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Abstract: Shrinking cities suffer from a decreased level of resident activities. As a result, areas
with low levels of resident activities may become breeding grounds for social issues. To ease and
prevent social issues, it is important to deploy physical space optimisation strategies to effectively
guide the distribution of resident activities in shrinking cities. To support the development of
such spatial strategies, this paper introduces machine learning-based methods for analysing the
nuanced non-linear relationship between resident activities and physical space in shrinking cities.
Utilising dual-scale grids, this study calculates multi-source spatial elements, which are subsequently
integrated with resident activity data to construct a gradient boosting decision tree model. It then
analyses the weight of different spatial elements’ impacts on resident activities and their nonlinear
relationships. The model proposed in this study demonstrates good precision in construing the
relationship between resident activities and physical space. Based on the research findings, strategies
for different types of spatial development in shrinking cities are drawn out. This paper advocates for
the application of this analytical approach before conducting spatial planning in shrinking cities to
maximise the effectiveness of spatial development in guiding resident activities.

Keywords: shrinking city; physical space elements; resident activities; gradient boosting decision
tree model; physical space optimisation

1. Introduction

Shrinking cities, characterised by decreases in their population [1,2], often experience
a decrease in resident activities in urban areas. Such diluted resident activity has led to the
emergence of areas marked by scant resident engagement, which often evolve into hotbeds
of social problems. These areas disrupt the formerly tightly knitted urban fabric [3], leading
to the spatial concentration of certain social groups. This development pattern may further
result in social isolation [4] and contributes to an increase in crime rates [2]. In response, a
series of spatial development strategies, including demolition, large-scale regeneration, and
small-scale design-led intervention, have been implemented to steer resident activities and
revitalise these areas. However, only limited numbers of such spatial interventions have
effectively achieved this goal [5–7]. Therefore, there is an urgent need to understand the
relationship between physical space and resident activities in shrinking cities. By gaining a
more nuanced understanding of these dynamics, it becomes possible to more effectively
steer resident activities through conducting strategic spatial development.

China’s urbanisation process faces severe challenges from urban shrinkage [8–11].
According to the seventh national census data, there are 48 shrinking cities nationwide [12].
The number of shrinking cities and the degree of shrinkage are expected to continue to
grow. The loss of population in these cities has led to a decline in the level of resident
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activity, especially in cities still undergoing new district construction [13], where resident
activity is further diluted in urban space [14]. While shrinking cities in China do not exhibit
widespread social issues, proactive spatial interventions are necessary to guide resident
activities in order to pre-empt potential problems.

To serve as a basis for such spatial interventions, there is a need to understand the
relationship between resident activities and the physical space therein. By delving into
this relationship, three critical questions are answered: (1) How are resident activities
distributed in shrinking cities in China? (2) Are there identifiable patterns in how resident
activities correlate with the physical space? (3) Can urban spatial development be enhanced
based on an in-depth understanding of the relationship between resident activities and
urban space in shrinking cities? At the current stage, there is a relatively limited in-depth
exploration of the complex nature of the relationships between residents’ daily activities and
physical space in shrinking cities, which limits our capacity to understand and effectively
respond to issues caused by urban shrinkage.

Based on the preceding rationale, this paper sets out to investigate the relationship
between resident activities and physical space in an exemplary shrinking city in China.
Following this introduction, a literature review is provided to set the theoretical foundation
for this paper in Section 2. Then, Section 3 details the methodology, including research
data, data preprocessing, and the building and training of the gradient boosting decision
tree (GBDT) model. Section 4 presents the results, demonstrating the resident activity
distribution pattern, the influences of different spatial elements, and the non-linear rela-
tionship between spatial elements and resident activities. Section 5 integrates the research
findings with theoretical underpinnings and discusses implications for shrinking cities’
development. Finally, as a conclusion, Section 6 discusses the research’s limitations and the
future development of this topic.

2. Literature Review
2.1. Obstacles in Spatial Development in Shrinking Cities

Various types of interventions have been developed and implemented in shrinking
cities in different countries [1,15,16]. Chief among these are direct physical interventions,
which are used to have an impact on socioeconomic dynamics [17]. Under the uncertain
planning paradigm (shifting from facilitating growth to accepting the status of a shrinking
city) [18–20], and the lack of a systematic understanding of how physical space affects
socio-economic activities, various spatial development strategies have been employed yet
have struggled to achieve their expected outcomes.

The demolition of vacant buildings has emerged as a key intervention in shrinking
cities. Specifically, in the German context, demolition has been identified as the only
feasible option for the significant volume of vacant housing requiring refurbishment [1].
Large areas of demolition are undertaken to stabilise other residential areas [21]. This
strategy is employed with the anticipation of fostering new land uses [5] or injecting fresh
dynamics through the creation of open spaces [22]. Nonetheless, the demolition of vacant
structures often occurs rapidly in the absence of a cohesive strategy. Consequently, when
new developments stall, demolition leaves many vacant lots underutilised for years or
decades [5], exacerbating the erosion of social cohesion in shrinking cities.

Urban space redevelopment serves as another strategic approach within physical
spaces to invigorate shrinking cities. There are two primary redevelopment tactics observed
in these urban areas, yet both frequently struggle to effectively concentrate residents’
activities. The first type involves large-scale spatial developments aimed at regenerating
degrading areas. Despite these efforts, such developments often fail to reenergise declining
urban centres and are critiqued for contributing to social polarisation [6]. The second type
is design-led intervention implemented on a smaller scale, targeting problematic residential
neighbourhoods in the hope of revitalising them [7]. Nonetheless, the capacity of design
alone to draw residents back to these areas remains a matter of debate [7].
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Considering that current spatial development strategies often fail to generate the
desired socio-economic returns, it is essential to employ a more nuanced and in-depth
understanding of the relationship between resident activities and urban space in shrinking
cities. Such knowledge is crucial for generating systematic guidance in conducting spatial
development in shrinking cities.

2.2. Studying Resident Activities and Their Relationship with Physical Space in Shrinking Cities

Residents’ daily activities are of crucial importance in the quality of the development
of shrinking cities. Several researchers have focused on the state of residents’ livelihood in
shrinking cities [23]. Yet, there has been limited research effort dedicated to understanding
the factors that shape the distribution of residents’ activities, especially in relation to the
physical urban environment. Several studies have highlighted the close connection between
physical space and resident activities in shrinking cities. For instance, abandoned buildings
in urban areas are usually related to various types of criminal activities [24], which in turn
affect socio-economic vitality on a broader scale. Additionally, improved transportation
access and the proliferation of suburban residential areas tend to disperse populations away
from central urban zones [25,26]. Despite these insights, the scale on which different spatial
development strategies affect resident activities in urban areas remains less understood
under the context of urban shrinkage.

Extensive research has analysed the impact of urban physical space on resident ac-
tivities in general urban settings [27–29]. A series of theoretical frameworks aimed at
explaining human activities in urban space has been utilised to inform this analysis [30–32].
Capitalising on the big data resources generated in the digital era, existing studies have
conducted in-depth analyses of resident activities’ characteristics based on various data
sources, including mobile phone signalling data [33–35], nighttime light data [36,37], loca-
tion service data [38], social media check-in data [39,40], and transportation card data [41].
Furthermore, scholars have explored various spatial elements that influence resident ac-
tivities and their respective weights, including building density, urban spatial function,
traffic accessibility, and land use type characteristics [42]. In terms of research methods,
linear regression based on the least squares method is commonly used [43,44] alongside
geographically weighted regression methods to account for spatial heterogeneity in rela-
tionships [42,45,46]. However, these methods predominantly assess the linear relationship
between physical space and resident activities, overlooking the complexity of the rela-
tionship between resident activities and physical space in real-life urban settings. For
example, while increased building intensity might initially attract more resident activities
to a certain area, surpassing a specific density threshold could inversely affect activity
levels [45]. Therefore, relying solely on linear analytical models may not fully capture the
intricate connections between resident activities and the physical space in shrinking cities.

Recent studies have leveraged the capacity of machine learning methods that have
demonstrated significant advantages in analysing the complex nonlinear relationships
between physical space characteristics and resident activities in urban areas [47–50]. In
particular, several machine learning methods excel in analysing datasets that feature a
considerable number of outliers and high collinearity [51]. Among them, the GBDT model
stands out for its efficacy in studying the relationship between resident activities and
urban space. Additionally, machine learning techniques, coupled with data generated
from location-based service platforms, facilitate the analysis of the characteristics of small-
scale built environments [52,53]. However, these methods have not been widely applied
in studies of resident activities in shrinking cities. Ma et al. used machine learning
methods to examine the relationship between nighttime resident activities and spatial
elements [54]. However, the impact of small-scale built environments’ characteristics on
resident activities has not been investigated. Practically, the smaller sizes and lower levels
of resident activities in shrinking cities have caused contingency in resident activities and
facilities’ locations. Therefore, utilising machine learning methods at a smaller scale to
unveil the relationship between resident activities and physical space proves challenging. A
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method that overcomes contingency in resident activities and facilities’ locations is crucial
in order to gain a comprehensive understanding of the relationship between resident
activities and physical space in shrinking cities.

3. Methodology
3.1. Research Design: Exploring Resident Activities in Shrinking Cities

Considering the advantages of machine learning methods and their lack of utilisation
in the context of shrinking cities, this study introduces and applies them to the study of
resident activities in shrinking cities. The research objective is fulfilled by focusing on
the central urban area of Chaoyang City. Firstly, leveraging Baidu heat map data, this
paper analyses the spatial distribution of residents’ activities during the day and night
on weekdays. Secondly, physical space elements are extracted based on location-based
service platforms. The data acquired include street view image (SVI) data, point of interest
(POI) data, building boundary data, and road network data, which are used for calculating
built environment characteristics, functions and function mix levels, building density,
and accessibility. These data are then preprocessed for the building of the GBDT model.
Thirdly, based on the physical space and resident activity data, a GBDT model is established
to assess the impact weights of different spatial elements on resident activities and the
nonlinear relationships among them. Finally, drawing on this analysis, a path is outlined
for optimising the physical space of shrinking cities in China and beyond. A flow chart
illustrating the research design is shown in Figure 1.
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3.2. Research Data: Case Selection and Data Acquisition

The empirical study presented in this paper focuses on the Chaoyang City, which
situates in Liaoning Province of Northeast China (see Figure 2). This city is typical in its
development pathway among other shrinking cities in China. Specifically, its historical
engagement in heavy industry development has led to challenges in transitioning towards
newer economic models. Furthermore, the overall decline of Northeast China sets the
broader context for Chaoyang’s development pathway. As a result, the total registered
population of the city witnessed a continuous decline, as shown in Figure 3. With a
decrease of 10.1% in its permanent population from 2000 to 2020, Chaoyang City can be
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considered a shrinking city. The central urban area of Chaoyang City with available street
view data was selected as the research object. While there is an influx of population into the
central urban area, this area exhibits a spatial pattern of being penetrated by a degraded
land use status and lower resident activity level under the city’s overall population loss.
Furthermore, the built environment in this area is of high construction intensity and has
diverse urban spatial functions. Therefore, it is appropriate that we select this case study
area for exploring the relationship between resident activities and the physical space in the
context of urban shrinkage.
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Regarding the data on resident activities, this study utilised the Baidu Map Open
Platform to capture 24 h activity data for each weekday within a week from 16 to 20
October 2023. As for the data on spatial elements, the up-to-date data were acquired in
2023. Based on the Baidu Map platform, the panoramic street view images were captured at
40 m intervals along the roads, providing a foundation for the analysis of small-scale built
environment features. Point of interest (POI) data from Chaoyang City were obtained from
the Baidu Map Platform, focusing on seven core categories: companies and enterprises,
catering services, residences, tourism and sightseeing, shopping, cultural and sports, and
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scientific research and education. Furthermore, data on urban road networks, bus stop,
and building boundaries were obtained from OpenStreetMap to facilitate the analysis of
urban spatial accessibility and building density characteristics.

3.3. Data Preprocessing: Overcoming Contingency Caused by Small Sample Sizes

Spatial analysis for data preprocessing was conducted using the ArcGIS 10.8 platform
in this study. To develop a model that examines the relationship between resident activities
and various elements of the physical space, these elements were processed into standard
grids. Two sets of grids were selected: 400 m × 400 m and 200 m × 200 m, with grid counts
of 515 and 1297, respectively. Given Chaoyang City is classified as a small-to-medium-sized
city with relatively low levels of resident activities and socioeconomic vitality compared to
large cities, a set of grids with the resolution of 400 m × 400 m, which is relatively large,
were chosen to calculate resident activity levels and POI density. The value of the large
grid serves as the feature value for each of its overlapping 200 m × 200 m grids. This
approach is utilised to capture the spatial pattern of the distribution of resident activities
and POIs, limiting the influences from outliers by diluting their influences to larger areas.
When analysing other spatial elements with continuous representation, including the
distance to the nearest bus stop, as well as built environment characteristics and road
network density, the 200 m × 200 m grid was chosen. This approach allows for a detailed
understanding of other spatial elements to be achieved at a finer scale. Thus far, all
elements, including resident activity data and various spatial element data, are processed
into 200 m × 200 m grids.

Subsequently, data preprocessing was conducted on different spatial elements based
on the established grids. Firstly, using the PyCharm integrated development environment,
we employed the semantic segmentation algorithm Pyramid Scene Parsing Network (PSP-
Net) trained with ADE20K dataset to process the SVIs [56,57], focusing on calculating the
proportion of different spatial elements in each image. The primary focus was given to
analysing the proportions of buildings, sky, trees and grass, earth, motorways, and side-
walks, serving as indicators for building enclosure level, sky openness, green coverage, bare
earth proportion, motorway proportion, and sidewalk proportion, respectively. Following
this, the average proportion was calculated for each grid, serving as the built environment
feature value for the particular grid.

Secondly, road density, the distance from the grid centre to the nearest bus stop, and
the proportion of building boundary area were calculated for each grid, serving as the
values for different spatial elements. Thirdly, POI densities were calculated for living,
working, and leisure space in each grid. Subsequently, the function mix of each grid was
calculated based on the number of POIs in the categories of living, working, and leisure.
The calculating approach for function mix level, which has been widely used and proven
effective in extracting information from urban space [43,46,48], is adopted in this paper.
The function mix level is calculated based on the following formula:

Mi = −∑ pi × ln pi
ln n

(1)

wherein pi represents the proportion of the number of POIs in the ith category and n
denotes the number of POI types. Lastly, the overall intensity of resident activities in each
grid was calculated, serving as the indicator for resident activities in that grid. For daytime
activity levels, the average activity intensity at 10:00, 12:00, 14:00 and 16:00 on weekdays
was selected as the representative value. For assessing nighttime activities, the average
hourly data from 19:00 to 22:00 on weekdays was selected as the representative value.
These time slots were selected with the intention of bringing out a good representation
of daytime and nighttime resident activities based on the data we have acquired with
limited resources. Descriptions and statistics of resident activities and spatial elements are
presented in Table 1.
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Table 1. Descriptions and statistics of resident activities and spatial elements.

Variable Variable Description Average Standard
Deviation Maximum Minimum

Building density Building base area/grid area 0.13 0.11 1.01 0
Living facility density Living facility POI density (per km2) 28.06 40.04 250.00 0

Working facility density Working facility POI density (per km2) 5.45 9.69 93.75 0
Leisure facility density Leisure facility POI density (per km2) 52.33 87.71 850.00 0

Function mix The mix level of three types of POI 0.58 0.35 1.00 0
Building encloser level Average building proportion in SVIs 0.13 0.11 0.49 0

Sky openness Average sky proportion in SVIs 0.59 0.10 0.76 0.03
Green coverage Average green area proportion in SVIs 0.08 0.08 0.54 0

Sidewalk proportion Average sidewalk proportion in SVIs 0.02 0.02 0.09 0
Earth proportion Average earth proportion in SVIs 0.01 0.02 0.19 0

Motorway proportion Average motorway proportion in SVIs 0.12 0.034 0.20 0
Road density Total road length/grid area (km per km2) 21.86 13.47 170.61 1.72

Bus accessibility Distance of centre grid to near bus stop (m) 299.30 268.17 1491.57 4.33
Daytime activity level Baidu heat level in the daytime 18.63 18.56 124.00 0

Nighttime activity level Baidu heat level in the nighttime 18.17 17.64 83.35 0

3.4. The Construction and Training of the GBDT Model: Unveiling the Non-Linear Relationship

In this study, the GBDT model is selected to analyse the relationship between resident
activities and spatial elements. Originally proposed by Friedman [58], the GBDT model
consists of multiple decision trees. It continuously fits the negative gradients to improve
the accuracy of the results [48] and accumulates the predicted values of the decision trees
to achieve model prediction. It is often used in classification and regression models [49].

When constructing the GBDT model, an initial learner is constructed:

T0(x) = argγmin∑N
i=1 L(yi, γ) (2)

where L(yi, γ) represents the loss function, γ denotes the coefficient of the minimum loss
function, and N is the total number of samples. Then, the negative gradient value of the loss
function of each decision tree is iteratively calculated, serving as its residual estimation [52,59].
The negative gradient is obtained by calculating the negative gradient of the current model at
the mth iteration. Based on the negative gradient, a decision tree is fitted, and subsequently,
the optimal γm value resulting in the gradient descent is calculated:

γm = argγmin∑n
i=1 L[yi, Tm−1(xi) + γ] (3)

In the model, a learning rate δ (0 < δ ≤ 1) is introduced as a factor of γ in the step of learner
update at the mth iteration to prevent overfitting.

The GBDT model has the advantage of not assuming a linear relationship between the
target variable and the explanatory variables, allowing it to determine the weights of differ-
ent explanatory variables on the target variable based on the fitting results [58,60,61]. At
the same time, because it accounts for the relationship between explanatory variables [49],
it has a high tolerance for outliers and collinearity. This makes it suitable for analysing the
relationship between urban resident activities and spatial elements.

The SHAP (SHapley Addictive exPlanation) model interpreter is used to explain the
nonlinear relationship between resident activities and spatial elements in shrinking cities.
This concept was introduced in the 1950s based on game theory [62,63]. SHAP has become
a commonly used Python package for model interpretation, including in the research
fields of urban studies [64–66]. It can be used to clarify the positive and negative effects of
spatial elements on resident activities at various levels, as well as the nonlinear relationship
between physical space elements and resident activities. The impact of feature i on the
target variable is represented by the SHAP value of that feature, which is calculated using
the following formula:
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SHAPi = ∑S⊆N\{i}
|S|!(M − |S| − 1)!

M!
× [Tx(S ∪ {i})− Tx(S)] (4)

where N is the set of all features, and S is a subset of N. The term Tx(S ∪ {i})−Tx(S) denotes
the marginal effect when i is added to S, and M denotes the total number of features.

In this study, the GBDT model was constructed and trained using the Scikit-learn library
based on Python. The SHAP interpretation package was employed to analyse the fitting
results. The resident activity level serves as the target variable, and the spatial element
data serve as the explanatory variable. To prevent overfitting and ensure the model’s
generalisation capabilities, a 10-fold cross-validation method was adopted. This involved
randomly partitioning the training dataset into 90% for training and 10% for validation to
evaluate the model’s fit. A high mean R2 value in a 10-fold cross-validation test indicates
a model’s good generalisation capacity, which can be achieved by setting the range of the
learning rate [67,68]. The number of trees needs to be adjusted in order to achieve a good
prediction result for the model. The grid search approach, which is a commonly applied
method to tune parameters [69], was implemented to search through different combinations
of parameters for the learning rate and tree counts to find the best combination. The number
of decision trees and the learning rate led to high average R2 values in both the 10-fold test
and the original data set, which means good capacities were achieved in generalisation and
extracting information from the original dataset; these numbers were therefore selected as
the optimised model parameters. The optimal number of decision trees was 395, and the
learning rate was set to 0.12. The model achieved prediction accuracies of 0.860 and 0.895
for daytime and nighttime resident activity predictions.

4. Results
4.1. Spatial Distribution Patterns of Resident Activities

The spatial distribution of resident activities in Chaoyang City is shown in Figure 4.
During the daytime, resident activities mainly exhibited a single-centre distribution pattern,
characterised by a concentration of high resident activity levels in the central area. As one
moves away from this central point, there is a noticeable decline in the level of resident
activities. Beyond the central area, there are several scattered areas with higher levels of
resident activities. The outer areas present lower levels of resident activities. During the
nighttime, the overall level of resident activities is lower than during the day. However,
the trend of declining resident activity levels with increased distance from the urban centre
persists. Contrary to daytime patterns, hotspots of activity are more scattered throughout the
inner city rather than being centrally located, with an augmented count of areas displaying
elevated activity levels. The outer area still exhibits lower levels of resident activities.
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Land 2024, 13, 515 9 of 18

4.2. The Weight of Spatial Elements’ Influences on Resident Activities

The average SHAP values of different spatial elements that influence resident activities
during weekdays (including daytime and nighttime) in Chaoyang City and their rankings
can be found in Table 2. Figure 5a illustrates the influences of various spatial elements on
resident activities in all the grids discretely during the daytime of weekdays. Among them,
the degree of function mix has the most significant impact on resident activities. A higher
level of function mix markedly boosts its positive influences on resident activities. In terms
of spatial functions, recreational areas and living facilities have a substantial impact on the
level of resident activities. Elevated values of these elements correlate with a pronounced
positive effect on resident activities, whereas diminished values tend to have a discernible
negative impact.

Table 2. SHAP value and ranking of spatial elements.

Variable Daytime
SHAP Value

Daytime
Ranking

Nighttime
SHAP Value

Nighttime
Ranking

Building density 0.72 (8) 0.43 (12)
Living facility density 1.72 (4) 2.05 (3)
Office facility density 0.17 (13) 0.39 (13)

Leisure facility density 1.79 (3) 0.67 (7)
Function mix 6.58 (1) 8.34 (1)

Building enclose level 1.98 (2) 1.73 (4)
Sky openness 1.37 (5) 2.32 (2)

Green coverage 0.59 (11) 0.51 (10)
Sidewalk proportion 0.63 (9) 1.22 (5)

Earth proportion 1.22 (6) 0.63 (8)
Motorway proportion 0.60 (10) 0.51 (9)

Road density 0.48 (12) 0.43 (11)
Bus accessibility 1.22 (7) 0.92 (6)
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Among the built environment characteristics, the building enclosure level stands
out as having the greatest influence on resident activities. When the building enclosure
level is low, it has a significant negative impact on the concentration of resident activities.
Conversely, when building enclosure level is high, the impact turns positive. The sky
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openness and the bare earth area exhibit a relatively high impact on resident activities.
Elevated values for these elements are associated with a negative effect on resident activities.
It is particularly noteworthy that, according to the SVIs captured in this study, places with
a higher proportion of bare earth are mainly construction sites, dilapidated factories,
and large areas of bare land in communities. Typical street view examples with large
areas of the three types of bare land are shown in Figure 6. These types of land use are
typical brownfield land which has been commonly observed in shrinking cities. Therefore,
the observed correlation between bare earth and the negative impact on resident activity
concentration highlights the brownfield dilemma in shrinking cities [70], which disrupts the
urban social fabric and leads to a decreasing resident activity level. Sidewalks, motorways,
and green coverage have relatively low impacts on resident activities.
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In terms of accessibility, the distance to the nearest bus stop significantly influences
the level of resident activities. As the distance from the bus stop increases, the negative
impact on resident activities becomes significantly more potent. Conversely, road density
exerts a minimal effect on the intensity of resident activity. Considering the small urban
area of Chaoyang City, there is likely a lesser need for extensive road networks, resulting in
a minimal association between road density and resident activities. Therefore, emphasising
road density might not be crucial in the city’s spatial development initiatives.

The SHAP values of different spatial elements during weekdays at night in Chaoyang
City are shown in Figure 5b. Echoing daytime patterns, the degree of spatial function
mix stands out as having the greatest influence on resident activities. A high degree of
function mix significantly boosts resident activity levels. Regarding spatial functions, living
facilities have a significant positive impact on the concentration of resident activities. On
the contrary, leisure and office facilities seem to exert minimal influence on the distribution
of resident activities.

Among the built environment elements, sky openness, building enclosure level, and
the proportion of sidewalks significantly impact nighttime resident activities. A high level
of building enclosure markedly enhances resident activities. Conversely, the sky openness
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tends to detract from resident activities. This correlation is consistent with the commonly
observed tendency that residents tend to prefer higher enclosure levels and indoor spaces.
Notably, the impact weight of the proportion of sidewalks on resident activities at night is
higher compared to the daytime, and there are differences in the impact patterns. At night,
a lower proportion of sidewalks has a significant negative impact on the concentration of
resident activities, whereas a high proportion leads to a positive impact. This may stem
from residents’ tendency to prefer areas with suitable walking spaces at night. Therefore,
creating suitable waking spaces can be considered beneficial for attracting resident activities
at night and used for preventing potential social issues such as high crime rates in shrinking
cities. Although the impact weight of bare earth is not as significant as during daytime, a
higher proportion of bare earth still has a significant negative impact on the concentration
of resident activities, underscoring the need for addressing land use issues irrespective of
the time. In terms of accessibility, both bus stop accessibility and road density play a minor
role on residents’ nighttime activities.

4.3. Analysis of Non-Linear Relationships between Physical Spatial Elements and
Resident Activities

This section presents the SHAP value patterns for various spatial elements in relative
to the spatial elements’ values. In particular, this paper focuses on the spatial elements
whose SHAP values potently correlate with the increase of the spatial elements’ values.

The distribution of SHAP values for various spatial elements during the day on
weekdays is shown in Figure 7. The capacity to generate resident activity agglomeration
in urban spaces increases with the increase in function mix. When the function mix level
reaches 0.84, the growth rate of the agglomeration capacity begins to slow down. This
observation suggests that the optimum function mix level is 0.84 during the daytime.

Among the various built environment characteristics, the degree of building enclo-
sure signifies a pivotal threshold at 0.39, beyond which the capacity for resident activity
agglomeration peaks and then plateaus. For sky openness, a less than 0.57 value enhances
the agglomeration of resident activities, but beyond that, such a trend is reversed. This
trend highlights the detrimental effect of excessive sky openness on activity concentration.
In terms of bare earth, when the proportion is below 0.003, the influence remains ambigu-
ous, but once the proportion reaches 0.003, a negative impact emerges. Such correlation
underscores the need for attention to the unused bare land. Sidewalk proportion also
exhibits a threshold effect. When the proportion of sidewalks is less than 0.03, the capacity
to agglomerate resident activities increases with the increase in the sidewalk proportion.
However, after reaching 0.03, the agglomeration capacity begins to decrease gradually.
This correlation pattern demonstrates an optimum sidewalk proportion of 0.03 during the
day. Lastly, green coverage begins to hinder rather than facilitate concentrating resident
activities when exceeding 0.06. It suggests that overly abundant green space may not be
conducive to agglomerating resident activities.

In terms of urban spatial functions, leisure functions demonstrate a positive correlation
with the intensity of resident activities. However, when the density of leisure facilities
reaches 294 per km2, the growth rate of its impact on resident activities begins to decrease,
indicating that the optimal capacity for stimulating resident activity agglomeration is
achieved at this density in Chaoyang City. Similarly, living facilities positively correlate
with resident activities, achieving an effective concentration for resident activities at 43
living facilities per km2. Regarding accessibility characteristics, the negative impact on
resident activities is most pronounced at a distance of 655 metres to the bust stop.

The distribution of SHAP values for physical space elements during weekdays at
night is shown in Figure 8. The relationship between function mix and residential activities
mirrors the daytime one, which is predominantly positive. Notably, when the function mix
level reaches 0.80, the growth rate of its impact on the capacity to agglomerate resident
activities begins to decline.
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In terms of built environment characteristics, the sky openness continues to have a
negative correlation with the agglomeration of resident activities. A specific threshold
where sky openness starts to negatively impact resident activity agglomeration is identified
at 0.59. Regarding the building enclosure degree, its capacity to agglomerate resident
activities increases until its value reaches 0.34. Beyond that, the space’s ability to agglom-
erate resident activities tends to flatten out. This pattern holds true for both daytime and
nighttime, while exhibiting an approximately consistent optimal building enclosure level
for maximising resident activity concentration. For sidewalk proportion, when it is less
than 0.02, resident activities increase with the increase in the proportion of the sidewalk.
After the proportion reaches 0.02, the space maintains a stable agglomeration ability for
resident activities. Therefore, when the proportion of the sidewalk is 0.02, it achieves the
best effect of concentrating resident activities at night.

In terms of spatial functions, the intensity of residential activities increases with the
densification of living facilities, culminating in an optimal density at 69 living facilities per
km2. Beyond this point, living facilities’ capacity to concentrate resident activities reaches a
plateau. A negative correlation is observed between the concentration of resident activities
at night and the density of work facilities. This trend underscores a disconnection between
working and residential areas in Chaoyang City, suggesting that too dense a concentration
of workspaces may detract from the vibrancy of resident activities during nighttime.



Land 2024, 13, 515 13 of 18

Land 2024, 13, x FOR PEER REVIEW 14 of 19 
 

a plateau. A negative correlation is observed between the concentration of resident activ-
ities at night and the density of work facilities. This trend underscores a disconnection 
between working and residential areas in Chaoyang City, suggesting that too dense a con-
centration of workspaces may detract from the vibrancy of resident activities during 
nighttime. 

 
Figure 8. The SHAP values for different spatial elements in the nighttime are shown in (a–f). Only 
the spatial elements whose SHAP values strongly correlate with the increases of the spatial ele-
ments’ values are presented. 

5. Discussion: Towards an Enhanced Spatial Development Strategy 
The empirical findings reveal that despite experiencing an overall population decline, 

the city centre remains attractive for local people to conduct daily activities. The city cen-
tre’s capacity to agglomerate resident activities is more evident during the daytime. Out-
side the city centre, areas with lower- and higher-level resident activities nestle close to 
one another. Nevertheless, the outer area is relatively less attractive for residents to con-
duct activities. Overall, resident activities paint a picture of urban patchwork [71], where 
the city centre remains a relatively heated area; a discrete distribution pattern outside the 
city centre is observed; and low levels of resident activities are found in the outer urban 
area. It tangentially adheres to the shrinkage pattern identified by researchers through the 
layering of punctuation and suburban shrinkage types. 

The GBDT model applied in this research illustrates how physical space elements 
contribute to a distinct urban patchwork of resident activities. Based on the correlation 
between spatial elements and resident activities, implications for different spatial devel-
opment strategies in Chaoyang City can be drawn out. The research findings underscore 
the minimal influence of building density, reflected through the base area of buildings, on 
resident activities in shrinking cities. Therefore, a pro-growth spatial development strat-
egy that aims to continue increasing building density in the city’s inner and peripheral 
areas would tend to be ineffective in generating higher levels of resident activities in 
shrinking cities. This echoes problematic attempts to revitalise cities through deploying 
pro-growth urban development in shrinking cities in China [13,72] and beyond [73]. 

Among the built environment’s characteristics, a positive correlation is found be-
tween the building enclosure level and resident activities. Meanwhile, sky openness bears 
a negative correlation with resident activities. Therefore, demolition in shrinking cities 

Figure 8. The SHAP values for different spatial elements in the nighttime are shown in (a–f). Only
the spatial elements whose SHAP values strongly correlate with the increases of the spatial elements’
values are presented.

5. Discussion: Towards an Enhanced Spatial Development Strategy

The empirical findings reveal that despite experiencing an overall population decline,
the city centre remains attractive for local people to conduct daily activities. The city
centre’s capacity to agglomerate resident activities is more evident during the daytime.
Outside the city centre, areas with lower- and higher-level resident activities nestle close to
one another. Nevertheless, the outer area is relatively less attractive for residents to conduct
activities. Overall, resident activities paint a picture of urban patchwork [71], where the
city centre remains a relatively heated area; a discrete distribution pattern outside the city
centre is observed; and low levels of resident activities are found in the outer urban area. It
tangentially adheres to the shrinkage pattern identified by researchers through the layering
of punctuation and suburban shrinkage types.

The GBDT model applied in this research illustrates how physical space elements
contribute to a distinct urban patchwork of resident activities. Based on the correlation
between spatial elements and resident activities, implications for different spatial devel-
opment strategies in Chaoyang City can be drawn out. The research findings underscore
the minimal influence of building density, reflected through the base area of buildings, on
resident activities in shrinking cities. Therefore, a pro-growth spatial development strategy
that aims to continue increasing building density in the city’s inner and peripheral areas
would tend to be ineffective in generating higher levels of resident activities in shrinking
cities. This echoes problematic attempts to revitalise cities through deploying pro-growth
urban development in shrinking cities in China [13,72] and beyond [73].

Among the built environment’s characteristics, a positive correlation is found between
the building enclosure level and resident activities. Meanwhile, sky openness bears a nega-
tive correlation with resident activities. Therefore, demolition in shrinking cities that would
significantly alter the building enclosure level and sky openness needs to be conducted with
much caution, echoing concerns raised by multiple researchers [22]. Irrational demolition
risks diminishing building encloser levels and enlarging sky openness, potentially leading
to a decrease in population activities in its surrounding area. Furthermore, as resident
activities are negatively associated with bare land in shrinking cities, the temporarily un-
used land resulting from demolition may further dampen the space’s capacity to draw in
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resident activities. As a result, the primary goal of reducing social issues through large-scale
demolition [1] is likely to be undermined if a more deliberate and strategic demolition
approach is absent.

Small-scale design-led spatial development can be conducted in shrinking cities based
on in-depth explorations of the intricate relationship between physical space and resident
activities. For example, potential exists in small-scale spatial interventions that increase
building enclosure levels, such as using decorative walls, to attract residents to conduct
activities in the surrounding area. Meanwhile, given large areas of bare land lead to
significant negative impacts on resident activities in shrinking cities, priority should be
given to rectifying brownfield sites, such as unfinished construction sites, dilapidated
factories, and unfinished roads in residential areas, to mitigate their divisive impact on
socio-economic activities. Moreover, smaller green spaces can be used to increase the
space’s capacity in agglomerating resident activities. Finally, acknowledging temporal
differences in the correlation between resident activities and spatial elements is important.
Despite the fact that the sidewalk does not have strong influence during the daytime, its
influence is significant at night. Therefore, creating adequate walking space is beneficial
for improving safety levels at night in problematic neighbourhoods through fostering
bottom-up street-level monitoring [30].

The regeneration of physical space should also focus on elements apart from the built
environment in order to foster vibrant spaces in shrinking cities. The spatial function mix
is of the highest importance in generating agglomeration in resident activities during both
day and night. This means that a balanced living, leisure, and working space is effective
in directing resident engagement. References should be drawn from the city’s optimum
function mix level of approximately 0.8 to agglomerate resident activities. Considering
the high impact of living space in agglomerating resident activities during both day and
night times, guaranteeing land use for living activities can be conducive to creating lively
neighbourhoods. The effect of agglomerating resident activities flattens out when living
facilities further increase after reaching their optimum value of 43 and 69 during day and
night, respectively. These thresholds should be considered when planning to introduce
living facilities in different localities of the city with the aim of attracting resident activities.
While connectivity tends to drive the outmigration of residents in shrinking cities [25,26],
this spatial pattern is not evident regarding resident activities. In this case study, road
density is not strongly related to resident activities, while adjacency to bus routes has a
greater effect on attracting resident activities. Therefore, increasing road density should
not be a high priority in spatial development strategies for shrinking cities. Instead, a
meticulously planned distribution of bus routes and stations could better serve as a catalyst
for guiding resident activities.

6. Conclusions

To lay the foundation for spatial development in shrinking cities, this paper investi-
gates the relationship between resident activities and physical space in the context of urban
shrinkage. Recognising the intricate nonlinear relationship between resident activities
and the physical space in shrinking cities, we consider that traditional linear relationship
models may fall short in fully capturing their relationships. Furthermore, the use of ma-
chine learning methods may be influenced by the contingency in resident activities and
facility locations brought by their small sample sizes in shrinking cities. To navigate these
complexities, our investigation utilises machine learning methods tailored to the specific
nuances of shrinking cities. By using two sets of grids with different sizes to calculate
different indicators, our approach effectively addresses the variability in resident activities
and the small number of facilities in shrinking cities. The GBDT model constructed in this
study demonstrates high precision in analysing the relationship between resident activities
and the physical space in the case city, revealing critical insights into how various physical
space elements affect resident activities. These findings provide an essential reference
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for future research and inform urban planning practices related to resident activities in
shrinking cities.

The findings generated by this model have the potential to shed light on the develop-
ment of shrinking cities. It is suggested that an analysis should be conducted to facilitate a
systematic understanding of the relationship between resident activities and urban space
before initiating spatial development in shrinking cities. By elucidating the effect and
identifying the optimal values of various spatial elements in clustering resident activities,
a more nuanced approach to spatial development is facilitated. References can be drawn
from this knowledge to inform spatial development to enhance its capacity in guiding
resident activities. In this sense, employing this informed approach enables a more targeted
intervention to achieve goals such as mitigating social issues in shrinking cities.

Finally, there remain limitations to this study that require further research. First,
although the model achieves a good level of generalisation in the case study, the relationship
between spatial elements and resident activities needs to be further examined across
other shrinking cities. Expanding the research scope would foster a more systematic
understanding of the interplay between spatial elements and resident activities, thereby
enhancing urban development strategies tailored to shrinking cities. Second, the city-level
analysis conducted in this study does not reach a nuanced understanding of why certain
physical space elements relate to resident activities in a specific manner. For example, why
green spaces are negatively correlated with resident activities after reaching a specific value
is not fully elucidated and requires further investigation. To address this gap, it is suggested
that more granular, small-scale studies be pursued, targeting different individuals’ and
social groups’ perceptions of physical space in shrinking cities. By undertaking such
detailed investigations, a deeper understanding of residents’ activities and their drives in
unique urban contexts can be achieved, offering more contextualised insights so that urban
planners and policy makers can guide urban development in shrinking cities.
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