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Abstract: Land use transitions play a critical role in ecological environmental restoration, but they 
are also plagued by ecological environmental problems caused by excessive land resource develop-
ment. In this study, we propose a methodological framework for unveiling the nexus profile of land 
use/cover change (LUCC) and eco-environmental effects. This study explored the spatiotemporal 
evolution patterns of LUCC over a long time series based on high-precision land use data from 1990 
to 2020. Then, the ecological values (EVs) of various cities were calculated to obtain the ecological 
contribution rate of different land use types in the process of change. Finally, the future develop-
ment trends of land use and ecological environmental quality were predicted under multiple sce-
narios using the cellular automata–Markov model, and scientific policy recommendations were pro-
posed. The results showed that the expansion trajectory of the construction land in the urban ag-
glomeration mainly expanded inwards along the mouth of the Pearl River, and the conversion of 
cultivated land to construction land was the most significant type of land use change. The overall 
ecological environmental quality of the study area showed a downwards trend, with Shenzhen ex-
hibiting the largest decrease in EVs. Cultivated land contributed significantly to improving regional 
ecological environmental quality, while the land use transition types with relatively large contribu-
tions to environmental quality deterioration were conversions to construction land. Under the sce-
nario of coordinated protection, the degree of cultivated land area reduction was significantly re-
duced, and the area of forestland showed a positive growth trend, with the expansion trend of con-
struction land being reversed. These research findings can enrich the theoretical research on the 
sustainable development of urban agglomerations and provide reliable data support for policy-
making. 
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1. Introduction 
Urbanization and land use/cover change (LUCC) are important driving factors af-

fecting the quality of regional ecological environments. LUCC is manifested as the trans-
formation between different land types. In the process of urbanization, the rapid expan-
sion of construction land leads to the continuous expansion of urban boundaries, and 
large amounts of forestland and agricultural land are transformed into residential and 
industrial land. The urban landscape pattern has undergone dramatic changes, which in-
directly lead to changes in the quality of the ecological environment in different regions 
[1,2]. In the 1990s, inspired by the forest transition hypothesis, some scholars proposed 
the perspective of land use transition [3], emphasizing the changes in regional land use 
patterns caused by human activities. In 1995, a research plan on “Land Use and Land 
Cover Change” was formally proposed [4], and, since then, the academic community has 
begun to focus on the cross-disciplinary research of LUCC and other disciplines (ecology, 
meteorology, urban planning, etc.). Analyzing the spatiotemporal evolution trend of re-
gional land use change is the basis for studying the degree and transformation of land use. 
Scholars often describe the spatiotemporal evolution trend of regional land use qualita-
tively and quantitatively, exploring the changing characteristics and spatial pattern of dif-
ferent land use types in a certain region during a specific period on a time and space scale 
and dynamically monitoring the expansion of urban land [5]. For example, by considering 
different environmental characteristics, the land use expansion and land use change in 
coastal areas can be studied [6], and LUCC studies focus on impervious surfaces and bar-
ren hills and wastelands [7]. In addition, driving factors can be interpreted after the spati-
otemporal evolution trend of regional LUCC has been obtained [8]; for example, moving 
t-tests and random forest models were used to identify the long-term sequence of China’s 
industrial land transformation and find its dominant external driving factors [9]. 

Research on LUCC can help judge the trend of regional ecological environment 
change and provide scientific support for ecological restoration and regional ecological 
governance decision making [10]. Change in ecological environment quality is affected by 
many factors, including atmosphere, water environment, soil, etc., which affect the eco-
system to varying degrees [11]. In describing the quantity and spatial characteristics of 
regional ecological environment changes, indicators such as ecological environment qual-
ity indices (EQIs) and ecosystem service values [12] can be used to objectively reflect the 
overall habitat quality level of the region [13,14]. The EQI index is often used as an im-
portant reference value to measure the degree of land change in the ecological environ-
ment; the overall situation of the study area is quantitatively characterized by fuzzy as-
signment through expert scoring; and the impact of different land use changes on regional 
ecological environment quality is determined by using the ecological contribution rate 
index [15]. In studying the ecological effects of LUCC, scholars focus on improving land-
scape structure optimization and enhancing biodiversity [16,17]. 

Establishing effective land cover change simulation models helps to promote re-
search on sustainable land use and more comprehensively analyze the mutual feedback 
relationship between human activities, land use, and the ecological environment. Scholars 
have conducted a large number of studies on LUCC by using multiple types of land use 
simulation and prediction models, including analysis and prediction involving different 
regions, scales, driving factors, scenarios, and other perspectives. Prediction results differ 
due to the use of different models, and there is still no unified standard for the rationality 
of prediction [18–20]. At present, the widely used models mainly include system dynamics 
models, PLUS models, Markov models, etc. [21–23]. For example, the soil erosion charac-
teristics of a basin can be analyzed in multiple scenarios based on PLUS models and 
RUSLE models [24]; an MLP–Markov model (a multi-layer perceptron–Markov chain) can 
be used to predict dynamic change in land use and land vulnerability in a region and 
obtain estimated values for different types of land in the future [25]; and Markov models 
can be used to simulate regional land use change and explore the relationship between 
urban growth and landscape change and population growth [26]. Among the different 
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models, the system dynamics model [27] and the Markov model [28] mainly adopt nu-
merical simulation model analysis, which has the advantage of quantitative prediction; 
the CLUE-S model belongs to the class of spatial prediction models, pays more attention 
to spatial data information, and has the ability to predict change in spatial locations [29], 
but it is based on the traditional logistic regression method, which may ignore the internal 
autocorrelation of spatial data during spatial analysis, affecting the simulation accuracy 
to a certain extent [30]. As a single prediction model, it still cannot accurately judge the 
complexity of land use change, and it is difficult to achieve multi-scenario prediction. The 
PLUS model is a grid-based patch-generated land use simulation model, which can be 
used to explore the driving factors of land expansion and predict the patch-level evolution 
of land use across a landscape [23], which is conducive to exploring sustainable landscape 
layouts. The CA (cellular automata)–Markov model is one of the most widely used land 
use prediction models. This model combines the CA model and the Markov model. This 
model has the ability to simulate the spatial change in complex systems and has the ad-
vantage of enabling long-term prediction, that is, it has a better spatial dynamic simulation 
ability. This model can be used to explore the relationship between regional ecosystems 
and land use and carry out multi-scenario simulations [31,32]. 

Previous studies have provided a sufficient theoretical basis and development direc-
tion for LUCC and its ecological and environmental effects. However, in recent years, 
studies on LUCC and its ecological and environmental effects have mainly focused on 
single environmental factors or small-scale ranges, such as water, forests [33], and carbon 
[34], while studies on regional land use change and ecological and environmental effects 
at the scale of megalopolises are still lacking. Existing studies are mainly at the municipal 
and county levels, so it is necessary to carry out relevant studies at a larger scale. In addi-
tion, in terms of research methods, traditional mathematical characteristic analysis is 
widely used, but the comprehensive application of numerical–non-numerical model sim-
ulation and prediction is rare [35,36]. Therefore, it is urgent to carry out long-term studies 
on megalopolises and simulate the mechanism of the impact of land use change on eco-
logical and environmental factors under different scenarios through comprehensive meth-
ods and technologies. 

Since the beginning of this century, China’s urbanization process has been accelerat-
ing, and there have been extensive land use patterns and inadequate environmental car-
rying capacity [37], which have led to ecological and environmental problems such as soil 
erosion, land desertification, and a sharp shrinkage of forest and wetland resources [38]. 
In addition, a large amount of cultivated land is used as construction land, which also 
affects the country’s food security [39]. These phenomena will lead to increasingly severe 
contradictions between humans and land and seriously restrict sustainable development 
at economic and social levels. At present, China’s economy has entered a stage of high-
quality development, and the spatial carrier of social and economic activities tends to be 
coordinated development in urban agglomerations. Therefore, answering the question of 
how to balance the relationship between economic development and ecological protection 
has become strategically important to improving the overall development level of the re-
gion. As one of the most dynamic economic regions in China, analysis of the Pearl River 
Delta (PRD) urban agglomeration should strengthen the study of the spatiotemporal evo-
lution trends regarding LUCC and the resulting habitat problems as a basis for regional 
sustainable development and management and bring more theoretical support to regional 
LUCC and its ecological and environmental effects. 

In this study, we propose a methodological framework to reveal the spatiotemporal 
evolution mechanism of LUCC and its impact on the ecological environment. Firstly, we 
comprehensively analyzed the spatiotemporal evolution trend of LUCC in an urban ag-
glomeration over the past 30 years and calculated the ecological quality index for each city 
and the contribution of LUCC to habitat change in different periods. Secondly, we used 
the CA–Markov model to simulate land use status under multiple scenarios (a natural 
development scenario and an overall protection scenario) in 2030 and finally obtained the 
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development trends of LUCC and its ecological environmental effects under different sce-
narios so as to provide policy suggestions for land consolidation and ecological protection. 
The above research framework can be used to monitor the changes in land use and eco-
logical environment quality in the PRD urban agglomeration and predict future develop-
ment trends, which is of great significance for analyzing the utilization and management 
of regional land resources and recovery strategies for the ecological environment. 

2. Materials and Methods 
2.1. Study Area 

The PRD urban agglomeration is composed of Guangzhou, Shenzhen, Zhuhai, Fo-
shan, Dongguan, Zhongshan, Jiangmen, Huizhou, and Zhaoqing. It is adjacent to the 
Hong Kong and Macao Special Administrative Regions and is in the downstream area of 
the Pearl River in Guangdong Province. The region has obvious geographical advantages 
and is separated from Southeast Asia by the sea (Figure 1). From a natural perspective, 
the topography of the PRD urban agglomeration is complex, with hills, mountains, is-
lands, and other features throughout the area resulting in relatively large fluctuations in 
elevation. The central area is a vast plain with an average elevation of no more than 100 
m, including cities such as Jiangmen, Guangzhou, Foshan, Dongguan, and Zhongshan. 
The climate in the PRD region is a subtropical monsoon climate, with mild winters with 
low rainfall but hot summers. Additionally, the region has abundant rainfall and sunshine. 
In terms of economic development, in 2022, the total GDP of the PRD urban agglomeration 
exceeded CNY 10 trillion, accounting for 80.9% of the province’s total output value, and 
the permanent population reached 78.606 million. The industrial added value of five cities, 
namely, Shenzhen, Guangzhou, Foshan, Dongguan, and Huizhou, exceeded CNY 1 tril-
lion, forming a certain radiating driving effect. The other four cities are also rapidly de-
veloping. The “New Urbanization Plan of Guangdong Province (2021–2035)” proposes 
that Zhuhai should drive the coordinated development of Zhongshan and Jiangmen and 
build an important growth pole in western Guangdong. 

  
Figure 1. The location of the study area. 
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2.2. Data Sources 
The study focused on the PRD region, consisting of nine cities, and the research pe-

riod spanned 1990 to 2020, covering a 30-year period. Four phases of land use data with a 
resolution of 30 m were obtained from the Resource and Environmental Science Data Cen-
ter of the Chinese Academy of Sciences (http://www.resdc.cn; accessed on 15 September 
2022) with 10-year intervals, and the DEM data were obtained from the Geospatial Data 
Cloud (http://www.gscloud.cn/; accessed on 15 December 2022). The administrative 
boundaries of the research area were determined based on data from the National Basic 
Geographic Information Center (http://ngcc.sbsm.gov.cn; accessed on 15 July 2022) and 
were masked and preprocessed in ArcGIS 10.3. The data were reclassified into six primary 
categories, namely, arable land, forests, GL, water bodies, urban/rural/industrial/residen-
tial land (CTL), and unused land. The CA–Markov model, run in IDRISI, was utilized to 
predict land use changes, with precision verification conducted prior to prediction. The 
accuracy was assessed with a kappa coefficient greater than 85%, indicating good simula-
tion results. Socioeconomic data were sourced from the statistical yearbooks of Guang-
dong Province, the Social Development Statistical Bulletin of Guangdong Province, and 
the statistical yearbooks of various cities. 

2.3. Methodology 
2.3.1. Methodological Framework 

As more complex and comprehensive systems than single cities, adjacent urban areas 
may exhibit correlations with respect to their spatial development trajectories of land use. 
Focusing on the LUCC in cities and discussing the change trajectories of other human-
made land uses, such as construction land and cultivated land, can provide explanations 
and references for the causes of deterioration in urban habitat quality at the level of an-
thropogenic factors. Moreover, when predicting future trends in ecological environmental 
changes, the differences between LUCCs under natural and anthropogenic intervention 
scenarios can be compared to obtain quantitative results on ecological environmental 
quality under different scenarios, thus providing a reference to promote regional sustain-
able development. 

In this study, we proposed a methodological framework for unveiling the spatial–
temporal evolution mechanism of LUCC and its impact on eco-environmental effects (Fig-
ure 2). First, we investigated the spatiotemporal evolution of land use transformation in 
an urban agglomeration to examine the differences in change velocity between cities and 
to explore the functional structural transformation. Then, we examined the effects of land 
use change on the ecological environment in the urban agglomeration to explore the dy-
namic evolution trend of ecological quality during land use transfer in the urban agglom-
eration. Finally, this paper focused on the simulation of LUCC and ecological environ-
mental effects. The CA–Markov model was applied to simulate spatial pattern changes in 
land use in the future. Using the land use transfer matrix, the ecological environment 
quality index, and ecological contribution rates, we deeply analyzed the impact of land 
use changes on the ecological environment under different scenarios. 
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Figure 2. The methodological framework of this study. 

2.3.2. Land Use Dynamic Degree 
The land use dynamic model is a commonly used model for tracking changes in the 

quantity of land resources. It can reflect the speed of changes in land usage in an urban 
area. Land use dynamics can be divided into two types: single dynamics and comprehen-
sive dynamics [40,41]. ① A single land use dynamic (K) reflects the rate of change in the area of a single land 

use type over a period of time. Its calculation formula is as follows: 𝐾 = 𝑈 − 𝑈𝑈 × 1𝑇 × 100% (1)

where Um is the area of the single land use type at the beginning of the period, Un is the 
area of the same land use type at the end of the period, and T is the time interval between 
the beginning and the end of the period, usually in years. 
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② The land use comprehensive dynamic degree (Lc) characterizes the overall annual 
change rate of land use within the study area [42]. The formula is as follows: 

𝐿 = ⎣⎢⎢
⎡ 𝛥𝐿𝑈2𝛴 𝐿𝑈 ⎦⎥⎥

⎤ × 1𝑇 × 100% (2)

where LUi is the initial size of the i-th land use type area, ΔLUi-j is the absolute value of the 
area of the i-th land use type transformed into the j-th land use type at the end of the study 
period, and T is the interval period. 

2.3.3. Land Use Transfer Matrix 
Using four years of land use data from the PRD urban agglomeration and reclassify-

ing the land use into primary categories, we conducted an intersection analysis using the 
ArcGIS 10.3 platform to obtain a land use transition matrix. The resulting values could be 
used to determine the amount of land area that underwent a transition from one land use 
type to another within the urban agglomeration during the study period. By analyzing 
the different transition areas, we determined the degree of change for different land use 
types. The formula for the calculation is as follows: 

 

(3)

where Sij represents the land area during the study period, n represents the number of 
land types, i represents the initial land type, and j represents the final land type. 

2.3.4. Ecological Environment Quality Index (EEQ) 
When exploring the trends of changes in ecological and environmental quality 

brought about by regional land use, the EEQ index can be used to quantitatively charac-
terize the overall and individual ecological and environmental quality of each city within 
the urban cluster [43]. The formula is as follows: 𝐸𝑉 ∑ 𝐿𝐶 𝐺𝐴  (4)

where LCn and Gn represent the area of the n-th LUCC type and EV for the region during 
period t, respectively; i represents the number of land types in the study area; and A rep-
resents the area of the study region. 

Table 1 was obtained based on expert ratings and the actual land use situation in the 
PRD region. To more clearly show the spatial evolution trend of urban EEQ, based on the 
classification of urban ecological values (EVs) in 1990, this paper used the natural break-
point classification method to divide the index value into five categories (Li et al., 2003), 
namely, Class V habitat (0 ≤ EV < 0.45), Class IV habitat (0.45 ≤ EV < 0.55), Class III habitat 
(0.55 ≤ EV < 0.65), Class II habitat (0.65 ≤ EV < 0.75), and Class I habitat (0.75 ≤ EV < 0.85). 
The quality of Class V habitat is the lowest, and the quality of Class I habitat is the highest. 

Table 1. Land use ecological environment index assignments. 

Primary Land Use Type Secondary Land Use Type Ecological Quality Index Assign-
ment No. Name No. Name 

1 Cultivated land 
(CL) 

11 Paddy field 0.30  
12 Dry land 0.25  

2 Woodland 
(WL) 

21 Forestland 0.95  
22 Shrub land 0.65  

Sij=
𝑆11 ⋯ 𝑆1𝑛⋮ ⋱ ⋮𝑆𝑛1 ⋯ 𝑆𝑛𝑛  
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23 Sparse woodland 0.45  
24 Other woodland 0.40  

3 Grassland 
(GL) 

31 High-coverage grassland 0.75  
32 Medium-coverage grassland 0.45  
33 Low-coverage grassland 0.20  

4 Water area 
(WA) 

41 River channel 0.55  
42 Lakes 0.75  
43 Reservoir pond 0.55  
45 Foreshore 0.45  
46 Shoaly land 0.55  

5 
Construction land 

(CTL) 

51 Urban land 0.20  
52 Rural settlements 0.20  
53 Other construction land 0.15  

6 
Unutilized land 

(UL) 

61 Sandy land 0.01  
64 Marshland 0.65  
65 Bare land 0.05  
66 Bare rock texture 0.01  
67 Other unused land 0.01  

99 
Marine, reclamation, or other unused 

land 0.01  

2.3.5. Ecological Contribution Rate 
The ecological contribution of the land use change index (CLEI) was used to charac-

terize the dynamic changes in the overall EEQ of urban agglomerations caused by LUCC. 
Specifically, it refers to the degree of improvement or deterioration in the ecological qual-
ity of the study area caused by the conversion of a single land use type to another. The 
formula for calculating CLEI mainly considers the external conversion between different 
land use types. The calculation formula is as follows: 𝐶𝐿𝐸𝐼 = （𝐿𝐸 − 𝐿𝐸 ) × 𝐿𝐶𝐴𝐴  (5)

where LEt+1 and LEt represent the end and beginning periods of EVs, respectively; LCA 
represents the area of single land use change during the study period; and A represents 
the total area of the region. 

2.3.6. CA–Markov Model 
The Markov chain is a traditional method for modelling land use change that de-

scribes a transition from the present to the future. The land use transition matrix forms 
the basis for predicting future changes, and by creating a probability matrix for land use 
transition, future trends in land use change can be efficiently predicted [44–46]. The for-
mula is as follows: 𝑆( ) = 𝑃 × 𝑆( ) (6)

where Pij is the state transition matrix and S(t+1) and S(t) represent the state of the land use 
system at times t + 1 and t, respectively. 

However, the Markov model lacks spatial variables and cannot explain the spatial 
distribution of different land use types in a study area. However, the CA model, as an 
infinite-dimensional dynamic system, has the ability to simulate the spatial evolution 
trend of a system over time by discretizing time, space, and states [47]. The formula for 
this model is as follows: 
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(7)

where N represents the neighborhood of the cell, f represents the local spatial cell trans-
formation rule, and S represents the cell state aggregation. 

The CA–Markov model combines the advantages of both models and adds spatial 
features to the mathematical model, simulating the quantity change and spatial distribu-
tion characteristics of land use in a study area through a quantitative and spatial distribu-
tion feature analysis [48]. This study utilized IDRISI software as the operational platform 
for simulation and prediction using the CA–Markov model. The specific steps were as 
follows: Firstly, the raster files were classified in ArcGIS 10.3, using a reference classifica-
tion system of 6 categories (CL, WL, GL, CTL, WA, and UL). The reclassified files were 
then converted into ASCII format. Secondly, the operation was carried out in the IDRISI 
software platform, where a project directory was created, and the ASCII files were con-
verted into raster files in IDRISI format, with projection parameters set accordingly. 
Thirdly, the data were reclassified again in the IDRISI software to obtain Markov matrices 
and generate suitability maps. Through this method, we obtained the land use transition 
area matrix and the transition probability matrix for the years 2000 and 2010. Finally, us-
ing the CA–Markov model, simulations and predictions were conducted by setting the 
number of iterations for the cellular automaton to 5. 

The simulation accuracy of the CA–Markov model was analyzed for the first time by 
comparing the land use results obtained from the platform’s simulation for the year 2020 
with actual land use data for the same year and calculating the simulation accuracy. This 
step involved the use of the crosstab module in the IDRISI platform to calculate the kappa 
coefficient, where a kappa value above 0.9 is considered to meet the acceptable standard 
of simulation accuracy. The kappa result for the accuracy verification in this study was 
calculated as 0.9215, indicating a relatively ideal prediction result. Finally, based on the 
2010 and 2020 grid data, multiple development scenarios were set and the land use simu-
lation results for 2030 were predicted. 

2.3.7. Dynamic Simulation Scenario Setting 
Due to its close correlation with socioeconomic development and policy orientation, 

LUCC differs under different developmental backgrounds. Based on previous research, 
this study set two scenarios for simulating land use changes: the natural development 
scenario (NDS) and the coordinated protection scenario (CPS), aiming to predict the spa-
tial pattern differences of land use in the study area in 2030 under different scenarios. The 
two scenarios were defined as follows: (1) The natural development scenario (NDS): This 
scenario was used as a benchmark for comparison with other scenarios. It was based on 
the analysis of land use changes and development trends from 2010 to 2020, without con-
sidering the impact of policy orientation in the next decade. The area transition matrix 
and transition probability matrix were obtained by using Markov tools, and the land use 
transition matrix was imported as a suitability file into the prediction tool for simulation. 
(2) The coordinated protection scenario (CPS): This scenario took the protection of land 
use types related to ecology in the PRD as the main development constraint factor and 
referenced the basic farmland protection principles and the ecological protection policies 
of “returning farmland to forest, grassland, and lake” to reasonably protect ecological 
land and control the conversion of forestland, GL, and WA, which are related to natural 
resources, to CTL. This scenario emphasized the sustainable development of the urban 
agglomeration. In terms of setting the conversion rate between different land use types, it 
did not allow forestland, GL, or WA to be converted to other land uses and it reduced the 
possibility of converting CL by 50% to protect agricultural land. 

  

𝑆( )=𝑓 𝑆( ), 𝑁  
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3. Results 
3.1. Spatiotemporal Evolution Characteristics of LUCC 

The overall changes in land use in the PRD over the past 30 years were more intui-
tively presented based on the first-level classification, as shown in Figure 3. Between 1990 
and 2020, the land use changes in the PRD exhibited a trend of “four decreases and two 
increases”. The land use types that decreased in area included CL, WL, GL, and UL, while 
the land use types that increased in area included CTL and WA. Cropland experienced 
the largest decrease in area, with a reduction of 3807.96 km2 over 30 years, shrinking by 
24.02% from 1990 to 2020. Forestland showed the second largest decrease, decreasing by 
1242.69 km2 during the study period. Unused land exhibited the greatest rate of decline, 
decreasing by 88.28%. From 1990 to 2020, the area of CTL increased by 5166.07 km2, with 
a growth rate of 173.88%, while the area of WA slightly increased, with an increase of 166.3 
km2, representing a growth of 4.26% compared to 1990. 

 
Figure 3. The overall situation of land use change from 1990 to 2020. 

From 1990 to 2000, the LUCC in the PRD mainly showed decreases in cropland, for-
estland, GL, and UL, while CTL and WA increased. Between 2000 and 2010, the transfor-
mation of various land use types reached its peak in terms of both quantity and rate of 
change over the thirty years. The significant decreases in cropland, forestland, and grass-
land indicated a marked deterioration in ecological environmental quality. From 2010 to 
2020, the trend of land use changes significantly weakened. 

From a spatial perspective, there were significant changes in land use in the PRD 
during the study period (Figure 4). The expansion trajectory mainly extended inwards 
along the Pearl River Estuary. Similarly, the WA experienced noticeable changes. In 1990, 
there was a large concentration of dense river networks on the west side of the estuary. 
However, by 2010, the river networks were encroached upon by large areas of cropland 
and urban land, resulting in a drastic reduction in their areas. The distribution of river 
networks changed from large patchy structures to a thin and dense north‒south waterway 
pattern. In terms of cropland, it was evident that, in 2010, large areas of cropland in the 
central and southern parts of the PRD were encroached upon by CTL, while the changes 
in CL area in the western and northwestern regions were relatively minor.From the 
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perspective of numerical changes, the pie chart in Figure 4 records the pro-portion of main 
land use types in the study area in every 10-year interval from 1990 to 2020. The propor-
tion of CTL in the entire PRD increases from 6% in 1990 to 15% in 2020, while the propor-
tion of CL decreases from 29% to 22%. 

 
Figure 4. Spatial distribution characteristics of land use from 1990 to 2020. 

The single dynamic attitudes of the major land use types in the PRD region were used 
to calculate the rate of change in land use type area, as shown in Figure 5. The area of CTL 
showed the highest rate of change between 1990 and 2020, with a total change rate of 
15.81%. The change rates for the three time periods were 4.02%, 6.08%, and 1.25%, indi-
cating that the study area has undergone rapid urbanization over the past 30 years, with 
a significant increase in CTL. The second highest rate of change was observed for unused 
land, with change rates of −4.35%, −4.78%, and −7.75% for each time period. The increasing 
change rate of unused land indicated a deepening of development and utilization. The 
rate of change in arable land area was significantly higher than that in forestland and GL, 
and the total change rates for the three land use types were negative, indicating that land 
degradation and ecological environment deterioration have occurred in the PRD (Figures 
S1–S6). 
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Figure 5. Single dynamic degrees of land use from 1990 to 2020. 

The overall dynamic rate of land use in the PRD over the 30-year study period was 
1.75%. Looking at the stages, the dynamic rate of land use from 1990 to 2000 was 0.31%, 
while the rates for the two subsequent periods, 2000–2010 and 2010–2020, were 0.49% and 
0.16%, respectively. Similarly, the overall dynamic rate of land use was used to measure 
regional differences in dynamic change (Figure 6). The results showed that the cities near 
the mouth of the PRD, including Shenzhen, Zhuhai, Dongguan, Zhongshan, Foshan, and 
Guangzhou, had significantly higher overall dynamic rates of land use than the more pe-
ripheral cities. Among them, Dongguan had the highest overall dynamic rate, with a total 
dynamic rate of 3.57%, while Huizhou, Jiangmen, and Zhaoqing had lower overall dy-
namic rates than the other cities. Looking at the three time periods separately, from 1990 
to 2010, Shenzhen had the highest overall dynamic rate, while Zhaoqing’s overall dynamic 
rate remained the lowest and unchanged. Between 2010 and 2020, there was a clear down-
wards trend in the overall dynamic rates of the nine cities in the PRD urban agglomera-
tion, indicating a new stage in urbanization development. 
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Figure 6. The comprehensive land use dynamic degrees from 1990 to 2020. 

Using analysis tools in ArcGIS 10.3, land use transition matrices were calculated for 
four time periods: 1990–2020, 1990–2000, 2000–2010, and 2010–2020. These matrices were 
used to create Sankey diagrams showing the changes in land use types over the 30-year 
period. The diagrams are shown in Figure 7. 
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Figure 7. Change characteristics of land use transfer from 1990 to 2020. 

From the 1990–2020 transition matrix, it was shown that cropland experienced the 
most drastic changes, with 1223.88 km2 and 419.3 km2 of cropland converted into water 
and forestland, respectively. Another 53.28 km2 of cropland changed to GL. In addition, 
3313.35 km2 of CL was converted into CTL, highlighting the impacts of urbanization and 
excessive land development on CL. Forestland and GL were also affected, with 787.48 km2 
and 123.56 km2 converted into CTL and 304.28 km2 of forestland and 27.14 km2 of GL 
converted into cropland. WA was primarily converted into cropland and CTL, with areas 
of 467.42 km2 and 787.48 km2, respectively. This result underscores the intensive human 
exploitation of land over the past 30 years. 

Looking at the 1990–2000 transition matrix, cropland was the type of land most af-
fected during this decade, with 838.36 km2 and 724.46 km2 converted into CTL and water 
bodies, respectively. The period of 2000–2010 was the most drastic in terms of land use 
change in the PRD. According to the transition matrix, CL was the most converted type of 
land, with 1769.84 km2 converted into CTL and 650.59 km2 converted into water bodies. 
Meanwhile, forestland was the most heavily logged in CTL, with 744.82 km2 of forestland 
having been converted. WA also experienced heavy conversion, with 527.54 km2 con-
verted into CTL and 548.44 km2 converted into cropland, which accounted for 95.8% of all 
converted water bodies. From 2010 to 2020, the transition matrix showed that the area of 
cropland converted to CTL decreased by 51.9% compared to the previous decade, with a 
value of 850.68 km2. 

3.2. Impact of LUCC on the Ecological Environment 
The EEQ index values for the PRD for 1990–2020 were calculated using the formula, 

and the results are shown in Table 2. The numerical results of the EVs indicated that the 
overall EEQ of the nine cities in the PRD exhibited a downwards trend, with Shenzhen 
and Dongguan experiencing the most significant declines. Zhaoqing’s EEQ consistently 
ranked first in the region and was relatively stable, with a value that was maintained at 
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approximately 0.75. Dongguan’s EEQ was consistently the lowest among the cities in the 
urban agglomeration, and its EV fell to 0.38 in 2020—a 14.2% decrease from 1990. 

Table 2. Ecological environment indices of the PRD. 

Cities 1990 2000 2010 2020 
Guangzhou 0.5599  0.5594  0.5451  0.5396  
Shenzhen 0.5951  0.5481  0.4941  0.4859  

Zhuhai 0.5136  0.5011  0.5202  0.4996  
Foshan 0.4739  0.4799  0.4217  0.4111  

Jiangmen 0.6046  0.6066  0.6006  0.5981  
Zhaoqing 0.7562  0.7531  0.7458  0.7418  
Huizhou 0.6721  0.6726  0.6683  0.6674  

Dongguan 0.4435  0.4233  0.3881  0.3803  
Zhongshan 0.4800  0.4813  0.4370  0.4350  

The spatial distribution of the EVs of the PRD during the study period is shown in 
Figure 8, which indicated that, in 1990, Dongguan was the only city with a V-level habitat, 
while Foshan, Zhongshan, and Zhuhai were in Class IV. By 2000, the quality of Shenzhen’s 
habitat had decreased from Class III to Class IV. The deterioration in habitat quality was 
most apparent between 2000 and 2010, with Zhaoqing degrading from Class I and Guang-
zhou degrading to Class IV, while Foshan and Zhongshan’s habitat quality indices de-
graded from Class IV to Class V. 

 
Figure 8. Spatial distribution of EVs from 1990 to 2020. 

Based on the EV results, the EVs of different land use types in the second classification 
were calculated, and the EV results for 1990 were classified into five categories, using the 
natural breakpoint method, as the initial classification system for subsequent data results 
for 2000, 2010, and 2020, which were color-coded according to habitat quality level. The 
causes of changes in regional EEQ in this study were interpreted using the results of 
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multilevel EV spatial visualization (Figure 9). The results showed that the high EVs of 
Zhaoqing, Jiangmen, and Huizhou were due mainly to the presence of many different 
types of forestland and GL within their municipal boundaries, with these land use types 
having higher EEQ coefficients and contributing to higher regional ecological quality in-
dex values than those of other cities. In addition, the slow expansion rate of CTL and low 
degree of land use intensity in these three cities also contributed to their high ecological 
quality index values. Dongguan has included many low-EV land use types since 2000 and 
relatively few high-EV land use types, which was closely related to its consistently ranking 
first for land use intensity in the PRD and was the main reason for its consistently low 
EEQ index value. 

 
Figure 9. Spatial distribution of EVs for single secondary land use classification. 

By calculating the land use transition matrix for the first- and second-level classifica-
tions of the four land use datasets, the study obtained the land area changes during the 
land use transition over the study period and calculated the contribution index based on 
the ecological contribution rate formula. 

Figure 10 presents the contribution rates for the primary land use types that have 
caused ecological environment improvement and degradation in the PRD from 1990 to 
2020, showing the top five land use transition types that have contributed to ecological 
environment improvement and deterioration. Observations of the ecological contribution 
rates for Class I land use showed that the regional EEQ declined. First, farmland made the 
highest contribution to the eco-environmental quality improvement of the PRD, with a 
contribution rate of 0.654% for farmland converted to water and 0.166% for farmland con-
verted to forestland, accounting for 67.57% of the total improvement contribution rate. 
Second, CTL contributed 0.102% and 0.066% to ecological improvement when converted 
to forestland and water, respectively. The land use types that caused significant ecological 
environment deterioration in the PRD region were those that were converted to CTL, 
mainly forestland, farmland, and water. These factors accounted for 78.29% of the contri-
bution rate of ecological deterioration. 
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Figure 10. The ecological contribution rate of land use types from 1990 to 2020. 

To further analyze the ecological features of land use transitions, the study also ana-
lyzed the conversion of secondary land use types from 1990 to 2020 (Tables S1–S3). Table 
3 shows only the changes in area and ecological contribution rates for the conversion of 
secondary land use types between the beginning and the end of the study period. The 
main reason for the improvement in EEQ in the PRD from 1990 to 2020 was the increase 
in forestland resources. The main factor responsible for the ecological degradation in the 
PRD over the past three decades was the conversion of forestland. Overall, the land use 
types that contributed to the deterioration of the ecological environment were low-effi-
ciency forestland, various types of CTL, and farmland. The main reason for this trend was 
the indiscriminate urban and rural, industrial and mining, and residential land expansion 
and the previous destruction of forests and grassland, as well as the internal conversion 
of forestland. Among the factors contributing to the ecological degradation, the conver-
sion of forestland into other forms of low-ecological-quality land was the most serious, 
including forest-to-forest conversion (691.28 km2), forest-to-construction land conversion 
(281.96 km2), and forest-to-urban land conversion (178.59 km2). Overall, the trend of land 
use changes in the PRD from 1990 to 2020 resulted in a higher rate of ecological environ-
ment deterioration than improvement, leading to a significant decline in the EEQ of the 
region. 

Table 3. Secondary land use transformations and their ecological contribution rates affecting the 
EEQ. 

Pattern Secondary Land Use Type Change Change Area/km2 Ecological Contribu-
tion Rate 

Eco-environmental 
quality 

Pond–reservoir pond 965.84 0.445% 
Other woodland–woodland 359.19 0.364% 

Paddy fields–woodland 130.58 0.156% 
Dry land–forestland 106.50 0.137% 

Open woodland–forestland 140.83 0.130% 
Dry land–reservoir pond 135.43 0.075% 

Rural settlements–forestland 35.12 0.049% 
Paddy field–river canal 92.23 0.042% 

Rural settlements–paddy field 192.34 0.035% 
Paddy field–high-coverage grassland 36.40 0.030% 

Eco-environmental 
quality 

Forestland–other woodland 691.28 −0.700% 
Forestland–other construction land 281.96 −0.415% 
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Forestland–urban land 178.59 −0.247% 
Reservoir pond–urban land 360.99 −0.233% 

Paddy field–other construction land 740.05 −0.204% 
Paddy field–urban land 1080.64 −0.199% 

Reservoir pond–paddy field 401.91 −0.185% 
Forestland–paddy field 129.13 −0.155% 

Reservoir pond–other construction land 201.64 −0.149% 
Forestland–dry land 95.69 −0.123% 

3.3. Simulation of LUCC and Eco-Environmental Effects 
In this study, the simulated land use results for the urban agglomeration in 2020 were 

compared with the real data, and the kappa coefficient was calculated using the crosstab 
module in the platform. The resulting value of 0.9215 indicated that the predicted results 
were relatively ideal, and further multi-scenario prediction work was carried out through 
accuracy testing. The results of the benchmark scenario accuracy test for the land use 
transfer matrix are shown in Figure 11, from which it was found that the areas with larger 
errors were concentrated in the north and southwest of the study area. The specific per-
formance was that the simulated expansion of CTL in the northern region was signifi-
cantly greater than the real datum, while the simulated area of farmland in the southwest-
ern and northern regions was smaller than the real datum. By comparing the areas of each 
type of land use in the real and simulated data, it was found that the simulation error rates 
for forestland and WA were within 5%, while the error rates for GL and UL were slightly 
higher but still met the accuracy requirements due to their small areas and similar distri-
butions. 

 
Figure 11. Comparison of real data and simulation results for land use in 2020. 

This study was based on land use data from 2010 and 2020 and simulated the trends 
of land use changes under the NDS and the CPS in 2030. The spatial changes and area 
changes in land use resulting from the simulation are shown in Figure 12 and Table 4. By 
comparing the simulated data of the two scenarios (Figure 12), it was observed that in the 
central area of the PRD, the CPS better preserved the dense water network structure, while 
in the NDS, some water network branches were occupied by CTL. In the western region, 
due to the restrictions on the conversion of CL, forestland, and GL, the spatial representa-
tion showed increases in forest and GL areas and a significant reduction in the encroach-
ment of CTL on CL. This constitutes a reversal of the original spatial pattern of CTL ex-
pansion to a certain extent. In the eastern region, the spatial comparison situation was 
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similar to that in the other regions. Under the CPS, the water network pattern was well 
preserved and consistent with the spatial pattern of 2020. There was a significant increase 
in forestland without further aggravating the level of development, whereas the expan-
sion of CTL under the NDS was still considerable. 

 
Figure 12. Comparison of multi-scenario land use simulation results for 2030. 

Table 4. Land use area changes in the PRD from 2020 to 2030 (km2). 

Land Use Types 2020 2030 (NDS) 2030 (CPS) 
CL 12,008.42 11,374.78 11,594.38 
WL 28,872.01 27,519.87 29,069.42 
GL 1008.77 1204.73 1129.48 
WA 4017.83 4083.71 4255.64 
CTL 8004.96 9735.66 7864.98 
UL 6.89 4.10 4.98 

By comparing the area results for different scenarios simulated by the model (Table 
4), it was found that in the NDS, the CL area in 2030 decreased by 633.64 km2—a decrease 
of 5.28% compared to 2020; the forest area decreased by 1352.14 km2—a decrease of 4.68% 
compared to 2020; the GL and WA increased by 195.96 km2 and 65.88 km2, respectively—
increases of 19.43% and 1.64% compared to 2020; the CTL increased by 1730.7 km2—an 
increase of 21.62% compared to 2020; and the unused land decreased by 2.8 km2—a de-
crease of 40.57% compared to 2020. 

Under the CPS, due to the restriction of the transfer rate of CL, the degree of CL re-
duction was significantly reduced, and the simulated CL area was 1.93% greater than that 
of the NDS. The area of forestland shrinkage was controlled and showed a positive growth 
trend. Meanwhile, under coordinated control, the forest area was 5.63% greater than that 
of the NDS. The growth rate of the GL area was lower than that of the NDS, with the GL 
area growth rate being 7.46% lower than that of the NDS. The growth rate of WA was 
higher than that of the NDS, increasing by 5.92% compared to 2020. The expansion extent 
of CTL was restricted due to the limitation of converting other land to CTL, and for the 
first time in the research period, a reduction in CTL occurred. Compared with the NDS, 
the CTL area of the CPS decreased by 19.21%. 

To analyze the impact of LUCC on the trend of ecological environment change in the 
study area under different scenarios, it was first necessary to calculate the ecological EEQ 
for the nine PRD cities in 2020 and 2030 under the NDS and comprehensive protection 
scenarios using the EEQ for the first-level land use types. Since the calculation of the EV 
in the previous stage was based on the assignment results of the secondary land use types, 
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it was necessary to recalculate it using the assignment system of the primary classification 
to ensure that the results for each year’s calculation came from the same assignment sys-
tem. Based on the EEQ index for 2020–2030, the differences in the changes in the EQIs of 
the PRD cities under different simulation scenarios were derived. 

As shown in Figure 13, under the NDS, the EEQ of all cities showed a downwards 
trend. Among them, Dongguan had the highest decrease rate, with an EV that decreased 
by 7.28% compared to 2020. Shenzhen and Foshan had the second-highest decrease rate, 
with EVs declining by 5.21% and 4.07%, respectively. The degree of decline in the EEQ in 
Guangzhou and Zhongshan was greater than 3%. Compared with the NDS, the compre-
hensive protection scenario showed a significant effect in restoring EEQ for all cities, ex-
cept for Jiangmen, where the EV slightly decreased. The EVs of all other cities showed an 
upwards trend. Among them, Dongguan had the highest increase rate, with a predicted 
EV increase of 3.08% compared to ten years ago. Shenzhen and Zhuhai had the second-
highest increase rates, with predicted EV increases of 2.59% and 2.16%, respectively. 

 
Figure 13. EEQ index trends in 2020–2030 for multiple scenarios in the PRD. 

Due to the differences in the ecological environment index valuation system obtained 
from the first-level land use type and the EVs used in the previous status analysis, the 2010 
EVs of the nine cities in the PRD were used as the classification basis. Using natural break 
classification, the index values were divided into five categories: Class V habitat (0 ≤ EV < 
0.35), Class IV habitat (0.35 ≤ EV < 0.38), Class III habitat (0.38 ≤ EV < 0.44), Class II habitat 
(0.44 ≤ EV < 0.50), and Class I habitat (0.50 ≤ EV < 0.55), where Class I is the highest level 
of habitat quality and Class V is the lowest. The evaluation of the distribution of EVs in 
different categories for both current and predicted years is depicted in Figure 14. 

0.30

0.35

0.40

0.45

0.50

0.55

EV
 v

al
ue

2020 2030 NDS 2030 CPS



Land 2024, 13, 520 21 of 29 
 

 
Figure 14. Spatial distribution of EVs in the PRD from 1990 to 2020. 

Analyzing the spatial distribution characteristics of EVs in different years, we found 
that the spatial distribution of the habitat levels in 2010 and 2020 under the first-level land 
use classification system was different from that under the second-level classification sys-
tem. Specifically, in 2010 and 2020, Zhuhai’s habitat level deteriorated from level II to level 
III. In the NDS of 2030, Foshan and Shenzhen deteriorated from level IV to level V, as did 
Dongguan, while the habitat levels of the other cities remained consistent with the 2020 
levels. However, under the CPS, the habitat quality of Foshan and Shenzhen increased 
from level V to level IV under policy constraints. 

Comparing the EVs in the NDS with those in the comprehensive protection scenario, 
it was found that the city that benefitted the most from regional policies was Dongguan, 
with an EV that was 11.17% higher in the comprehensive protection scenario than in the 
NDS. Similarly, Shenzhen and Foshan showed a significant improvement in ecological 
quality, with increases in EVs of 8.23% and 5.42%, respectively, compared to the basic 
scenario. After analyzing the overall changes in land use types under different scenarios 
in 2030, we conducted a land use transfer matrix analysis of the predicted results of the 
first-level classification of land use. Using the real land use results of 2020 as the basis, we 
used a Sankey diagram to express the transformation between different land use types 
under the NDS and the overall protection scenario from 2020 to 2030. The results are 
shown in Figure 15. 
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Figure 15. Multi-scenario land use simulation transfer characteristics in 2030. 

According to the transfer matrix results from 2020 to 2030, the changes in forestland 
were most dramatic under the NDS. This result suggests that if policy control measures 
for urban expansion are not implemented, the degradation of forestland will be further 
exacerbated. The second most significant change was the conversion of CL. The loss of CL 
mainly transformed into CTL, with a conversion area of 725.15 km2. The main transfor-
mation direction for WA was also towards CTL, with 248.87 km2 of WA being encroached 
upon by CTL. The results show that the further expansion of CTL is the main trend of the 
land use changes between 2020 and 2030 under the NDS. 

Under the overall protection scenario, the expansion trend of CTL was reversed, and 
the conversion of CTL became the main trend. CTL was converted mainly to forestland 
and WA. The second most significant change concerned CL. Although the main direction 
of the loss of CL was still towards CTL, due to the restrictions on its conversion process, 
the predicted transfer area by 2030 was 299.49 km2. This was a 58.7% decrease compared 
to the transfer area from CL to CTL under the NDS. This result validated the feasibility of 
the farmland protection policy in the scenario setting. Forestland, GL, and WA changed 
from being primarily outgoing land types to being incoming land types, and they were 
mainly converted from CTL. The reason for the mutual conversion between ecological 
lands is mainly the limitations of suitability files. 

To further analyze the differences in the impact of land use transformation on the 
ecological environment under different scenarios, this paper calculated the main land use 
transformations that affected the EEQ and their ecological contribution rates during 2020–
2030 in the NDS and the CPS (Figure 16). 

 
Figure 16. Prediction of multi-scenario ecological contribution rates in 2020–2030. 
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It was observed that the ecological contribution rates in the CPS were generally more 
than twice as high as those in the NDS in terms of the trend of ecological environment 
improvement. Under the NDS, the transformation of cropland into water bodies made the 
greatest contribution to improving the ecological environment. In contrast, the total eco-
logical contribution rate of the conversion of CTL into forests, water bodies, and grassland 
under the CPS was 0.3197%, far exceeding the total improvement contribution rate of all 
land types under the NDS. 

Regarding the trend of ecological environment deterioration, the absolute value of 
the ecological contribution rate under the CPS was lower than that under the NDS. Under 
the NDS, the total ecological deterioration contribution rate of land use transformations 
from forests, water bodies, and croplands into CTL was −0.9676%. In contrast, under the 
CPS, only the transformation of cropland into CTL resulted in ecological deterioration, 
and the transformation area was only 23.23% of that under the NDS. The above data indi-
cate that if urban expansion and urbanization are uncontrolled, natural development can 
effectively simulate such trends, and the results showed that the trend of land use change 
under this scenario will further exacerbate the negative impact on the ecological environ-
ment. Under the CPS, by intervening with ecological land (forests, grassland, and water 
bodies) and cropland protection policies, urban expansion was further constrained, and 
these measures significantly slowed the speed of ecological environment deterioration, 
promoting the sustainable development of the PRD urban agglomeration. 

4. Discussion 
This study builds upon previous research and explores the temporal and spatial pat-

terns of LUCC in the PRD urban agglomeration. It also examines the variations in the 
trends of EEQ for different periods in nine cities and assesses the impact of different land 
use transitions on urban ecological environment quality using the ecological contribution 
index. Importantly, after analyzing the LUCC and its ecological benefits in the region, this 
study employs the CA–Markov model to predict future LUCC scenarios in the PRD urban 
agglomeration. Furthermore, it recalculates the ecological contribution index based on the 
simulated land use scenarios, offering a more effective framework to discuss the differen-
tial impacts of LUCC on the ecological environment under policy interventions. 

Comparing the results of this study with previous research findings, the main data 
results of this study demonstrate a good consistency with the research findings from other 
regions in China [49,50], confirming the relative reliability of the main analytical results 
presented in this paper. From a national perspective, Qu et al. analyzed the transformation 
and coupling relationship between rural settlements and cultivated land from 1996 to 2016 
using single-variable and bivariate analysis. They found that China’s cultivated land area 
transitioned from balanced growth to decline, with active land use transformation and a 
continuous decrease in cultivated land in the eastern coastal areas [51]. At the provincial 
and municipal level, Dong et al. analyzed the ecological environment quality of the Erhai 
Lake Basin from 2000 to 2020 using remote sensing ecological index (RSEI) and soil ero-
sion indicators, concluding that the regional ecological environment has improved but 
with significant regional disparities. Forestland exhibited high ecological quality, while 
unused land and construction land showed the lowest ecological quality [52]. Li et al. [53] 
quantitatively analyzed the spatiotemporal evolution of production–living–ecological 
space and the ecological environmental effects of land use structure transformation in 
Shaanxi Province from 2000 to 2020. They found that during this period, the ecological 
land and residential land consistently increased, while agricultural land decreased. The 
most significant change occurred between productive farmland and ecological grassland, 
and the encroachment of other land types on ecological grassland was a significant factor 
leading to a decline in ecological environment quality [54]. These studies align with the 
findings of our research on LUCCs and their ecological environmental impacts in the PRD 
region. The expansion of urban and rural and industrial and residential land in the region 
from 1990 to 2020 has caused extensive conversion of farmland and forestland, leading to 
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a significant decline in ecological environment quality, particularly in cities like 
Dongguan and Shenzhen, where there has been excessive expansion of construction land. 

In the context of land use simulation and future ecological prediction, Gao et al. uti-
lized the PLUS model to simulate the LUCC and associated ecological risks under various 
scenarios, including development driven by historical trends and simultaneous consider-
ation of ecology and economy, in Nanjing for 2025. The research findings indicate that 
pursuing economic benefits alone would increase ecological risks, while the overall eco-
logical risk in Nanjing is relatively low under the scenario of ecological protection [55]. 
Other articles on land use scenario simulation express similar viewpoints [18]. The con-
clusions drawn from the simulations and predictions in this study are consistent with 
those mentioned above, but also present new findings specific to different cities. By im-
plementing a comprehensive protection scenario, the trend of expanding construction 
land is being reversed, demonstrating that under robust land management policies, the 
degradation of the ecological environment in the study area is significantly constrained. 
Notably, Dongguan, Foshan, and Shenzhen exhibit more apparent ecological recovery ef-
fects under the influence of policy measures, validating the feasibility of land management 
policies. 

The scientific and effective utilization of land resources is an important and fascinat-
ing topic. Uncovering the impact of LUCC on the ecological environment is crucial for the 
efficient management of land resources and holds significant implications for sustainable 
development [53,56,57]. Effective land resource management is a key factor in ensuring 
the sustained and stable development of the ecological economy, and proper protection 
and management of land contribute to maintaining ecological balance [58,59]. The resto-
ration capacity of ecosystems and the extent of anthropogenic intervention are focuses for 
the sustainable development of regional ecosystems. Currently, China’s economy and ur-
ban construction have entered a stage of high-quality development, and spatial carriers of 
socioeconomic activities tend towards the coordinated development of city clusters. As an 
important pillar of China’s economic development, the PRD has now formed the Greater 
Bay Area with Hong Kong and Macao. In the future, it will become an essential compo-
nent of the world’s bay areas due to its unique political advantages and development po-
tential. There is an urgent need to further enhance the regional land management capacity 
and ecological resilience of the PRD. This study proposes policy recommendations from 
three aspects: land monitoring, land use efficiency, and urban–rural integrated develop-
ment. 

First of all, the most direct means of protecting land at the government level is 
strengthening the regular monitoring of land use change. In the land use simulation anal-
ysis, this study compares the overall protection scenario and the natural development sce-
nario. The results show that if there is a strong land control policy, the current process of 
ecological environment deterioration in the study area can be significantly inhibited. 
Dongguan City, Foshan City, and Shenzhen City will be more prominent in terms of eco-
logical environment restoration effects after the impact of the policy, confirming the fea-
sibility of the land control policy. In 2017, China launched a pilot project of “three lines 
and one area” eco-environmental regionalization and control and issued guidelines with 
clear objectives in 2021 [60]. Therefore, when the new construction rights or management 
rights of urban and rural land change, it is necessary to verify the ownership and area of 
land, prohibit the encroachment of basic farmland control lines and ecological protection 
red lines, and ensure the safety of farmland and the ecological environment. Considering 
the ecological restoration difficulties of other urban agglomerations, an urban agglomer-
ation should make full use of its geographical advantages, actively build ecological corri-
dors to protect the water environment, and improve the environmental carrying capacity 
of water and forest resources. It can also combine the urban traffic network to create a 
green and prosperous urban landscape pattern and build a safety screen with the natural 
ecological resources around the city. 
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Secondly, the overall progress of transformation of regional land is inefficient and 
slow, and the original idea of extensive development of urban construction has not com-
pletely changed, indicating that the overall intensive use of regional land still has a long 
way to go. The analytic results of this study show that the expansion of construction land 
(urban and rural, industrial and mining, and residential land) has led to the occupation of 
a large amount of cultivated land and forestland, which seriously damages the ecological 
environment of the PRD urban agglomeration and hinders regional sustainable develop-
ment. The change rate of the construction land area in 1990–2020 was the highest, and the 
ecological environment quality of construction land in Dongguan, Shenzhen, and other 
cities declined significantly in 30 years of excessive expansion. Therefore, making good 
use of existing CTL is the key to controlling urban expansion. The key significance of the 
efficient use of stock CTLs is to develop inefficient land in the stock CTLs of urban ag-
glomerations, including underutilized CTLs, such as abandoned factories, unfinished 
buildings, and old residential areas. In many areas, the area of unused land is large, and 
areas with a single land use function should be avoided in development, so as to prevent 
the ineffective expansion of residential and industrial areas. In addition to inefficient land 
in cities, idle land in rural areas can be used for the development of modern agricultural 
industry, promote the transformation of inefficient CTL into farmland, and protect agri-
cultural resources [61]. Land that cannot be reused can be developed into an ecotourism 
industry according to the principle of “returning forests, grasslands, and lakes” to stimu-
late the economic vitality of land ecology. 

In addition, another way to rationally set up industrial functions to improve land use 
efficiency is to promote the integration of urban agglomeration production and cities [62]. 
This study found that the degree of land use in the surrounding cities of the Pearl River 
Estuary was significantly higher than that in the peripheral cities of the study area, espe-
cially Jiangmen, Zhaoqing, and Huizhou, which were not as good as other regions in 
terms of urbanization and economic development. According to the characteristics of in-
dustrial development in each city, combined with the spatial structures of the develop-
ment plans for the areas, the supportive relationship between living space and public ser-
vices can be guaranteed, which can not only achieve the dual effect of promoting industry 
and sustaining the population, but also promote the coordinated development of indus-
try, residences, culture, and ecology. However, the restrictions on CTL should not hinder 
the economic development of weaker areas. Actively exploring the integration of produc-
tion and cities can greatly promote the symbiotic development of the economy and ecol-
ogy and solve the problem of unbalanced development within urban agglomerations. 

5. Conclusions 
In this study, we propose a methodological framework to explore the spatiotemporal 

evolution mechanisms of LUCC and their impacts on the ecological environment. Taking 
nine cities in the PRD region as an example, we investigate the spatiotemporal patterns of 
LUCC from 1990 to 2020, calculate the EV of each city, determine the ecological contribu-
tion rates of different land use types during the change process, and simulate the future 
development trends of land use and ecological environmental quality under different sce-
narios using the CA–Markov model. Based on the analysis results, policy recommenda-
tions are proposed. The main conclusions are as follows: 
(1) The overall trend of land use change in the PRD urban agglomeration between 1990 

and 2020 was “four reductions and two increases”. The trajectory of expansion of 
constructed land primarily extended inwards along the Pearl River Estuary. The rate 
of change in CL area was significantly higher than that in forest and GL areas. Addi-
tionally, cities located closer to the PRD Estuary had significantly higher comprehen-
sive land use dynamism than those on the periphery. 

(2) The overall EEQ in the nine cities of the PRD showed a declining trend. Shenzhen 
and Dongguan exhibited the most significant declines. After classifying the EVs, it 
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was found that the deterioration in ecological quality from 2000 to 2010 was the most 
significant. The continuous expansion of CTL was the primary cause of Dongguan’s 
EEQ index being consistently the lowest. From 1990 to 2020, the trend of ecological 
deterioration caused by LUCC was higher than the trend of ecological improvement, 
and there was a clear decline in the overall EEQ in the region. Farmland made out-
standing contributions to improving EEQ, followed by CTL. 

(3) From the perspective of multi-scenario land use change simulation, the degree of re-
duction in the CL area under the CPS was significantly lower than that under the 
NDS. The shrinkage of forestland was controlled and showed a positive growth trend. 
Under the NDS, the change in forestland was the most severe, and the degradation 
of forestland was further aggravated. Under the CPS, the expansion trend of CTL was 
reversed. Moreover, under the NDS, the EEQ continued to decline, while under the 
CPS, the restoration effects of the ecological environment in various cities were ap-
parent. 
However, this study still has some limitations. For example, the focus of this research 

is on the scale of urban land use change, and there is a lack of research on internal changes 
within cities. Future studies can be conducted at the county level. Additionally, incorpo-
rating socioeconomic data can allow more accurate assessment of the economic and envi-
ronmental quality of cities in the PRD and analysis of the developmental disparities 
among cities. Finally, future research should consider more diversified factors that con-
strain land use change in order to provide more targeted recommendations based on the 
current status of land use change and simulation results. 
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