPEI for a three-month timescale at 30 sites across the Huang-Huai-Hai Plain
and conducted a validation analysis of the Composite Drought Monitoring Index (CDMI)
estimated by the AW-LSTM model. The three-month SPEI is suitable for agricultural
drought studies, focusing on soil moisture conditions and their impact on crop growth,
which is typically related to longer periods of moisture accumulation and deficiency [39].
The three-month SPEI provides a comprehensive assessment of moisture conditions over
time, better reflecting the average moisture conditions during the crop growing season. By
calculating the SPEI-3 for the summer maize growing period (June–September) from 2001 to
2022, the correlation between SPEI-3 and the AW-LSTM model’s estimated values (CDMI)
was analysed, with a scatter plot of CDMI versus SPEI-3 shown in Figure 6. The results
indicate that the correlation between CDMI and SPEI-3 is above 0.9, and both passed the
significance test with p < 0.01, demonstrating the AW-LSTM model’s excellent suitability in
agricultural drought monitoring.
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Soil moisture is a decisive factor in agricultural drought [40]. To further validate the
model’s applicability in agricultural drought monitoring, this study analysed the correlation
between 10 cm soil moisture and the Comprehensive Drought Monitoring Index (CDMI) at
30 sites during the summer maize growing season (June–September) from 2001 to 2022. The
scatter plot of soil moisture and CDMI is shown in Figure 7. The results indicate that there
is a strong correlation between CDMI and 10 cm soil moisture. The correlation coefficient
in July is above 0.6, while in June, August and September, it exceeds 0.7, all passing the
significance test with p < 0.01. The model-derived Comprehensive Drought Monitoring
Index (CDMI) effectively reflects soil moisture information and can be applied to regional
agricultural drought monitoring.
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In drought monitoring, it was found that the three-month SPEI (SPEI-3) performs
better than the one-month SPEI (SPEI-1), and the validation results using soil moisture data
are not as effective as those using SPEI. The main reason is that SPEI-3 covers a longer time
frame, better reflecting the average or cumulative moisture conditions during the summer
maize growing period in the Huang-Huai-Hai region. The three-month window aligns
more closely with the sensitive period of crop growth water demands, making SPEI-3 more
effective in agricultural drought monitoring. Soil moisture exhibits spatial heterogeneity at
different locations, reducing the accuracy when applied across large areas; under drought
conditions, human activities such as irrigation can impact soil moisture levels, thereby
reducing the reliability of using soil moisture data for model validation.

3.4. Characteristics of the Spatial Distribution of the Huang-Huai-Hai Plain
3.4.1. Spatial Distribution Characteristics of the Huang-Huai-Hai Plain

The monthly CDMI data from 2001 to 2022 were compiled into an annual average
CDMI and the compiled 22 annual average CDMI images were analysed using a linear
trend (slope) method to assess the drought trends over 22 years in the Huang-Huai-Hai
Plain. The slope trend map, shown in Figure 6, indicates that positive values represent an
upward slope and negative values represent a downward slope. By calculating the slope
of the drought index, the slope trend map clearly shows whether the severity of drought
is increasing, decreasing or remaining stable. Positive coefficients indicate a decreasing
trend in drought severity over time, while negative coefficients indicate an increasing trend.
As shown in Figure 8, there is an increasing trend in drought severity in northern Hebei
Province, Beijing, Tianjin, the southern Huai North area and central Henan Province. A
decreasing trend is observed in the northern Huai North area, southern Shandong Province,
western Henan Province and southwestern Hebei Province. The slope values in other areas
are close to zero, indicating no significant change in drought conditions. This is consistent
with the drought conditions described in the literature.
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For each summer maize growing season from 2001 to 2022 (June, July, August, Septem-
ber), 22 drought spatial distribution maps were synthesized, as shown in Figure 9. It is
evident from the maps that agricultural drought in the Huang-Huai-Hai Plain is markedly
regional and varies annually in extent and severity. In 2001, 2014, 2017 and 2019, droughts
covered the entire Huang-Huai-Hai region. The droughts of 2014 and 2017 were primarily
mild, whereas those of 2001 and 2019 were severe or predominantly moderate to severe.
The severity of the drought decreased from the west to the east in 2001, from the northwest
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to the southeast in 2014 and 2017 and from the northeast to the southwest in 2019. In 2002,
2006 and 2015, droughts primarily occurred in the northern parts of Hebei, Shandong and
Henan provinces, with severity decreasing from northeast to southwest. In 2011, 2012, 2013
and 2022, droughts mainly affected the southern parts of Shandong and Henan provinces
and the northern Huai region, with severity decreasing from southwest to northeast. In
other years, droughts were mild, with the entire region primarily experiencing light or no
drought conditions.
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For the summer maize growing season in the Huang-Huai-Hai Plain, this study
analysed the drought trend over 22 years from June to September of 2001 to 2022, using
22 images each month and applying the linear trend method (slope), as illustrated in
Figure 10. Analysis of the figure shows that in June, the drought intensified in Beijing,
Tianjin, Hebei, Shandong and the northeastern part of Henan, while other areas experienced
a relief in drought trends. Similar trends of drought changes occurred in July, August and
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September, with increased drought severity in the entire Henan Province and eastern
Shandong, while drought in Beijing, Tianjin and northern Hebei eased.
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3.4.2. Temporal Distribution Characteristics of the Huang-Huai-Hai Plain

Based on the AW-LSTM model, a comprehensive drought monitoring index (CDMI)
was developed for 2001 to 2022. The monthly and annual average CDMI from June to
September over these years was calculated, with monthly variations shown in Figure 11
and annual changes in Figure 12. The data shows that during 2001 to 2022, drought
in the Huang-Huai-Hai Plain was variable, with significant droughts occurring in 2001,
2002, 2006, 2011, 2014 and 2019, particularly in 2001 and 2002, where most of the year
experienced drought. This aligns with the three consecutive years of drought from 2000
to 2002, following the El Niño event of 1998. The CDMI showed fluctuations throughout
the months, with more frequent droughts in June and September, while July and August
were generally moister with fewer occurrences of drought. June marks the planting season
for summer maize in the Huang-Huai-Hai Plain and September the harvest. During these
critical agricultural phases, large areas of land are temporarily bare due to sowing and
harvesting activities, reducing vegetation cover. This not only decreases the soil’s ability
to retain moisture but also increases evaporation, especially under the high temperatures
of summer, exacerbating the onset and development of drought. Due to higher rainfall in
July and August and the presence of major rivers like the Yellow, Huai and Hai rivers in
the region, these factors collectively reduce the impact of drought. During these months,
the ample rainfall and river water resources usually meet agricultural and other water
demands, significantly mitigating the adverse effects of drought. Thus, drought does not
greatly affect the region during this period.
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4. Discussion
4.1. Impact of Land Cover Type

Land use classification maps for 2000 and 2021, as shown in Figure 2, categorize the
land into five types: forests, grassland, water, urban and farmland. The analysis of the
land cover proportions in the study area for these years reveals that the Huang-Huai-Hai
Plain predominantly consists of farmland, urban land and forests. In 2000, farmland, urban
and forests comprised 65.85%, 12.25% and 10.62% of the total area, respectively; in 2021,
these figures changed to 54.91%, 22.55% and 3.84%. Other land cover types were minimal
and can be disregarded in the study. From 2000 to 2021, the coverage of farmland and
forests decreased by 10.94% and 6.87%, respectively, while urban areas increased by 10.3%.
Moreover, the expansion of urban areas disrupted the water cycle, reduced rainfall and
enhanced the urban heat island effect. This led to increased temperatures and evaporation,
further exacerbating drought conditions. Forests have a significantly greater capacity to
retain water than farmlands, especially in the western regions of Henan Province, where
forest coverage is extensive. According to Figure 10, which shows the trends of change
from June to September over 22 years, the reduction in drought was most significant in
June. Despite an increase in drought severity in July, August and September, it remained
below that of the surrounding areas.
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4.2. The Impact of Different Factors on Drought

Additionally, this study analysed the impact of population, GDP, summer maize yield
per unit area and agricultural water usage on drought. Table 5 provides statistics from
2006 to 2021 on population, GDP, summer maize yield per unit area and agricultural water
usage. Figure 13 shows the trends over time for these variables. Additionally, average
precipitation data from June to September from 2006 to 2021 were synthesized to calculate
the average precipitation during the summer maize growing season, as shown in Figure 12.
Analysis indicates that from 2006 to 2021, the population in the Huang-Huai-Hai Plain
increased by 9.86%. The population growth led to increased food demand, which imposed
higher demands on agricultural output, increasing the need for both land and water. The
significant increase in GDP, coupled with rapid urban expansion, led to higher urban and
industrial water usage, intensifying competition for water resources, not only reducing the
water available for agriculture but also facing challenges due to the uneven distribution of
rainfall. Figure 13 shows a decreasing trend in agricultural water supply, while summer
maize, which has a high water demand, consumes significant amounts of agricultural
water. The trends in precipitation over time, shown in Figure 14, are similar to those of the
summer maize yield per unit area, indicating that precipitation remains the primary factor
influencing drought under conditions of limited water resources. Considering the water
resource challenges in the Huang-Huai-Hai Plain, especially in drought years, adopting
reasonable and efficient water management strategies is crucial for ensuring summer maize
yield. In summary, population growth and economic development in the Huang-Huai-Hai
Plain not only increase the demand for summer maize but also provide opportunities to
improve agricultural production conditions. Thus, drought monitoring and efficient water
resource management are key to ensuring stable yields of summer maize, particularly when
addressing climate risks such as drought.

Table 5. Population, GDP, summer corn yield per unit area and agricultural water usage, 2006–2021.

Time
Agricultural Water

Usage (Billion
Cubic Meters)

Corn Yield per
Unit Sown Area

(kg/ha)

Population
(10,000 s)

GDP
(Billion
CNY)

Precipitation
(mm)

2006 487.5 27,220.9 28,275 52,913.9 112.25
2007 456.9 27,903.1 28,461 64,279.4 147.18
2008 215.1 28,898.6 28,782 76,037.7 132.99
2009 576.0 28,325.7 29,079 82,639.2 115.31
2010 445.9 28,212.0 29,448 96,375.9 131.69
2011 436.7 29,810.4 29,723 112,069.6 122.35
2012 453.6 29,318.8 29,993 123,064.4 118.6
2013 450.5 29,539.1 30,142 134,316.4 114.32
2014 423.4 27,641.2 30,376 144,125.1 108.95
2015 417.4 28,679.1 30,539 154,429.9 109.76
2016 413.1 29,225.1 30,764 166,004.3 137.93
2017 388.7 30,425.0 30,848 180,811.4 120.57
2018 388.7 30,962.5 30,942 195,548.3 130.97
2019 387.2 31,489.0 31,029 208,737.5 109.01
2020 378.7 31,763.1 31,146 213,022.7 150.11
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4.3. Limitations of Drought Monitoring Models

The composite drought monitoring index CDMI, constructed using the AW-SLTM
model in this study, has certain limitations that need to be further refined in future work.
Here are the main constraints and directions for future development: (1) The spatial
resolution of the CRU dataset used is too low. A single pixel contains different surface
types, causing the calculation of drought indices to be affected by mixed pixel effects, which
decreases accuracy. (2) Deep learning models have the capability to extract high-level
features from a large number of low-level features. For this model, the more input factors,
the more drought information it can unearth. In the future, it may be worth considering
additional parameters such as soil moisture data and surface runoff data.
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5. Conclusions

This study introduces an attention-weighted long short-term memory network model
(AW-LSTM), which utilizes seven variables from the CRU dataset: precipitation, average
temperature, cloud cover, vapor pressure, minimum/maximum temperature and potential
evapotranspiration, to construct the Comprehensive Drought Monitoring Index (CDMI).
The analysis of drought conditions in the Huang-Huai-Hai Plain from 2001 to 2022 led to
the following conclusions:

(1) The AW-LSTM model outperforms traditional LSTM, SVM and ANN models in
drought monitoring, with a consistency rate of 89.2% on the training set and 87.8% on
the validation set. The model is suitably applicable for both meteorological and agri-
cultural drought monitoring. The correlation coefficient with the 1-month SPEI scale,
excluding June, was above 0.85 (p < 0.01); for the 3-month SPEI scale, it exceeded 0.9
(p < 0.01) and it also showed good correlation with 10 cm soil moisture, exceeding 0.7
in all months except July (p < 0.01), demonstrating the AW-LSTM model’s effectiveness
in comprehensive agricultural drought monitoring.

(2) Drought conditions in the Huang-Huai-Hai Plain show significant variability across
different years and months. During the summer maize planting period, June and
September are periods of relatively severe drought. In June, drought trends intensified
in Shandong, Hebei, Beijing, Tianjin and northern Henan, while southern Henan and
the Huai Bei area experienced drought relief; in July, August and September, as time
progressed, drought trends intensified in Shandong, Henan and Huai Bei, but eased
in Hebei, Beijing and Tianjin.

(3) From 2001 to 2022, there has been a declining trend in cultivated land and forested
areas, which has similarly contributed to the further occurrence of drought.

Author Contributions: Conceptualization, J.Z.; methodology, J.Z.; software, J.Z.; validation, J.Z.;
formal analysis, J.Z.; investigation, J.Z.; resources, J.Z.; data curation, J.Z.; writing—original draft
preparation, J.Z.; writing—review and editing, Y.F.; writing—review and editing, Q.G. and J.Z.;
visualization, G.F.; supervision, Q.G.; project administration, Y.F.; funding acquisition, Y.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Youth Fund (42106215),
Shandong Natural Science Youth Fund (ZR202103030691), Self-innovation Project-Strategic Spe-
cial Project (22CX01004A-3) and Science and Technology Unveiling Special Project (2201-34).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Singh, W.R.; Barman, S.; Vijayakumar, S.V.; Hazarika, N.; Kalita, B.; Taggu, A. Drought Assessment in the Districts of Assam

Using Standardized Precipitation Index. J. Earth Syst. Sci. 2024, 133, 43. [CrossRef]
2. Khan, N.; Shahid, S.; Chung, E.-S.; Kim, S.; Ali, R. Influence of Surface Water Bodies on the Land Surface Temperature of

Bangladesh. Sustainability 2019, 11, 6754. [CrossRef]
3. Ezzine, H.; Bouziane, A.; Ouazar, D. Seasonal Comparisons of Meteorological and Agricultural Drought Indices in Morocco

Using Open Short Time-Series Data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 36–48. [CrossRef]
4. Wang, Y.; Zhang, Q.; Wang, J.; Han, L.; Wang, S.; Zhang, L.; Yao, Y.; Hao, X.; Wang, S. New progress and prospect of drought

research since the 21st century. J. Arid Meteorol. 2022, 40, 549–566.
5. Zhang, Q.; Yao, Y.; Li, Y.; Huang, J.; Ma, Z.; Wang, Z.; Wang, S.; Wang, Y.; Zhang, Y. Progress and prospect on the study of causes

and variation regularity of droughts in China. Acta Meteorol. Sin. 2020, 78, 500–521. [CrossRef]
6. Zhang, J.; Qu, Y. Exploration of Drought Disaster Evolution Patterns and Drought Relief Strategies in China Over the Past

30 Years. China Flood Drought Manag. 2008, 18, 47–52. [CrossRef]
7. Compilation Group of China Flood and Drought Disaster Prevention Bulletin. Summary of China Flood and Drought Disaster

Prevention Bulletin 2022. China Flood Drought Manag. 2023, 33, 78–82. [CrossRef]

https://doi.org/10.1007/s12040-024-02256-9
https://doi.org/10.3390/su11236754
https://doi.org/10.1016/j.jag.2013.05.005
https://doi.org/10.11676/qxxb2020.032
https://doi.org/10.16867/j.cnki.cfdm.2008.05.014
https://doi.org/10.16867/j.issn.1673-9264.2023410


Land 2024, 13, 615 19 of 20

8. Baniya, B.; Tang, Q.; Xu, X.; Haile, G.; Chhipi-Shrestha, G. Spatial and Temporal Variation of Drought Based on Satellite Derived
Vegetation Condition Index in Nepal from 1982–2015. Sensors 2019, 19, 430. [CrossRef] [PubMed]

9. Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal Drought Analysis by the Standardized Precipitation Index (SPI) and
Standardized Precipitation Evapotranspiration Index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [CrossRef]

10. Deng, H.; Cheng, F.; Wang, J.; Wang, C. Monitoring of Drought in Central Yunnan, China Based on TVDI Model. Pol. J. Environ.
Stud. 2021, 30, 3511–3523. [CrossRef]

11. Jiao, W.; Wang, L.; Novick, K.A.; Chang, Q. A New Station-Enabled Multi-Sensor Integrated Index for Drought Monitoring.
J. Hydrol. 2019, 574, 169–180. [CrossRef]

12. Zhang, Q.; Shi, R.; Xu, C.-Y.; Sun, P.; Yu, H.; Zhao, J. Multisource Data-Based Integrated Drought Monitoring Index: Model
Development and Application. J. Hydrol. 2022, 615, 128644. [CrossRef]

13. Saha, S.; Gogoi, P.; Gayen, A.; Paul, G.C. Constructing the Machine Learning Techniques Based Spatial Drought Vulnerability
Index in Karnataka State of India. J. Clean. Prod. 2021, 314, 128073. [CrossRef]

14. Prodhan, F.A.; Zhang, J.; Yao, F.; Shi, L.; Pangali Sharma, T.P.; Zhang, D.; Cao, D.; Zheng, M.; Ahmed, N.; Mohana, H.P. Deep
Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data. Remote Sens. 2021, 13, 1715. [CrossRef]

15. Wang, S.; Mo, X.; Hu, S.; Liu, S.; Liu, Z. Assessment of Droughts and Wheat Yield Loss on the North China Plain with an
Aggregate Drought Index (ADI) Approach. Ecol. Indic. 2018, 87, 107–116. [CrossRef]

16. Yu, H.; Li, L.; Li, J. Establishment of comprehensive drought monitoring model based on downscaling TRMM and MODIS data.
J. Nat. Resour. 2020, 35, 2553. [CrossRef]

17. Xu, L.; Chen, N.; Yang, C.; Zhang, C.; Yu, H. A Parametric Multivariate Drought Index for Drought Monitoring and Assessment
under Climate Change. Agric. For. Meteorol. 2021, 310, 108657. [CrossRef]

18. Arun Kumar, K.C.; Reddy, G.P.O.; Masilamani, P.; Turkar, S.Y.; Sandeep, P. Integrated Drought Monitoring Index: A Tool to
Monitor Agricultural Drought by Using Time-Series Datasets of Space-Based Earth Observation Satellites. Adv. Space Res.
2021, 67, 298–315. [CrossRef]

19. Sundararajan, K.; Garg, L.; Srinivasan, K.; Kashif Bashir, A.; Kaliappan, J.; Pattukandan Ganapathy, G.; Kumaran Selvaraj, S.;
Meena, T. A Contemporary Review on Drought Modeling Using Machine Learning Approaches. Comput. Model. Eng. Sci.
2021, 128, 447–487. [CrossRef]

20. Prodhan, F.A.; Zhang, J.; Hasan, S.S.; Pangali Sharma, T.P.; Mohana, H.P. A Review of Machine Learning Methods for Drought
Hazard Monitoring and Forecasting: Current Research Trends, Challenges, and Future Research Directions. Environ. Model. Softw.
2022, 149, 105327. [CrossRef]

21. Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron Mark. 2021, 31, 685–695. [CrossRef]
22. Huang, Y. Research on Remote Sensing DerivedAgricultural Drought Monitoring Method andIts Adaptability Evaluation

ConcerningSpatiotemporal Multi-Factor. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2021. [CrossRef]
23. Dikshit, A.; Pradhan, B.; Huete, A. An Improved SPEI Drought Forecasting Approach Using the Long Short-Term Memory

Neural Network. J. Environ. Manag. 2021, 283, 111979. [CrossRef] [PubMed]
24. Yuan, Z.; Yan, D.-H.; Yang, Z.-Y.; Yin, J.; Yuan, Y. Temporal and Spatial Variability of Drought in Huang-Huai-Hai River Basin,

China. Theor. Appl. Clim. 2015, 122, 755–769. [CrossRef]
25. Huang, Q.; Wang, L.; Chen, Z.; Liu, H. Effects of Meteorological Factors on Different Grades of Winter Wheat Growth in the

Huang-Huai-Hai Plain, China. J. Integr. Agric. 2016, 15, 2647–2657. [CrossRef]
26. Shi, X.; Ding, H.; Wu, M.; Zhang, N.; Shi, M.; Chen, F.; Li, Y. Effects of Different Types of Drought on Vegetation in Huang-Huai-Hai

River Basin, China. Ecol. Indic. 2022, 144, 109428. [CrossRef]
27. National Report on the Quality Grades of Cultivated Land 2019; Agricultural Comprehensive Development in China: Beijing, China,

2020; pp. 6–12.
28. Xue, C.; Liu, R.; Ma, Z. Drought grade classification of summer maize in Huang-Huai-Hai area. Trans. Chin. Soc. Agric. Eng.

(Trans. CSAE) 2014, 30, 147–156. [CrossRef]
29. Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A Review of Global Precipitation Data Sets: Data Sources,

Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [CrossRef]
30. Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A New

Global Database of Meteorological Drought Events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [CrossRef] [PubMed]
31. Bengio, Y.; Frasconi, P.; Simard, P. The Problem of Learning Long-Term Dependencies in Recurrent Networks. In Proceedings of

the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; IEEE: San Francisco,
CA, USA, 1993; pp. 1183–1188.

32. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
33. Botvinick, M.M.; Plaut, D.C. Short-Term Memory for Serial Order: A Recurrent Neural Network Model. Psychol. Rev. 2006, 113, 201–233.

[CrossRef]
34. Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term

Memory Network and Convolutional Neural Network. Energies 2018, 11, 3493. [CrossRef]
35. Khan, N.; Sachindra, D.A.; Shahid, S.; Ahmed, K.; Shiru, M.S.; Nawaz, N. Prediction of Droughts over Pakistan Using Machine

Learning Algorithms. Adv. Water Resour. 2020, 139, 103562. [CrossRef]

https://doi.org/10.3390/s19020430
https://www.ncbi.nlm.nih.gov/pubmed/30669648
https://doi.org/10.1038/s41598-020-80527-3
https://doi.org/10.15244/pjoes/130952
https://doi.org/10.1016/j.jhydrol.2019.04.037
https://doi.org/10.1016/j.jhydrol.2022.128644
https://doi.org/10.1016/j.jclepro.2021.128073
https://doi.org/10.3390/rs13091715
https://doi.org/10.1016/j.ecolind.2017.12.047
https://doi.org/10.31497/zrzyxb.20201019
https://doi.org/10.1016/j.agrformet.2021.108657
https://doi.org/10.1016/j.asr.2020.10.003
https://doi.org/10.32604/cmes.2021.015528
https://doi.org/10.1016/j.envsoft.2022.105327
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.27492/d.cnki.gzdzu.2021.000017
https://doi.org/10.1016/j.jenvman.2021.111979
https://www.ncbi.nlm.nih.gov/pubmed/33482453
https://doi.org/10.1007/s00704-014-1332-7
https://doi.org/10.1016/S2095-3119(16)61464-8
https://doi.org/10.1016/j.ecolind.2022.109428
https://doi.org/10.3969/j.issn.1002-6819.2014.16.020
https://doi.org/10.1002/2017RG000574
https://doi.org/10.1016/j.ejrh.2019.100593
https://www.ncbi.nlm.nih.gov/pubmed/32257820
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1037/0033-295X.113.2.201
https://doi.org/10.3390/en11123493
https://doi.org/10.1016/j.advwatres.2020.103562


Land 2024, 13, 615 20 of 20

36. Vidyarthi, V.K.; Jain, A. Knowledge Extraction from Trained ANN Drought Classification Model. J. Hydrol. 2020, 585, 124804.
[CrossRef]

37. Dikshit, A.; Pradhan, B.; Alamri, A.M. Long Lead Time Drought Forecasting Using Lagged Climate Variables and a Stacked Long
Short-Term Memory Model. Sci. Total Environ. 2021, 755, 142638. [CrossRef] [PubMed]

38. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standard-
ized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

39. Wang, Q.; Shi, P.; Lei, T.; Geng, G.; Liu, J.; Mo, X.; Li, X.; Zhou, H.; Wu, J. The Alleviating Trend of Drought in the Huang-Huai-Hai
Plain of China Based on the Daily SPEI. Int. J. Climatol. 2015, 35, 3760–3769. [CrossRef]

40. Shen, R.; Huang, A.; Li, B.; Guo, J. Construction of a Drought Monitoring Model Using Deep Learning Based on Multi-Source
Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 48–57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jhydrol.2020.124804
https://doi.org/10.1016/j.scitotenv.2020.142638
https://www.ncbi.nlm.nih.gov/pubmed/33049536
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1002/joc.4244
https://doi.org/10.1016/j.jag.2019.03.006

	Introduction 
	Materials and Methods 
	Study Area 
	Data Preparation and Processing 
	CRU_TS Data 
	Land Use Data 
	Meteorological Data 
	Other Data 
	Data Preprocessing 

	Modelling of Attention-Weighted Long- and Short-Term Memory Networks 
	Precision Evaluation Index 

	Results 
	Model Accuracy Assessment 
	Correlation Analysis Based on Meteorological Drought 
	Correlation Analysis Based on Agricultural Drought 
	Characteristics of the Spatial Distribution of the Huang-Huai-Hai Plain 
	Spatial Distribution Characteristics of the Huang-Huai-Hai Plain 
	Temporal Distribution Characteristics of the Huang-Huai-Hai Plain 


	Discussion 
	Impact of Land Cover Type 
	The Impact of Different Factors on Drought 
	Limitations of Drought Monitoring Models 

	Conclusions 
	References

