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Abstract: With the rapid progress in urbanization and economic development, the impact of land use
change (LUC) on ecosystem services is becoming increasingly significant. However, the accuracy
of ecological risk assessment faces challenges due to the presence of uncertainty factors. Using the
PLUS model, this study aims to simulate and predict land use changes (LUCs), focusing on the
southern hilly regions in southeastern China as a case study, conducting an in-depth assessment
of ecological risk uncertainty. Firstly, a spatiotemporal simulation of LUCs in the southern hilly
region from 1990 to 2030 was conducted under multiple scenarios. Subsequently, differences in the
spatial and temporal distribution of ecosystem service value (ESV) across different years and forecast
scenarios in the southern hilly region were revealed, followed by a detailed analysis of the impact
of LUCs on ESV. Finally, by calculating the Ecological Risk Index (ERI), the study systematically
analyzed the evolution trend of ecological risk in the southern hilly region of China from 1990 to
2030. The main research findings are as follows: (1) the conversion proportions of different land
use types vary significantly under different scenarios. Compared to 2020, under the 2030 National
Development Scenarios (NDSs), there has been a slight decrease of around 3% in the total conversion
area of farmland, forest, and grassland. However, under the Ecological Protection Scenario (EPS)
and Urban Development Scenario (UDS) scenarios, there has been an increase in the area of forest
and grassland, with a rise of approximately 1.5% in converted built-up land. (2) Western cities
(e.g., Yueyang and Yiyang), central cities (e.g., Jiujiang), and northeastern cities (e.g., Suzhou) of
China exhibit a relatively high ESV distribution, while ESV significantly decreased overall from
2010 to 2020. However, under the EPS and UDS, ESV shows a significant increasing trend, suggesting
that these two scenarios may play a crucial role in ecosystem restoration. (3) The conversion of forest
and water bodies to farmland has the most significant inhibitory effect on ESV, especially during
the period from 1990 to 2000, providing substantial data support for relevant policy formulation.
(4) From 1990 to 2030, ecological risk gradually increased in western, central, and southwestern cities
of the southern hilly region, with the highest ecological risk values under the EPS scenario in northern
cities (e.g., Chizhou and Tongling). Under the UDS scenario, there has been a significant decrease
in ecological risk, providing valuable insights for future ecological conservation and sustainable
development. However, a limitation lies in the need for further enhancement of the scenario’s
simulation authenticity. This study offers a new perspective for understanding the impact of LUCs
on ecosystem services and the uncertainty of ecological risks, providing crucial reference points for
land resource management and the formulation of ecological conservation policies.

Keywords: land use change; ecosystem service value; ecological risk; uncertainty

1. Introduction

Currently, research on ecosystem services is widely recognized as a core issue related
to human well-being and ecological balance [1]. This research focuses on various material
and non-material products that ecosystems provide to humans, serving as a crucial link
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in our relationship with nature [2]. These services include not only tangible items like
food, water, and raw materials but also intangible services such as climate regulation,
aesthetic enjoyment, and spiritual solace [3]. Understanding the operational mechanisms
of ecosystem services is crucial for achieving social sustainability. When discussing ecosys-
tem services, many scholars concentrate on specific aspects [4]. Scholars from the field
of ecology emphasize the importance of ecosystem services in the protection and mainte-
nance of biodiversity [5]. They highlight that biodiversity is the cornerstone of ecosystem
functioning, critically influencing the reproduction of plants, stability of food chains, and
adaptability of ecosystems to environmental changes [6]. Economists and policymakers
also engage in the study of ecosystem services, focusing on their economic value and
contribution [7]. Through estimation and economic assessments of ecosystem services,
they underscore the direct role of these services in supporting agriculture, tourism, and
natural resource management. Their research enhances policy understanding of ecosystem
services, aiming to incorporate their value into decision-making frameworks to promote
sustainable development [8]. Scholars in the social sciences focus on the relationship be-
tween ecosystem services and human well-being [9]. Their research aims to understand
the impact of ecosystem services on social health, cultural identity, and community cohe-
sion [10]. These scholars explore how the natural environment influences human physical
and mental health, emphasizing the positive roles of natural landscapes, parks, and nature
reserves in people’s quality of life and well-being [11]. The value of ecosystem services is
not only a crucial indicator for assessing ecosystem health but also forms the foundation
for promoting sustainable economic and social development [12]. However, in the face
of severe global challenges such as pollution, excessive resource consumption, climate
change, and ecological degradation, these factors have already had a significant impact
on the provision of ecosystem services [13]. In socio-economic development, we face
challenges such as excessive cultivation of agricultural land and ecosystem degradation,
posing significant hurdles to the provision of ecosystem services. To better address global
environmental crises and tackle a series of ecological and environmental issues domesti-
cally, the assessment of uncertainty regarding future ecological risks is crucial. This helps
in the rational allocation of resources to address various ecological challenges and enables
more effective ecological restoration and management by identifying potential uncertain
risks. This approach minimizes ecological losses and maintains the health and stability of
ecosystems to the greatest extent possible.

Land use change (LUC), as a primary driver of ecosystem service variations, directly
shapes the structure and functions of ecosystems [14]. Previous research has extensively
explored the widespread impact of LUC on ecosystem services [15]. During periods of rapid
urban economic development, human activities have driven changes in land use, directly
influencing the supply and stability of ecosystem services [16]. The specificity of land use
forms complex social phenomena, playing a crucial role in maintaining the functionality of
ecosystem services. Such changes inevitably trigger adjustments in ecosystem structure,
ultimately leading to changes in the value of ecosystem services [17]. Past studies have
extensively investigated the influence of LUC on ecosystem services. For instance, Guo et al.
(2021) conducted a quantitative study on global ecosystem services, exploring the responses
of ecosystem services to changes in LUC [18]. Pan et al. (2021) proposed new models to
quantify the impact of LUC on the scarcity of ecosystem services [19]. Schirpke et al. (2020)
analyzed the spatial relationship between ecosystem service intensity and LUC within
counties [20]. Peters et al. (2019), using Mount Kilimanjaro in Tanzania as an example,
analyzed the interaction between climate and LUC on biodiversity and ecosystem service
functions in the region [21]. They found that different land use practices had varying effects
on biodiversity and service functions, emphasizing the significant impact of LUC on the
diversity and stability of ecosystem services [22]. Kertész et al. (2019), based on research in
the Balaton Lake Basin in Hungary, utilized spatial and statistical databases to demonstrate
the impact of LUC on ecosystem services [23]. Their research revealed the dynamic effects
of different LUCs on service provision, indicating the profound implications of this impact



Land 2024, 13, 535 3 of 21

on local communities and the environment [24]. Yohannes et al. (2021) assessed changes
in ecosystem services in the Kathmandu Valley due to historical and predicted LUCs [25].
Rahman et al. (2021) assessed the impact of LUC on ESV, using a globally applicable benefit
transfer method to estimate the environmental value associated with land use costs [26].
Solomon et al. (2019) evaluated the impact of LUC on ESV of dry Afromontane forests
in northern Ethiopia, estimating ESVs and their variations based on the benefit transfer
method and effective value coefficients [27]. Song et al. (2017) employed a value transfer
method to study the effects of LUC on ESV and developed an elasticity index to assess the
response of ESV changes relative to LUC [28]. These studies not only uncover the direct and
indirect effects of LUC on ecosystem services but also reveal the diversity of these impacts
under different environmental and regional conditions [29]. These impacts encompass
aspects such as the quantity, scarcity, spatial distribution, and long-term adjustments of ESV.
Despite extensive past research into the wide-ranging effects of LUCs on ESV, there has
been limited comprehensive analysis of ESV variations and the uncertainty of ecological
risks in unique geographical environments such as the southern hilly regions. Our study
aims to fill this gap. The unique characteristics of this study area provide an opportunity for
us to understand ESV variations and their uncertain factors. This study also pays particular
attention to the influence of geographical backgrounds and annual climatic phenomena on
ESV. Furthermore, we delve into how these unique geographical factors affect the simulated
evolution of ESV and the uncertain ecological risks they entail, aiming to fill gaps in existing
research and promote advancements in this field.

The future prediction of land use is crucial for assessing ESV [30], as is evaluating
ecological risks and uncertainties [31]. The stability and sustainability of ecosystem ser-
vices are influenced by various factors, with uncertainty being a significant challenge [32].
Previous assessments of ecological risk in China by scholars have focused on different
ecosystems, soils, and urban and regional scales. Solovjova et al. (2019) proposed a method
for mathematical modeling and ecological risk assessment of marine ecosystems, consid-
ering the combined effects of natural, anthropogenic, climatic, and invasive factors [33].
Zhao et al. (2013) utilized a relative risk model to evaluate the characteristics of ecological
risks in Chinese freshwater ecosystems from both regional and overall perspectives [34].
Li et al. (2020) analyzed the surface sediments of six representative mangroves in China,
discussing microplastic pollution and its related ecological risks [35]. Yan et al. (2021)
evaluated the dynamic variation patterns and influencing factors of ecological risks in the
agricultural–pastoral ecotone landscapes of China across different terrain gradients [36].
Zhang et al. (2023) estimated the landscape ecological risk index of different levels, climate
zones, and ecosystem types in Chinese nature reserves [37]. Zou et al. (2022) explored
the spatiotemporal patterns of ecological risks in Chinese agricultural ecosystems [38].
Chen et al. (2023) investigated the spatiotemporal variation patterns of ecological risks
in Nanning City at the optimal scale, predicting ecological risks under two scenarios for
Nanning City in 2036 [39]. These studies have explored ecological risks in different regions
and ecosystems of China, emphasizing the relationship between ecological environmental
changes and human activities. In comparison with existing research, this study focuses
on the potential impact of uncertainty assessment on ESV evolution in the southern hilly
region, thereby comprehensively assessing ecological risks and providing more flexible
solutions for future decision-making.

Building on previous research, forecasting future land use patterns provides insights
that help us understand the variations in ecosystem services under different land use
scenarios [40]. The prediction of future land use is a complex process involving multiple
factors, including climate change, uncertainties in human activity patterns, land manage-
ment policies, population dynamics, urbanization, and the growth of impermeable surfaces,
all impacting ESV [41]. Several scholars have explored the key drivers influencing land use
simulation predictions. Lin et al. (2023) identified population, GDP, distance to railways,
DEM, and annual average precipitation as driving factors [42]. Zhang et al. (2023) identified
elevation, precipitation, temperature, slope, GDP, and soil properties as factors driving LUC
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in Sichuan Province, using the PLUS model to simulate and reveal the main drivers [43].
Xu et al. (2023) focused on the Weihe River Basin, considering precipitation, temperature,
elevation, population, groundwater depth, GDP, and surface soil organic carbon as driving
factors to explore the ecological characteristics of future urban cost control [44]. The selec-
tion of these driving factors in these studies provides valuable references, allowing for a
deeper understanding of the mechanisms driving changes in land use patterns and provid-
ing a basis for future land use and ecological planning. By adopting different scenarios, we
can capture the diversity of land use changes, thereby better reflecting the presence of un-
certainty [45]. This aids in understanding the risks that ecosystem services may face under
different development pathways and contributes to providing more resilient solutions for
future decision-making [46]. Existing studies indicate that different land use practices have
significant impacts on the supply and quality of ecosystem services [47]. For example, the
conversion of forests into farmland may lead to reduced water sources and increased soil
erosion, thereby diminishing the capacity for water regulation and soil conservation [48].
By simulating and predicting future LUCs, we can better anticipate trends in ecosystem
service changes, providing essential foundations for developing sustainable development
strategies [49]. Furthermore, the assessment of ecological risks and uncertainties must
also consider the impacts of future LUCs. Previous research suggests that factors such as
climate change, human activities, and biodiversity loss significantly affect the provision
and stability of ecosystem services [50]. Climate change is a complex factor fraught with
uncertainty, and its impact on ecosystem services may vary across regions and time [51].
The diversity of human behavior, uncertainty in the parameters of predictive models, and
assumptions pose challenges to the assessment of uncertainties in ecological risks [52].
Population change can have profound effects on ESV, involving the structure, function, and
interactions between ecosystems and the human–nature interface. For instance, population
growth leads to increased demand for land and water resources, exerting pressure on the
ecological environment. Population growth also disrupts biological resources, reducing lev-
els of biodiversity [53]. Furthermore, urbanization alters the land use structure, converting
large swathes of natural land into urban development, directly and indirectly impacting
surrounding ecosystems. For example, urbanization may lead to reduced water sources,
declining soil quality, and loss of biodiversity, thereby diminishing ecosystem stability and
service quality [54]. Lastly, the growth of impermeable surfaces is another significant factor,
causing increased runoff, leading to water wastage and exacerbating water pollution [55].
These factors collectively contribute to negative impacts on ecosystem services, threatening
human livelihoods and socio-economic development. Urbanization and the growth of im-
permeable surfaces are often interconnected, with a complex interplay occurring between
them. For example, urbanization may contribute to the growth of impermeable surfaces,
exacerbating issues of water usage and pollution, subsequently affecting the supply and
quality of ecosystem services. Such an interplay renders ecosystem responses to urbaniza-
tion and the growth of impermeable surfaces more intricate and uncertain. In the future,
the uncertainty of land use may exacerbate these impacts, increasing the uncertainty and
risks associated with ecosystem services [56]. Therefore, based on the assessment of future
land use patterns, we can comprehensively understand the future changes in ecosystem
services, proactively identify potential ecological risks, and take corresponding measures
to reduce the likelihood of these risks [57].

The southern hilly region of China is currently facing rapid LUCs and pressures from
human activities, which may have profound effects on ecosystem services. Existing research
indicates that the region’s LUCs exhibit uncertainty, such as the conversion of forests into
farmland or urban expansion, introducing diversity and uncertainty that pose risks to the
supply and quality of ecosystem services [58]. Predictions based on multi-scenario simula-
tions of land use can more accurately depict potential future land use patterns, providing
a finer and more comprehensive basis for assessing changes in ecosystem services. Such
studies contribute to identifying potential ecological risks, such as reduced water sources,
intensified soil erosion, and biodiversity loss, guiding decision-makers in formulating
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appropriate land management policies and protective measures to mitigate the loss of
ecosystem services [59]. In regions such as the southern hilly region, ecosystem services
are crucial for the livelihoods of local residents, community development, and ecological
balance. Therefore, research on ecological risk and uncertainty assessments in this region
would provide vital support for maintaining the stability of ecosystem services, contribut-
ing to the achievement of sustainable development and ecological conservation goals.

2. Materials and Methods
2.1. Study Area

The southern hilly region boasts abundant natural resources and diverse ecosystems,
encompassing various ecosystem types such as forests, grasslands, and water bodies
(Figure 1). These ecosystems interweave, forming a complex ecological pattern. The re-
gion’s climate, influenced by topography, exhibits diversity and can be broadly categorized
into subtropical and temperate climates. The impact of monsoons results in uneven precipi-
tation distribution, and the mountainous terrain leads to significant spatial variations in
temperature and rainfall. These climatic features provide unique survival conditions for the
region’s ecosystems and amplify the impact of LUCs on them. The southern hilly region is
also a significant agricultural production area in China, with widespread distribution of
farmland. With the development of the economy and society, human activities have had
profound effects on land use, including urban expansion, changes in farmland, and forest
development. These changes have the potential to impact ecosystem services and bring
about a series of ecological risks. Therefore, evaluating land use change predictions and
the ecological risk uncertainty of ecosystem services in this region holds crucial scientific
significance and practical value.
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2.2. Data Sources and Processing

In this study, the land use data from 1990 to 2020 and China’s administrative bound-
aries were sourced from the Resource and Environmental Science Data Center of the
Chinese Academy of Sciences (http://www.resdc.cn/, accessed on 1 May 2023). The
classification standards for land use data reference the classification system of land use
status remote sensing monitoring data from the Resource and Environmental Science
Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/). Nine driv-
ing factors were selected for land use scenario prediction, including elevation (DEM)
(http://www.gscloud.cn/, accessed on 1 May 2023), slope (derived from DEM), annual
average rainfall (http://www.geodata.cn/, accessed on 1 May 2023), annual average
temperature (http://www.geodata.cn/), population density (http://www.resdc.cn/), per
capita GDP (http://www.resdc.cn/), distance to rivers, distance to major roads, and dis-
tance to railways, obtained through Euclidean distance analysis in ArcGIS 10.2 using data
from rivers, roads, and railways (http://www.resdc.cn/). The correlations among these
nine driving factors are all less than 0.7 (Table 1), indicating suitability for simulation
prediction using the PLUS model. Grain production, prices, and planting areas are, respec-
tively sourced from the “China Rural Statistical Yearbook” for the years 1990, 2000, 2010,
and 2020.

Table 1. Correlation among driving factors.

Driving Factors GL AP DV DH DR SLOPE DEM AT DP

GL 1.00 0.12 0.08 −0.05 −0.38 0.18 −0.44 0.62 0.24
AP 0.12 1.00 0.04 0.01 −0.07 −0.06 −0.10 0.12 0.61
DV 0.08 0.04 1.00 0.64 0.05 −0.06 −0.12 0.11 0.00
DH −0.05 0.01 0.74 1.00 0.26 0.00 0.13 −0.13 −0.05
DR −0.38 −0.07 0.05 0.26 1.00 0.19 0.67 −0.50 −0.18

SLOPE 0.18 −0.06 −0.06 0.00 0.19 1.00 0.41 −0.19 −0.12
DEM −0.44 −0.10 −0.12 0.13 0.67 0.41 1.00 −0.68 −0.23

AT 0.62 0.12 0.11 −0.13 −0.50 −0.19 −0.68 1.00 0.26
DP 0.24 0.61 0.00 −0.05 −0.18 −0.12 −0.23 0.26 1.00

Note: DH: distance from major highways; DR: distance from the railway; DV: distance from the river; GL: GDP
per land; DP: density of population; AT: annual average temperature; and AP: mean annual precipitation.

2.3. Screening of Drivers for Multi-Scenario Forecasting

This study utilizes the Land expansion analysis strategy (LEAS) module of the PLUS
model to analyze the relationship between the development of various land uses and
multiple driving factors [60]. The calculation principle of this module is based on random
forest classification (RFC). The calculation formula is as follows [61]:

Pd
i,k(x) =

∑M
n=1 I(hn(x) = d)

M
(1)

The value of d is 0 or 1; 1 indicates a conversion from other land use types to land use
type k, while 0 signifies no conversion from other land use types. X is a vector composed
of multiple driving factors. I(·) is the indicator function for the decision tree ensemble.
Hn (x) is the predicted type of the nth decision tree for vector x. M is the total number of
decision trees.

2.4. Calculation of ESV

The ESV types involved in this study mainly include Food production, Raw material
production, Water supply, Gas regulation, Climate regulation, Environment depuration,
Hydrological adjusting, Soil conservation, Nutrients cycle maintenance, Biodiversity, and
Aesthetic landscape. Using the standard equivalent factor valuation method proposed
by Xie et al. [62], the net profit of food production per unit area of agricultural ecosystem
is taken as the ESV value of one equivalent factor [63]. Rice, wheat, corn, and soybeans

http://www.resdc.cn/
http://www.resdc.cn/
http://www.gscloud.cn/
http://www.geodata.cn/
http://www.geodata.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
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are the four main staple crops in China. Considering the fluctuations in the values and
planting areas of these four major crops in different years, the average net profit of the four
major crops from 1990 to 2020 is taken as the standard equivalent factor value in this study.
The calculation formula is as follows [64]:

Va =
1
7∑n

i=1
aipiqi

A
(i = 1, 2, · · · , n) (2)

VEij = CijVa(i, j = 1, 2, · · · , n) (3)

ESV = ∑ AkEk (4)

Here, Va represents the economic value of agricultural crops per unit area in China;
i denotes the type of crops, with pi representing the price of the ith crop in the current
year; qi represents the yield of the jth crop per unit area; ai represents the total planting
area of the ith crop; and A represents the total planting area for the four types of crops.
VEij represents the ESV coefficient of the jth ecosystem service function contained in the ith
ecosystem; Cij represents the economic value of the jth service included in the ith ecosystem
per unit area of farmland compared to 1 unit area of agricultural land; and Va represents
the economic value generated by 1 unit area of crops. ESV represents the total ecosystem
service value; Ak represents the area of the kth land class; and Ek represents the ESV
corresponding to 1 unit area of the kth land class.

2.5. Cross-Sensitivity (CICS)

Used to analyze the rate of change in ESV values caused by the unit area change rate of
LUC, CICS serves as a measure of the degree of disturbance to the environment by natural
or human activities. Generally, LUC is bidirectional, and only the net conversion between
different land use types leads to actual changes in ESV [65]. A positive CICS value indicates
that the net transition between two land uses promotes the change in ESV, while a negative
value inhibits ESV development. The larger the absolute value of CICS, the more sensitive
ESV is to the net transition between the two land uses, and vice versa. The calculation
formula is as follows [66]:

Pki =
(Vk − Vi)

∆PESV
(5)

In the equation, Pki represents the improved land class transition CICS; Vk and Vi,
respectively, represent the revised land class and the ESV equivalent factor for the land
class. ∆PESV represents the change in ESV between the n + 1 year and the n year.

2.6. Land-Use Simulation Based on PLUS Model

Based on the land-use data from the year 2020, this study employs the PLUS model
to simulate the land-use conditions in the year 2030 (Figure 2). To validate the simulation
accuracy, we first simulate the land-use situation in the year 2020 using the land-use
data from 2010. The simulation results are then compared with the actual values of the
2020 land-use data, yielding a Kappa value of 0.9734 and an FOM value of 0.9218. Kappa
value is a measure of consistency for assessing the performance of classification models,
while FOM value is an indicator used to evaluate the performance of binary classification
models. The higher the Kappa coefficient and FOM value, the higher the accuracy of the
model predictions [60]. This indicates that the simulation accuracy of the model in this
study is extremely high and can be used for predicting future land-use data.

Three scenarios were set in this study: NDS (Natural Development Scenario), where
the development probabilities of various land uses from 2010 to 2020 are maintained
to simulate the land-use situation in 2030, with water bodies as restriction areas; EPS
(Ecological Protection Scenario), which follows the requirements of the “General Land Use
Plan of China” (2006–2020), appropriately protecting cultivated land, forests, and water
bodies and reducing their conversion rates, with no conversion restrictions; UDS (Urban
Development Scenario), which moderately increases the expansion rate of construction land
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while allowing other types of land to be converted into construction land, with water bodies
as restriction areas. The conversion cost matrix was modified, where 1 indicates allowable
conversion, and 0 indicates restricted conversion. Additionally, all three scenarios use the
same set of driving factors, including distances to main rivers, railways, major highways,
elevation, slope, average GDP per unit area, population density, potential evaporation, and
annual average precipitation—nine factors in total.
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2.7. Calculation of the Ecological Risk Index

To obtain the supply risk of ESV represented by different regional combinations of
land-use types, the Sharpe Ratio was employed. The Sharpe Index, as an economic concept,
measures the extent to which the unit risk of a fund portfolio exceeds the risk-free return.
This ratio, as an indicator of risk-adjusted returns, provides the level of returns at a given
risk level [67]. Based on this concept, the ESV of future spatial units can be seen as expected
ecological returns, while the ESV before 2020 can be considered as the risk-free rate of
return. The uncertainty of future land use can be viewed as a risk. When this ratio is
positive, it indicates higher ESV risk returns for unit risk input. A negative ratio indicates
future ESV losses. The standard deviation of future LUC uncertainty is regarded as the
portfolio’s standard deviation, thereby determining the ecological risk level at the county
scale under different scenario simulations. The formula is as follows [68]:

ERIj =
(ESVt+1 − ESVt)

STD
=

EER
STD

EER ≥ 0 (6)

ERIj =
(ESVt+1 − ESVt)

STD−1 =
EER

STD−1 EER < 0 (7)

In the equation, ERIj represents the ecological risk index, EER denotes the average
return on investment for ESV, ESVt stands for the risk-free rate of return on investment,
ESVt+1 represents the ESV for period t + 1, and STD is the standard deviation of ESV.

2.8. Analysis of the Gravity of Ecological Risks in the Region

In the process of practical problem analysis, assuming a fixed region that includes n
small area units, where the center coordinates of the ith unit are represented by (x, y), and
the weight of the significance of the corresponding attributes for this unit is denoted as Mi,
the centroid coordinates for the region corresponding to the attributes can be calculated
using Formulas (8) and (9) [69,70]:
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x = ∑ Mixi/∑ Mi (8)

y = ∑ Miyi/∑ Mi (9)

In Equations (8) and (9), xi and yi represent the coordinates of the center of the ith
study area, and Mi represents the ERI for the ith study area.

3. Results
3.1. Spatial and Temporal Changes in Land Use in Different Scenarios

In the southern hilly region, forests constitute the largest land use type, accounting for
57% of the total land area, followed by farmlands at 30%. Across different scenarios from
1990 to 2030, the highest proportion of land conversion is observed from built-up areas
to other land types (ranging from 4.8% to 9.1%). This is followed by water bodies (0.1%
to 3.8%), grasslands (−2.3% to −5.5%), and farmlands (−1.9% to −3.1%) experiencing
relatively high rates of conversion to other types. Changes in other land types are minimal.
Figure 3 illustrates the spatiotemporal distribution of different land use types converted
to other land types. Spatially, land use types converted to forest cover the largest areas,
with a significant portion in the northern and northeastern provinces transitioning to
farmland. Concentrated conversions to water bodies occur in the western Changde, central
Jingdezhen, and Jiujiang cities, as well as in the northern and northeastern regions of the
study area. In the northeastern part, there are concentrated conversions to built-up land.
Throughout the study area, scattered conversions to built-up land are also observed. In
2030, under different scenarios, the spatiotemporal variation in land use conversion is not
predicted to be pronounced, but there are expected to be differences in terms of quantity.
Compared to 2020, under the NDS scenario in 2030, the total area of land converted
to cultivated, forest, and grassland will decrease by approximately 3%. Under the EPS
scenario, the areas converted to forest and grassland will increase by around 2%. In the
UDS scenario, the area converted to built-up land will increase by approximately 1.5%.

3.2. Multi-Scenario Modeling of Spatial and Temporal Changes in ESV

The spatial and temporal distribution differences in ESV in the southern hilly moun-
tainous region are evident across different years and forecast scenarios at the municipal
level (Figure 4). Overall, cities in the western part of the study area, such as Yueyang and
Yiyang; central cities such as Jiujiang, northeastern city Suzhou; and eastern cities such as
Hangzhou and Lishui tend to exhibit higher ESV distributions compared to other urban
areas. From 1990 to 2010, ESV showed a general increasing trend year by year, with some
cities in the northern part of the study area (e.g., Huainan, Hefei, and Wuhu) transitioning
from lower ESV values to the median. In the period from 2010 to 2020, the overall ESV in
the study area significantly decreased, except for Suzhou in the northeast, which retained
the highest ESV, and the ESV of other cities dropped to the median range. From 2020 to
2030, under the NDS scenario, the overall trend in ESV changes is not significant, but under
the EPS and UDS scenarios, there is a noticeable increase in overall ESV, indicating that
both EPS and UDS scenarios contribute, to some extent, to the ecological restoration of the
ecosystem.

The grid scale allows for a more detailed representation of the spatiotemporal vari-
ations in ESV (Figure 5). From 1990 to 2020, the ESV around Wuhan in the northern and
around Nanchang in the central of the study area showed significant polarization, with
noticeable net increases and decreases. The net increase in area was significantly higher
than the net decrease in area from 1990 to 2010, with a net increase in area of around 30% in
both 1990–2000 and 2000–2010 (Figure 4). From 2010 to 2020, the proportion of net increase
in area decreased to 15%, significantly lower compared to 1990–2010, which was roughly
equivalent to the net decrease in the area. From 2020 to 2030, under the NDS scenario,
the ESV in the overall study area achieved basic equilibrium, showing no significant net
change trend. In the EPS scenario, there are more areas of net increase in ESV across the
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study area (an increase of approximately 8916 km2). In the UDS scenario, the net increase
in the area decreased in the central, southwestern, southern, and eastern parts of the study
area, with a noticeable net decrease in the northeastern part.
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3.3. Impact of Land Use Change on ESV

Due to the bidirectional symmetry of land type conversion and the scenario settings in
2030, which resulted in zero conversion areas for some land use types, the calculated CICS
results are zero. Therefore, only the unidirectional CICS from 1990 to 2020 is presented
(Figure 6). From 1990 to 2000, the CICS for the conversion of forest and water bodies to
cultivated land was the highest, indicating high sensitivity of ESV to this type of transition,
and such transitions exert a strong inhibitory effect on the development of ESV in the study
area. From 2000 to 2010, except for conversions between farmland and water, the absolute
values of CICS for other types of land use transitions in the study area were all less than 0.1.
This indicates that during this period, there were no significant changes in land use types
overall within the study area, and they did not significantly affect the ESV. In the period
2010–2020, the absolute values of CICS for the conversion of forest and water bodies to
farmland, as well as water bodies to forest, were relatively high. This indicates that ESV is
highly sensitive to these types of conversions, and such transitions exert a strong inhibitory
effect on the development of ESV.

3.4. Ecological Risk Assessment in Different Scenarios

From 1990 to 2000, the ecosystem risk index (ERI) was relatively high in the northern
part of the study area, including cities such as Wuhan, Tianmen, and Xiaogan. Additionally,
the eastern part of the study area, particularly Lishui in Zhejiang Province, showed elevated
ERI values (Figure 7). Suzhou and Shanghai in the northeast, Tongren in Guizhou province
in the west, and Shaoguan in Guangdong province in the south exhibited the lowest ERI
values, while other regions had moderate ERI levels. Between 2000 and 2010, there were
no clear low ERI zones, except for Shanghai in the northeast, where ERI values were
comparatively lower. Wuxi and Taizhou in the northeast and Yichang and Qianjiang in
the north had higher ERI values during this period. From 2010 to 2020, the study area
witnessed the emergence of large areas with high ERI values, primarily concentrated in
the west, central, and southwest regions. Low ERI zones were mainly found in Yiyang in
the west and Jiaxing in the southeast. In the NDS scenario from 2020 to 2030, the overall
ERI in the study area remained moderate, with only Suzhou and Shanghai in the northeast
exhibiting noticeable low ERI values. Under the EPS scenario from 2020 to 2023, there were
numerous areas with high ERI values, concentrated in the northern cities of Chizhou and
Tongling, the southwestern Guangxi Zhuang Autonomous Region, and the eastern cities of
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Nanping, Sanming, and Longyan. Comparatively, under the UDS scenario, the ERI values
in the study area significantly decreased, with only Changde in the west and Chizhou,
Tongling, and Wuhu in the north maintaining higher ERI values than the rest of the region.
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from 2020 to 2030.

The center of high ERI was located in Nanchang, Jiangxi province, from 1990 to
2000. By 2000–2010, the high-risk center of ERI shifted northwestward to Huanggang,
Hubei Province. From 2010 to 2020, this center further moved westward to Wuhan, Hubei
Province. Over different periods, factors such as agricultural expansion, changes in land
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use, variations in climate factors such as temperature and rainfall, and different policy
and management measures can impact the health of ecosystems, leading to the migration
of the high-risk center of ERI. In the scenarios from 2020 to 2030, distinct differences are
observed in the distribution of the high-risk center of ERI. Under the NDS scenario, the
ERI high-risk center is located in Wuhu, Anhui Province. In the EPS scenario, the high-risk
center is situated in Yichun, Jiangxi Province. Meanwhile, under the UDS scenario, the
center is found in Anqing, Anhui Province. Population growth, economic development,
and policy changes collectively contribute to the variations in the high-risk center of ERI
under different scenarios.

4. Discussion
4.1. Factors Influencing LUC in the Southern Hilly Region

The PLUS model employed the random forest algorithm to investigate the dynamic
changes in land use in the southern hilly areas. The goal was to determine the relative
impact of various factors on LUCs. Each driver exhibited significant differences in its
contribution to LUCs (Figure 8). Population density emerged as the primary factor influ-
encing changes in the farmland area, contributing 16.8%. Additionally, the digital elevation
model (DEM) emerged as a crucial factor limiting changes in farmland area, accounting
for 13.4% of the total. Annual average precipitation exhibited the greatest contribution
(19.0%) to changes in forest area, followed by elevation (11.6%) and slope (11.6%). Annual
average precipitation plays a crucial role in vegetation growth and the functioning of forest
ecosystems. The varied topography of the southern hilly areas, with significant elevation
changes, favors forest growth, while different slopes may lead to soil erosion issues, impact-
ing the formation and stability of forests. For changes in grassland area, annual average
precipitation also made the highest contribution (15.4%), followed by DEM (14.8%) and per
capita GDP (14.7%), which played important roles in grassland area changes. Topography
has a significant impact on factors such as moisture distribution, soil types, and hydrolog-
ical processes, and different topographies may have a significant impact on the growth
and distribution of grasslands. For example, flatter regions may favor the formation and
growth of grasslands, while steep terrain may limit the expansion of grasslands. Economic
activities may also influence land use and management, with factors such as agricultural
development and urbanization potentially changing land cover types and, consequently,
affecting the area and distribution of grasslands. DEM (19.1%), slope (13.1%), and annual
average temperature (12.3%) had a significant influence on changes in water body area.
Topography affects the formation and distribution of water bodies, slope influences water
flow and the formation of rivers, and temperature plays a role in the evaporation and
melting processes of water bodies. Changes in built-up land area are primarily influenced
by population density (27.5%), slope (11.0%), and per capita GDP (10.6%). Areas with
high population density often require more residential, commercial, and infrastructure
development, making regions with a high population density more prone to an increase
and change in built-up land. Steeper slopes may restrict the construction of buildings
and infrastructure, reducing the likelihood of land being used for construction. Relatively
gentle terrain is more conducive to development, resulting in a relatively smaller impact
on built-up land. Regions with higher levels of economic development may attract more
investment and demand, leading to land being used for construction and development.
Changes in unused land area are primarily influenced by per capita GDP (17.9%), annual
average precipitation (15.2%), and population density (15.1%). An increase in the economic
development level of a region may imply that more land is developed and utilized, trans-
forming it into construction or agricultural land. Regions with abundant precipitation may
find it easier to engage in agricultural development or ecological conservation, while areas
with less precipitation may have more unused land. Areas with a high population density
may face greater urbanization demands and land use pressure, making them more inclined
to utilize unused land to meet the demands of population growth and urban expansion.
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4.2. Uncertainty Assessment of Ecological Risks

When assessing ecological risks associated with predicting LUCs and ecosystem ser-
vices, uncertainty becomes a crucial and challenging aspect. LUCs themselves exhibit
diversity and complexity. Different types of land use transitions may have varying impacts
on ecosystems, and these impacts may vary over time and space. When evaluating their
influence on ecological risks, this diversity must be taken into account, and efforts must
be made to understand the patterns of their impact on ecosystem services. An increase in
farmland may trigger issues such as soil erosion, loss of wildlife habitats, and water pollu-
tion. The concentrated conversion of other land types into water bodies may negatively
impact aquatic ecosystems, resulting in wetland loss and reduced water resources. The
expansion of built-up land may trigger ecosystem fragmentation, loss of biodiversity, and
land cover issues. The temporal and spatial heterogeneity of land use changes in different
scenarios may lead to the instability of ecosystem services. Different changes in different
regions may have various effects on local ecosystems, including but not limited to the
loss of biodiversity, soil erosion, and disruption of ecological balance. For instance, under
the NDS scenario, a decrease in the area of forest and grassland may lead to weakening
of ecosystem services, including a reduction in biodiversity, a decrease in natural land
cover, and potential issues related to soil erosion. Under the EPS scenario, an increase
in the area of forest and grassland may positively impact ecosystem services, enhancing
biodiversity, improving natural land cover, and reducing the risk of soil erosion. Under
the UDS scenario, an increase in the area of built-up land may result in increased pressure
on ecosystem services, including the compression of natural habitats, disruption of eco-
logical balance, and overexploitation of land resources. These changes may lead to the
instability of ecosystem services in different regions, potentially causing issues such as
loss of biodiversity, soil erosion, and disruption of ecological balance. A comprehensive
assessment of the impacts under different scenarios contributes to a better understanding
and management of the influence of land use changes on ecosystem services.
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The correlation between ESV and LUCs contributes to increased uncertainty in ecolog-
ical risks. The response of ESV may exhibit diversity due to the complexity of the internal
structure and functions of ecosystems. ESV demonstrates complex temporal and spatial
variations under different years and forecast scenarios. This indicates that the impact of
LUCs on ESV is not fixed but rather a complex process influenced by multiple factors.
The increasing trend in ESV from 1990 to 2010 may be attributed to the implementation
of environmental protection policies or ecological restoration projects during that period.
These measures may include activities such as reforestation, wetland conservation, and
water resource management, contributing to the enhancement of ecosystem service values.
The overall decline in ESV from 2010 to 2020 could be linked to accelerated urbanization,
industrial expansion, or excessive land development, leading to the loss of ecological func-
tions and a decline in ecosystem services. The ESV increase under different scenarios from
2020 to 2030 may be associated with policy adjustments. The EPS scenario may involve
more ecological conservation measures, promoting ESV enhancement, while the UDS
scenario may relax land use policies, resulting in a decline in ESV in certain regions. The
differences in ESV net increase or decrease between regions under EPS and UDS scenarios
may stem from different policy orientations. EPS may prioritize ecological protection and
restoration, while UDS may emphasize economic development, leading to divergent trends
in ESV changes across different regions. The variations in the impact of different land use
types on ESV at different time periods may arise from differences in environmental vulner-
ability. For instance, the conversion of forest and water bodies into cultivated land in the
early stages may significantly disrupt ecosystems, while the impacts of such conversions
may become more sensitive in later stages as environmental vulnerability decreases. The
influence of LUCs on ESV does not follow a single fixed pattern but rather involves a com-
plex process intertwined with various factors. Factors such as urbanization, agricultural
development, and policy adjustments may lead to complex and diverse impacts on ESV,
thereby increasing the temporal and spatial uncertainty in ESV changes.

4.3. Policy Recommendations and Outlook

Research indicates that the spatiotemporal variations in the ERI in the southern hilly
areas exhibit significant uncertainty. From 1990 to 2010, the distribution of ERI values
was relatively balanced, with only a few regions showing distinct high or low values.
This reflected the relative stability of ecosystems in the study area, with fewer severe
ecological risk threats at that time. From 2010 to 2020, the emergence of large areas
with increased high values and some low-value areas was attributed to factors such as
urban expansion, LUCs, or intensified environmental pressures. This shift may suggest
that ecosystem stability faced new challenges and threats during this period. In 2030,
under different scenarios, variations in the distribution of ERI values are predicted to be
observed, especially under the EPS and UDS scenarios. Under the EPS scenario, there
are more areas with high values, indicating more severe ecological risks. This suggests
that when the conversion of forests, farmlands, and water is excessively protected and
restricted, it may increase some new ecological risks, such as unmanaged forests increasing
the risk of wildfires, poorly managed farmlands facing the risk of soil degradation, and
an increase in forest cover leading to intensified internal competition among species,
disrupting ecological balance, among others. Therefore, only adopting moderate ecological
protection measures can reduce ecological risks. The overall decrease in ERI values under
the UDS scenario may be due to the influence of environmental policies or management
measures. The differences in ERI values between different regions indicate inconsistent
levels of ecological risk. Regions in the western, central, and southwestern areas may
face more severe ecological pressure, while the eastern and northeastern regions remain
relatively stable. In the EPS scenario, some regions experience high risk, possibly due to
increased environmental pressure resulting from development policies in this scenario. In
contrast, under the UDS scenario, the decrease in ERI values may reflect improvements
in environmental management policies. These uncertainties arise from the interweaving
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of various factors such as environmental policies, economic development, and human
activities during different time periods. Different policy orientations may have drastically
different impacts on ecosystems, leading to increased uncertainty in ERI. For areas with
high ERI, implementing stricter environmental protection policies and regulatory measures,
strengthening pollution control, and ecological restoration are recommended. For relatively
stable areas, emphasis can be placed on ecological protection and sustainable utilization.
Measures should be taken to address ERI changes caused by urban expansion and land use
changes, focusing on the protection and restoration of affected ecosystems. Strengthening
land planning and management to ensure the sustainability and ecological balance of
land use is essential. Establishing a comprehensive environmental monitoring system
and early warning mechanism allows real-time tracking of ecosystem changes, enabling
timely actions to prevent the deterioration of ecosystems in high-risk areas. Ensuring the
coordination of environmental policies with economic development policies is crucial to
avoid environmental damage during the process of economic growth [71]. Promoting
green technological innovation and sustainable economic models can achieve a win–win
situation for both the environment and the economy. Facilitating cooperation among
regional governments in the southern hilly areas is vital to jointly address ecological
environmental issues, share successful experiences, and implement best practices for cross-
regional environmental protection and management [72]. Policymaking needs to consider
the vastly different impacts that different policy orientations may have on ecosystems.
Therefore, ensuring the scientific and stable nature of environmental governance policies is
of paramount importance.

In the northern part of the southern hilly areas, where there is a higher rate of defor-
estation, it is imperative to establish strict forest protection zones and afforestation plans.
This is particularly crucial in regions such as Wuhan, Tianmen, and Xiaogan, where efforts
should be intensified in the management and protection of forest resources. Encouraging
farmers to adopt organic farming methods to reduce the use of chemical pesticides and
fertilizers is especially important to preserve soil quality, given the significant conversion
of farmland in this region. In the eastern part of the southern hilly areas, especially in
areas with a higher conversion of water bodies, stringent control of pollutant emissions,
enhanced water resource management, and rational planning of water use methods are
necessary to protect aquatic ecosystems. In areas with higher ESV, promoting the devel-
opment of eco-tourism and green industries is encouraged to boost the local economic
income while simultaneously safeguarding the environment. In regions with increased
built-up land, such as Changde in the west, it is essential to formulate strict land-use plans
to avoid excessive development and construction, thereby protecting the ecological envi-
ronment. Given the higher ecological risks in the western regions, implementing ecological
restoration projects, including afforestation and soil erosion prevention, can help improve
the ecological conditions. For areas with lower ESV, such as Yiyang in the south, efforts
should be intensified for ecological restoration to enhance ESV, employing measures such as
wetland conservation and soil conservation. Promoting sustainable agriculture by reducing
the use of pesticides and fertilizers, strengthening farmland environmental protection, and
ensuring soil quality is crucial. Tailoring scientifically sound environmental protection
plans based on the characteristics of each region, integrating policy resources, and fostering
a balance between ecological protection and economic development is essential.

Future efforts should focus on the sustainability of ecosystems. By implementing
rational land use and management practices along with environmental protection policies,
it is anticipated that ecological risks can be reduced, promoting the recovery and healthy
development of ecosystems. Tailoring more precise regional governance strategies based
on the results of LUCs and ecological risk assessments in different regions will help achieve
ecological balance and protect or restore threatened ecosystems. Establishing a robust
monitoring and early warning mechanism is critical. With continuous changes in land use
and environmental pressures, ongoing monitoring of the status of ecosystems and early
warning of potential ecological risks are necessary for timely intervention. Recognizing
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the uncertainty of environmental risks and ecosystem changes under different scenarios,
future environmental policies should prioritize flexibility and adaptability [72]. These
policies need to be quickly adjusted to new circumstances while maintaining a focus on the
protection and restoration of ecosystems. Additionally, promoting cooperation and infor-
mation sharing among different regions in the southern hilly areas is essential to achieve
a comprehensive understanding of ecosystem changes for more extensive environmental
protection and management [73]. Encouraging scientific research and technological innova-
tion to address environmental issues and enhance the resilience of ecosystems is crucial.
Investing in research and technology development helps discover new solutions and tools,
providing more possibilities for ecological protection and restoration. Additionally, this
study pays little attention to the significant ecological risks brought about by urbanization
and impervious surface growth, which is an area with academic prospects and research
gaps that need to be filled. In future research, it will be important to focus on and delve
into this issue. Furthermore, the scenario settings in this study may not be comprehensive,
presenting limitations. Therefore, in future research, it is necessary to comprehensively
consider these factors to improve the comprehensiveness, thus better assessing ecosystem
risks and changes.

Ensuring accurate assessment of ecosystem risks and changes is crucial for establishing
a comprehensive national management approach [74,75]. Close cooperation mechanisms
should be established among government departments, including environmental, urban,
and rural planning, agriculture, and forestry departments, to ensure integrated manage-
ment and coordinated implementation of ecosystem risks [76]. Additionally, sound ecosys-
tem risk monitoring and early warning mechanisms should be established to promptly
identify ecological environmental problems and risks, and effective measures should be
taken to address and handle them [77]. Actively participating in international cooperation,
drawing lessons from and learning about international experiences, jointly addressing
global ecological environmental challenges, and promoting the sustainable management
and protection of global ecosystems are crucial.

5. Conclusions

In this study, a spatial and temporal analysis of LUC data in the southern hilly areas
based on multi-scenario simulations was conducted to assess the evolution of ESV and
evaluate the uncertainty of ecological risks. The main conclusions are as follows: in the
study area, forests had the highest proportion of LUC, ranging from 56% to 58% during
the period from 1990 to 2030, followed by farmland, which accounted for 27% to 31%.
In the northern and northeastern provinces, there was significant conversion of land
types to farmland, while some cities in the western and central regions experienced the
transformation of land types into built-up land. In the northeast, there was a notable
conversion of land types to water bodies and built-up land. ESV exhibited spatial and
temporal distribution differences at the municipal level in different years and forecast
scenarios, with some cities in the western and central regions generally showing a higher
ESV distribution. From 1990 to 2010, ESV showed an overall increasing trend year by year,
but from 2010 to 2020, there was a general decline. In the period from 2020 to 2030, under
the EPS and UDS scenarios, ESV showed a clear increasing trend, while under the NDS
scenario, it remained relatively stable. The conversion of forests and water bodies into
farmland had a strong inhibitory effect on ESV. From 1990 to 2000, areas in the northern
part of the study region, including Wuhan, and in the eastern part, including Lishui,
had higher ecological risks. From 2010 to 2020, overall ecological risks increased, mainly
distributed in the western, central, and southwestern regions, with Yiyang in the west and
Jiaxing in the southeast being lower-risk areas. In the period from 2020 to 2030, under the
NDS scenario, the overall ecological risks were moderate, while under the EPS scenario,
areas in the north, such as Chizhou, had higher ecological risks. Under the UDS scenario,
ecological risk values significantly decreased, especially in Changde in the west. In the
future, different scenarios of LUC will have a significant impact on ESV and ecological
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risks. Therefore, when formulating sustainable development strategies, a comprehensive
consideration of land-use planning and ecological protection measures is necessary to
promote the sustainable development of ecosystems.

In terms of ESV assessment, this study provides a reference basis for the design
of ecological compensation mechanisms. By evaluating the ESV of different land use
types, governments can better implement ecological compensation policies to promote the
coordination of ecological protection and economic development. Assessing ecological
risks is essential for forecasting and managing them. The research results reveal the
distribution of ecological risks in different regions and scenarios, providing important
references for ecological environmental management in relevant areas. This study expands
our understanding of the impact of LUCs on ESV and ecological risks. By delving into the
effects of land use type conversions on ESV, the inhibitory effect of forest and water area
conversion to farmland on ESV was revealed. This finding provides theoretical support for
a deeper understanding of the impact of LUC on ecosystem functions, with implications
for future related research. The study provides important clues for understanding the
impact of LUC on ecosystems in southern hilly regions, offering a theoretical basis and
practical guidance for future sustainable development strategies. Particularly in scenarios of
uncertainty, comprehensive consideration of land use planning and ecological conservation
measures will contribute to advancing the sustainable development of ecosystems in
the region.
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