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Abstract: Large-scale vegetation restoration has caused complex changes in ecosystem service
(i.e., ES) interactions. However, current analysis on the spatial interactions of ESs and their driving
mechanisms remains deficient, limiting the adaptive management in vegetation restoration areas. This
study focused on a representative restoration area (Yan’an) to analyze the relationships among carbon
sequestration, water yield, baseflow regulation, and soil conservation from 1990 to 2020. Employing
the bivariate boxplot and spatial autocorrelation methods, we identified the overall changes and
spatial patterns of ES interactions. The geographically and temporally weighted regression (i.e.,
GTWR) model was applied to elucidate the driving factors of these spatial ES interactions. The results
indicated the following: (1) Over the past three decades, synergies between carbon sequestration and
water yield emerged as the joint results of spatial ‘low–low’ interactions and ‘high–high’ interactions
between the two ESs, while other ES pairs generally exhibited comparatively weaker synergies, due
to their spatial ‘low–high’ interactions in southern semi-humid areas. (2) In the northern semi-arid
areas, both fractional vegetation cover (i.e., FVC) and climatic factors consistently exerted negative
influences on all ‘low–low’ ES interactions, which caused a reduced area in synergies, while in the
southern semi-humid areas, FVC suppressed the ‘low–high’ trade-offs between ESs, indicating the
adaptability of grassland restoration efforts. (3) The impact of human activities on ES interactions
has increased in the last 10 years, and exhibited positive effects on the ‘low–low’ ES interactions in
northern semi-arid areas. However, the expansion of trade-off between soil conservation and carbon
sequestration warrants attention. This study offers important insights into understanding the spatial
interactions among carbon, water, and soil-related ESs in drylands.

Keywords: ecosystem services; spatial interaction; driving factors; geographically and temporally
weighted regression

1. Introduction

Land degradation is the process of decline in land quality and productivity, typically
resulting from the combined interaction of human activities, climate change, and natural
factors [1]. In the past few decades, vegetation restoration measures have provided promi-
nent supports for curbing land degradation, which, therefore, are widely recognized as
the critical approach to achieve targets of sustainable development goals (i.e., SDGs) [2].
Despite this, mounting evidence suggests that relationships among ecosystem services (i.e.,
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ESs) caused by vegetation restoration have become blurred and intricate, accompanied
by temporal variability and spatial non-stationarity. Under the interweaving influences
of climate change, production demands, and restoration measures, the complexity of ES
interactions in drylands is especially prominent. Therefore, it is essential to determine
whether explicit patterns of ES interactions have emerged in these contexts, as they could
largely influence dryland functioning [3].

Interactions among ESs occur when multiple services respond to the same driver of
change, or when interaction among the services themselves causes changes in one service
to alter another [4]. Trade-offs or synergistic effects are the primary manifestations of ES
interactions. Methods such as Pearson, Spearman, and root mean square error have been
widely applied to quantify the trade-offs and synergies between two ESs, providing the
basis for understanding ES interactions [5–7]. Previous studies revealed the fact that ES
trade-offs and synergies may change across spatial scales, but opinions on their multi-scale
effects vary across the scientific literature. In several studies, the correlation between
ESs weakened with increasing spatial scales, while other studies presented the opposite
results. For instance, a comprehensive study on the Loess Plateau indicated that the
relationships among water yield, carbon sequestration, and sediment transport weakened
when expanding from the watershed scale to the entire study area [8], while similar studies
concluded that most correlations between ESs would enhance as the scale increases, due
to an effect of “peak cutting and valley filling” of scaling up [9]. Undoubtedly, exclusive
dependence on global analysis proves to be inadequate for discerning spatial variations
in intricate landscape [10–12]. Insightful knowledge of spatially explicit changes in ES
interactions is crucial to advance informed approaches for landscape management [13].
To date, however, understanding on the spatial interaction among ESs under vegetation
restoration remains insufficient, constraining the move from restoration efforts towards
adaptive management practices.

According to the theory of social–ecological systems, factors in the system exert their
influences by altering certain ESs, thereby driving the changes of trade-offs and syner-
gies among them [14]. Thus, existing research has primarily focused on identifying the
driving factors of ES changes to explore indirectly the changing mechanism of ES interac-
tions [15,16]. For example, redundancy analysis and geographical detectors were applied to
determine the driving mechanism of ES under climate change and urban expansion [17,18].
Using the geographically weighted regression (i.e., GWR), previous studies explored the
spatially non-stationary effects of various driving factors (such as climate, land use, and
socio-economic) influencing ESs [19]. However, due to the linkage between ecological func-
tions and social demands, changes in ES interactions are more likely to be the epitome of
the linkage between human activities and natural elements [20]. Moreover, the combination
impacts of ecological process, climate, restoration measures, and social economics often
vary from place to place, which largely determines the spatially differentiated characteris-
tics of ES interactions [15,21,22]. Therefore, it is necessary to directly clarify the key driving
indicators on the ES interactions in a quantitative manner. This is to be expected in formu-
lating an integrated solution for the co-improvement of both the ecological conservation
and socio-economics.

Under these contexts, we selected Yan’an, a typical vegetation restoration area in
China, as the case area to address the above issues. Since 1999, Yan’an has become a pilot
area of the Grain to Green Project and has achieved remarkable ‘greening’ performance over
the past 20 years. Nevertheless, a pronounced conflict has emerged between the demands
of re-vegetation efforts and those of economic development, particularly in human-land
water utilization. Additionally, as a typical area in the semi-arid and semi-humid climate
transition zone, ESs in this city are highly vulnerable to the influences of climate change
and human activities. Therefore, we focused on the spatial interactions and their driving
mechanisms among four ESs from 1990 to 2020, and tried to answer the following issues:
(1) Under the vegetation restoration, what spatial interaction patterns occur among the ES
trade-offs and synergies? (2) Under the comprehensive influences of driving factors, what
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have been the dominant factors affecting the spatial changes in ES relationships over the
past 30 years? (3) What management implications can we draw from this pilot area for
vegetation restoration in dryland areas?

2. Methods
2.1. Study Area

Yan’an is located in the northern part of Shaanxi, China (35◦21′ N–37◦31′ N, 107◦41′

E–110◦31′ E) (Figure 1a). It covers a total area of 37,037 km2, and is divided into 13 ad-
ministrative units. Topographically, Yan’an features higher elevations in the northwest
and lower elevations in the southeast, with an average elevation of approximately 1200 m
(Figure 1b). According to the climate zoning in China [23], the northern part of Yan’an
belongs to the semi-arid area, while the southern part belongs to the semi-humid area
(Figure 1c). The annual mean temperature ranges from 10.3 to 11.6 degrees. The annual
average precipitation in Yan’an is around 506 mm, primarily concentrated in July to August.
Geologically, the study area belongs to the middle of hilly and rugged region on the Chinese
Loess Plateau, characterized by unstable soil texture and a history of severe soil erosion.

Land 2024, 13, x FOR PEER REVIEW 3 of 23 
 

among the ES trade-offs and synergies? (2) Under the comprehensive influences of driving 
factors, what have been the dominant factors affecting the spatial changes in ES relation-
ships over the past 30 years? (3) What management implications can we draw from this 
pilot area for vegetation restoration in dryland areas? 

2. Methods 

2.1. Study Area 
Yan’an is located in the northern part of Shaanxi, China (35°21′ N–37°31′ N, 107°41′ 

E–110°31′ E) (Figure 1a). It covers a total area of 37,037 km2, and is divided into 13 admin-
istrative units. Topographically, Yan’an features higher elevations in the northwest and 
lower elevations in the southeast, with an average elevation of approximately 1200 m (Fig-
ure 1b). According to the climate zoning in China [23], the northern part of Yan’an belongs 
to the semi-arid area, while the southern part belongs to the semi-humid area (Figure 1c). 
The annual mean temperature ranges from 10.3 to 11.6 degrees. The annual average pre-
cipitation in Yan’an is around 506 mm, primarily concentrated in July to August. Geolog-
ically, the study area belongs to the middle of hilly and rugged region on the Chinese 
Loess Plateau, characterized by unstable soil texture and a history of severe soil erosion. 

 
Figure 1. The overview of Yan’an: (a) location, (b) elevation and administrative units, (c) land 
use/cover and climate zone boundary. 

Since the end of the last century, management measures such as small watershed 
management and the Grain to Green Project have been implemented in Yan’an, which 
have greatly contributed to the significantly increased vegetation coverage in this area. 
Presently, the land use structure has undergone notable changes (Figure 1c), with 21.43% 
of cropland being reallocated as woodland and grassland. The increased forestland is 
mainly in northern Yan’an, while the increased grassland is in central and southern Yan’an. 
In addition to re-vegetation measures, some engineering measures such as fish scale pits 
and check dams were implemented in northern and eastern Yan’an. Over the past 30 years, 
socio-economics in Yan’an has also shown consistent growth development. Fueled by 
abundant mineral resources, the city has experienced a steady increase in gross domestic 
product (i.e., GDP) and its secondary industry, reaching approximately 160.15 billion 
yuan and 88.57 billion yuan by 2020, respectively. However, extensive afforestation 

Figure 1. The overview of Yan’an: (a) location, (b) elevation and administrative units, (c) land
use/cover and climate zone boundary.

Since the end of the last century, management measures such as small watershed
management and the Grain to Green Project have been implemented in Yan’an, which
have greatly contributed to the significantly increased vegetation coverage in this area.
Presently, the land use structure has undergone notable changes (Figure 1c), with 21.43% of
cropland being reallocated as woodland and grassland. The increased forestland is mainly
in northern Yan’an, while the increased grassland is in central and southern Yan’an. In
addition to re-vegetation measures, some engineering measures such as fish scale pits and
check dams were implemented in northern and eastern Yan’an. Over the past 30 years,
socio-economics in Yan’an has also shown consistent growth development. Fueled by
abundant mineral resources, the city has experienced a steady increase in gross domestic
product (i.e., GDP) and its secondary industry, reaching approximately 160.15 billion yuan
and 88.57 billion yuan by 2020, respectively. However, extensive afforestation initiatives
have imposed considerable pressure on local water resources, leading to instances where
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restored vegetation in many areas has fallen short of expectations. Moreover, the rapid
economic growth has introduced uncertainties in regional environmental effects.

2.2. Research Design and Data Sources
2.2.1. Research Design

The research process of this study is shown in Figure 2. Details of the map legends
can be found in Supplementary Material Part I (Figure S1). Using the MODIS datasets
and InVEST model, we calculated the carbon sequestration (i.e., CS), water yield (i.e., WY),
baseflow regulation (i.e., BR), and soil conservation (i.e., SC) from 1990 to 2020 (Figure 2a),
as they concentrated reflection on changes to the ecosystem functions under vegetation
restoration. Subsequently, the Spearman correlation and bivariate boxplot analysis were
applied to determine the overall temporal changes in ES interactions over the past 30 years.
The spatial ES interactions and their changes were identified by using the bivariate spatial
autocorrelation method (Figure 2b). Finally, the geographically and temporally weighted
regression (i.e., GTWR) model was employed to explore the driving factors influencing
spatial ES interactions (Figure 2c). In this process, we implemented a sorting method to
identify the dominant driving factors over the past 30 years. This will offer targeted insights
for improving vegetation restoration in dryland areas.
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Figure 2. A working diagram of this study. Abbreviation description: C factor represents the
vegetation cover factor; NDVI is normalized difference vegetation index; LS factor represents the
slope-length factor; NL is Night-time light index; GDP is gross domestic product; FVC is fractional
vegetation cover; AET is the actual evapotranspiration.



Land 2024, 13, 511 5 of 22

2.2.2. Data Information

In the above processes, meteorological data for this study were obtained from the
National Meteorological Information Centre “https://data.cma.cn (accessed on 15 October
2022)”. Kriging interpolation was employed to transform the meteorological station data
into continuously distributed spatial data, with a spatial resolution of 250 m. Soil data, uti-
lized to quantify the soil erodibility factor and calculate the volumetric plant available water
content, were obtained from the Harmonized World Soil Database (i.e., HWSD) at a spatial
resolution of 1000 m “https://data.tpdc.ac.cn/ (accessed on 2 January 2023)”. The digital
elevation model with a resolution of 30 m resolution was acquired from the Geospatial Data
Cloud “https://www.gscloud.cn/ (accessed on 3 October 2022)”. The vegetation index was
derived from the MODIS dataset “https://earthexplorer.usgs.gov/ (accessed on 4 February
2023)”, including NDVI (MOD13Q1) and NPP (MOD17A2), with spatial resolutions of
250 m and 500 m, respectively. Land use/cover data were obtained from the Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
“http://www.resdc.cn/ (accessed on 27 February 2023)”, with a spatial resolution of 30 m.
The land use/cover types used in this study were classified into six categories as cropland,
forestland, grassland, water body, urban land, and bare land. Ecological parameters such as
monthly evapotranspiration coefficients for crop (i.e., Kc) or runoff curve number (i.e., CN)
are elucidated in subsequent sections. Additionally, socio-economic data, including night-
time light index (500 m × 500 m) and GDP (1000 m × 1000 m), were collected for analysis
of driving mechanisms. These data were all sourced from the Institute of Geographical
Sciences and Natural Resources, Chinese Academy of Sciences “https://www.resdc.cn/
(accessed on 5 March 2023)”. Finally, the WGS_1984_Albers was adopted as a unified
projection coordinate system. All raster data were standardized to a spatial resolution of
250 m using a nearest neighbor method to facilitate subsequent analysis.

2.3. ESs Quantification

Net primary productivity (i.e., NPP) serves as a crucial vegetation metric of the eco-
logical status and productivity of terrestrial ecosystems [24]. It is commonly utilized as an
indicator to reflect regional carbon sequestration dynamics [9,25]. In this study, CS was
assessed using NPP as a proxy indicator, sourced from the MODIS datasets.

Based on the revised universal soil loss equation (i.e., RUSLE) [26], SC was obtained
by calculating the difference between potential soil erosion and actual soil erosion. The
actual soil erosion was the result of potential soil erosion multiplied by a vegetation cover
factor and an erosion control practice factor [27,28]. The formula used is as follows:

SC(x) =Ep(x)− Ea(x) (1)

Ea= R(x) × K(x) × LS(x) × C(x) × P(x) (2)

EP(x) = R(x) × K(x) × LS(x) (3)

where Ea(x) and Ep(x) refer to actual and potential soil erosion in pixel x, respectively; R(x)
is the rainfall erosion factor. The R factors in 1990, 2000, 2010, and 2020 were calculated
based on the monthly rainfall [29]. The erosion productivity impact calculator (i.e., EPIC)
equation was applied to calculate the soil erosion factor (i.e., K factor) [30], in which the
contents of sand, silt, clay, and organic carbon were obtained from the HWSD. LS(x) is the
slope length factor calculated from DEM. The C(x) is the vegetation cover factor in pixel x,
and the P(x) is the erosion control practice factor in pixel x. They were estimated by using a
fractional vegetation cover-based method [28] and a slope-based method [31], respectively.

Then, the InVEST water yield model, utilizing the principle of water balance to
estimate the depth of WY in each grid cell, was applied. The detailed theory can be found
in the InVEST User’s Guide. The formula employed is as follows:

Y(x) =

[
1 − AET(x)

P(x)

]
× P(x) (4)

https://data.cma.cn
https://data.tpdc.ac.cn/
https://www.gscloud.cn/
https://earthexplorer.usgs.gov/
http://www.resdc.cn/
https://www.resdc.cn/
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AET(x)
P(x)

= 1+
AET(x)

P(x)
−

[(
1+

AET(x)
P(x)

)ω]1/ω

(5)

PET(x) = Kc(lx) × ET0(x) (6)

ω(x) = Z
AWC(x)

P(x)
+ 1.25 (7)

where Y(x) is the water yield in pixel x; AET is the actual evapotranspiration; P(x) is the
precipitation in pixel x, and the precipitation layers are mapped by spatial interpolation
based on the meteorological station data (Table 2); PET(x) is the potential evapotranspi-
ration; Kc(lx) is the crop evapotranspiration correlation coefficient. Using the modified
Hargreaves equation, the annual reference evapotranspiration (i.e., ET0(x)) in 1990, 2000,
2010, and 2020 were quantified [32]. The ω(x) is an empirical parameter; AWC(x) is the
volumetric plant available water content. The soil parameters were also obtained from
the HWSD and were used to calculate the volumetric plant available water content (i.e.,
PAWC). The Z parameter is an empirical constant reflecting the seasonal distribution of
precipitation ranging from 1 to 30. Using the empirical formula based on the number of
precipitation events in each year [33], we calculated the Z values as 20.26, 17.13, 20.4, and
19.47, respectively.

BR is the discharge from underground storage and can be the main source of stream-
flow in the dry season [34]. The InVEST seasonal water yield model was used to quantify
this service. Monthly precipitation and monthly evapotranspiration data were mapped
for each year. Meanwhile, we counted the number of monthly precipitation events in 1990,
2000, 2010, and 2020, respectively, to create a CSV table for the model input. The hydro-
logical soil group was classified based on soil texture derived from the HSWD. Values of
Kc were readily available from the InVEST online resources “https://naturalcapitalproject.
stanford.edu/software/invest/invest-downloads-data (accessed on 22 January 2023)”. It is
calculated as follows:

QFi,m = REi,m ×
{
(ai,m − Si)exp

(
−0.2Si

ai,m

)
+

S2
i

ai,m
exp

(
0.8Si

ai,m

)
E1

(
Si

ai,m

)}
×

(
25.4

[mm
in

])
(8)

where QFi,m, REi,m, and ai,m are, respectively, the quick flow generated by pixel i
in month m, the number of rain events, and the mean rain depth. The irrigation and
horticulture handbooks published by FAO to determine the CN value for each soil group,
were used to calculate Si:

Li = Pi − QFi − AETi (9)

where Li is the local recharge derived from the annual water budget; Pi is the annual
precipitation; AETi is the annual actual evapotranspiration.

If the local recharge is negative, the pixel does not contribute to baseflow and is
assigned 0. If the pixel contributed to groundwater recharge, then it is a function of
the amount of flow leaving the pixel and of the relative contribution to recharge of this
pixel. For a pixel that is not adjacent to the stream channel, the cumulative baseflow is
proportional to the cumulative baseflow that leaves the adjacent downslope pixels minus
the cumulative baseflow generated on the same downslope pixel:

Bsum,i = Lsum,i, if j is a nonstream pixel (10)

or Bsum,i = Lsum,i∑j∈{cells to which cell i pours} Pij, if j is a stream pixel (11)

Bi = max
(

Bsum,i·
Li

Lsum,i

)
, 0 (12)

where Bsum,i is the actual contribution of a pixel to the baseflow; Lsum,i is the cumulative
upstream recharge; pij is the proportion of flow from cell i to j. And baseflow Bi, can be

https://naturalcapitalproject.stanford.edu/software/invest/invest-downloads-data
https://naturalcapitalproject.stanford.edu/software/invest/invest-downloads-data
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directly derived from the proportion of the cumulative baseflow leaving cell i, with respect
to the available recharge to the upstream cumulative recharge.

The four ESs were all mapped in ArcGIS 10.5 to visualize their spatial patterns in 1990,
2000, 2010, and 2020. Their overall changes over the past 30 years were also provided to
facilitate subsequent analysis (Supplementary Material Part II).

2.4. Integrated Approach for Detecting ESs Interactions
2.4.1. Detecting Temporal Changes in ES Relationships

In this study, the Spearman analysis was applied to describe the average states of ES
interactions. It can be expressed as follows:

rs = 1 − 6∑ d2
i

N(N2 − 1)
(13)

di = Xi − Yi (14)

where rs is the rank correlation coefficient, ranging from −1 to 1, N refers to the total number
of samples, Xi and Yi, respectively, represent the serial numbers of two datasets that have
been arranged from smallest to largest, di refers to the difference of each team sorting
variable. To perform the statistical analysis, we spatially sampled four ESs in each period.
The Z-score standardized method was employed to normalize the 6000 sample points.
Then, the Spearman analyses for all pairs of ESs were calculated in R v4.2.2. Referring to the
relevant research [17], correlation coefficients of Spearman were divided as high correlation
(|r| ≥ 0.5), moderate correlation (0.3 ≤ |r| ≤ 0.5), and low correlation (0.1 ≤ |r| ≤ 0.3).
A significant positive correlation indicates a synergic relationship between the two ESs,
while a significant negative correlation suggests a trade-off between them.

The bivariate boxplot, a non-parametric statistical method, was then employed to
delineate the asymmetry and discrete correlations among ESs [35]. Bagplot provides a
visual representation of the interaction between two variables [36]. The position of the depth
median in the bagplot identifies the area where the data are relatively concentrated [37].
Combining bag direction (correlation), bag shape (distribution asymmetry and outliers),
and bag area (discretization of data distribution) enables a better understanding of the
relationship between ESs (Figure 2b). In this study, we plotted the bagplots for ES pairs
using the ‘aplpack’ package in R v4.2.2.

2.4.2. Spatially Explicit Analysis on ES Interactions

The bivariate spatial autocorrelation was employed to reveal the spatial interactions
between two ESs. This method can quantify relationships between two variables with
spatially interactive characteristics, thereby helping to reveal potential connections among
ESs. It comprises the global spatial autocorrelation and the local spatial autocorrelation.
The former reflects whether the ES interactions are spatially correlated across the entire
study area, typically quantified using the global Moran index (i.e., Moran’s I). Local spatial
autocorrelation examines the correlation between one variable at a specific location with
another variable at the neighboring location, often represented using a local indicators
of spatial association (i.e., LISA) cluster [38]. Hence, trade-off and synergy between two
ESs can be visualized by analyzing the LISA cluster types [39]. In other words, synergy or
trade-off can be identified based on codirectional correlation (i.e., ‘high–high’ or ‘low–low’
interaction) or the inverse correlation (i.e., ‘high–low’ or ‘low–high’ interactions) in the
LISA cluster maps (Figure 2b).

Here, the global Moran’s I and local LISA cluster plots for each ES pair in 1990, 2000,
2010, and 2020 were calculated using the GeoDa1.10 software. This software has been
widely used in geospatial data analysis to explore in-depth potential patterns, trends, and
correlations in geographic space [38]. We created grids with 2500 m × 2500 m in ArcGIS10.5
as the survey unit for mapping the LISA cluster between ESs. This grid scale can satisfy the
load for computer running and also provide more granular ES interaction information. It
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should be pointed out that the spatial autocorrelation of variables is a prerequisite for the
application of the LISA and the GTWR analysis in subsequent sections. Thus, we examined
the suitability for the ES interactions using the global Moran’s I. The p-value of the global
Moran’s I represents the probability of this trend occurring, and the Z-score is a multiple
of the standard deviation [40]. According to the test standards (Table S2), the six ES pairs
from 1990 to 2020 all passed the significance test with high degree of confidence (Table S3).
This process demonstrates the applicability of LISA in this study.

2.5. Analyzing the Spatial Driving Factors of ES Interactions
2.5.1. Theory on the GTWR Model

This study used the GTWR model to explore the driving mechanism on the ES interac-
tions over the past 30 years (Figure 2c). The GTWR is a local linear regression model that
incorporates spatiotemporal non-stationarity, in which each observation possesses a unique
temporal weight matrix. And the regression coefficient of observations to the dependent
variable attenuates with the increasing distance in time and space [41]. As an extension for
the GWR, this method not only captures the comprehensive spatial information of driving
factors, but also addresses the issue of their time-scale variations, providing more accurate
results in time series analysis [42]. The formula of the GTWR model can be expressed
as follows:

yi = β0(ui, vi, ti)+∑p
k=1 βk(ui, vi, ti)xik + εi (15)

where yi is the explanatory variable for the i-th sample; ui, vi, ti refer to the latitude,
longitude, and data time of the i-th sample, respectively; β0(ui, vi, ti) refers to the regression
intercept; βk(ui, vi, ti) refers to the regression coefficient of the variable k; xik is the value of
variable xk at i sample; and εi is the residual of the model.

2.5.2. Selection of Driving Factors

The direct ecological processes and the external ’catalysis’ by nature or socio-economics
are commonly regarded as the two types of reasons for ES trade-offs and synergies [43,44].
Consulting relevant studies in Table 2, we initially collected nine major indicators for
the GTWR analysis. The GTWR method emphasizes spatial variations of variables over
time [22]. Changes in terrain factors were generally weak on the 30-year time scale, thus,
they were consequently not included in the final analysis. Furthermore, the multicollinear-
ity should be removed to avoid information redundancy among variables. Here, the vari-
ance inflation factor (i.e., VIF) was used to test the multicollinearity among driving factors.
In this process, population density was excluded based on the results of multicollinearity
tests. Ultimately, six driving factors (Table 2), including temperature, precipitation, actual
evapotranspiration (i.e., AET), fractional vegetation cover (i.e., FVC), GDP, and night-time
light index were selected to determine the impacts on ES trade-offs and synergies. The
results of VIF for the six variables in each year are shown as Table 1. All values were below
10, suggesting there was no multicollinearity among these factors [45].

Table 1. VIF test for driving factors.

Variables
VIF Results

1990 2000 2010 2020

Temperature 1.6 2.5 6.4 3.7
Precipitation 3.5 6.0 10.5 6.4

AET 6.5 7.7 5.4 3.7
FVC 5.6 5.3 5.0 3.5
GDP 1.2 1.2 1.4 1.1

Night-time light index 1.1 1.1 1.2 1.1
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Table 2. Selection of driving factors of ES interactions.

Types Variables References

Meteorological factors
Temperature

[46–48]Precipitation
AET

Vegetation factors FVC [49]

Terrain factors
Elevation

[5,50]Slope

Socio-economic factors
GDP [51]

Night-time light index
[52]Population density

Note: the black variables denote the factors that were ultimately incorporated into the GTWR model, whereas
the italicized grey variables represent factors that were excluded in the analysis as they did not meet the
research requirements.

2.5.3. Model Execution and Goodness Detection

We performed the GTWR model using ArcGIS10.5. The Gaussian distance–decay-
based function was used to calculate the spatiotemporal weights. The corrected Akaike
information criterion (i.e., AICc) was utilized to determine the optimal bandwidth. Subse-
quently, we examined the advantages of GTWR compared to the GWR using representative
statistical indices. The R2 value indicates the goodness of fit of the independent variables to
the dependent variable. The AICc measures the balance between the accuracy of different
models and the number of calibration parameters, with lower values indicating better
model performance [53]. The comparison results indicates that the latter had a better fitting
effect (Table 3).

Table 3. Comparison of goodness between the GWR and the GTWR models.

ES Pairs Model R2 AICc

CS-WY
GTWR 0.74 920.3
GWR 0.63 978.7

BR-WY
GTWR 0.79 1181.0
GWR 0.71 1240.7

BR-CS
GTWR 0.69 1280.6
GWR 0.64 1272.7

SC-CS
GTWR 0.68 1295.0
GWR 0.62 1294.7

2.5.4. Ranking the Driving Factors to Discern Dominant Factors in Each Period

Changes in direction and strength of influence are generally the two important aspects
for detecting driving mechanisms [41,54]. The GTWR results presented maps of spatial
regression coefficients for each driving factor over the past 30 years. However, these
coefficients exhibited variations both in strength and direction across space, making it
difficult to determine directly the dominant drivers on ES interactions in each location.

Here, we implemented a ranking approach to identify the dominant driving factors
based on the spatial regression coefficients of the six factors (Figure 3). First, we conducted
a ranking by comparing the absolute values of the normalized regression coefficients for
each driving factor. That is, the one with the largest regression coefficient was regarded
as the first driving factor for the analyzed unit, and so forth. This process eliminated
the interferences of the sign (i.e., direction) of coefficients on their strength. Based on
the preceding step, we sequentially calculated the frequency of occurrence from the first
to sixth driving factors across the entire study area. The driving factor with the highest
frequency was identified as the primary driving force, followed by the subsequent fac-
tors in descending order, ultimately establishing the final ranking of the driving factors.
Consequently, integrating local regression coefficients and global frequencies, the ranking
approach offers a comprehensive reflection of the importance of driving factors. This
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highlighted those factors likely to have a particularly strong impact on the ES relationships.
It should be emphasized that we just screened out the dominant driving factors through
the ranking approach. Thus, the later section showed the original results obtained from the
GTWR model.
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3. Results
3.1. Temporal Changes in ES Interactions

The combined results of Spearman correlation and bivariate boxplot analysis indicated
changes in the interactions between ES pairs over time (Figure 4). In 1990, only three
of the six ES pairs showed statistically significant correlations, all of which were weakly
correlated (0.1 ≤ |r| ≤ 0.3). After 2000, the significant synergistic relationships were
concentrated among CS, WY, and SC, demonstrating an overall increase compared with
1990. However, synergies between CS and WY have gradually weakened over the past
20 years. Moreover, correlation between WY and SC, as well as CS and SC, reached their
maximum in 2010, followed by a declining trend in the last decade. A significant synergy
was observed between BR and WY, while relationships between BR and the other two ESs
were always very faint over the past 30 years.

The bagplots offered detailed information on the interaction types among the four ESs.
For the synergy between CS and WY in 1990 (Figure 4a), data values were concentrated
in the high-value region along the CS axis, running almost parallel to the WY axis. This
suggested that the synergistic relationship between the two ESs was primarily driven by
areas with high CS values. From 2000 to 2010 (Figure 4b,c), however, the concentrated
values in bagplots emerged at both ends of the bags, suggesting the synergies between
the two ESs were contributed by both high-value CS areas and low-value CS areas. In
contrast, bagplots of CS and SC, as well as WY and SC, exhibited an approximately vertical
distribution over the past 30 years. This implied that the synergies were mainly contributed
by the low-value areas of SC. The bagplots of BR and other ESs showed a triangle and
a larger area of loop, representing the numerical discreteness in this service. And the
distribution of concentrated values indicated that the weak synergies related to BR and
other ESs were mainly contributed by the low values of BR.
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Figure 4. Bagplots and Spearman correlation coefficients for ES pairs from 1990 to 2020. Bold font
indicates a high correlation with |r| ≥ 0.5. Double asterisks (**) mean a significant trend at 0.01 level
(2-tailed). Single asterisk (*) means a significant at trend 0.05 level (2-tailed). Un-marked number
indicates a non-significant relationship.

3.2. Spatial Variations in ES Interactions

Water consumption during the growth stages of restored vegetation varies depending
on natural conditions and vegetation types, largely leading to the differences in carbon
and water related ESs within a region [55]. Based on the results of bivariate spatial autocor-
relation, we exhibited the spatial interactions of ES pairs, including carbon sequestration
and water yield (i.e., CS-WY), baseflow regulation and water yield (i.e., BR-WY), baseflow
regulation and carbon sequestration (i.e., BR-CS), soil conservation and carbon sequestra-
tion (i.e., SC-CS). Indeed, these four ES pairs highlighted two distinct spatial interactions
(Figure 5), revealing the spatial differentiation of trade-offs and synergies in the northern
and southern areas.

First, the spatial interaction patterns of CS-WY and BR-WY had similar features
(Figure 5a,b). It can be observed that the two ES pairs manifested ‘low–low’ synergy
in the northern semi-arid areas, with an initially increased area followed by a decrease.
In the southern semi-humid counties, the two ES pairs also showed consistency in their
spatial distribution. However, CS-WY displayed the ‘high–high’ synergy, whereas BR-WY
showed ‘low–high’ trade-off, with the proportion exceeding 20%. It indicated these regions
had higher WY accompanied by lower BR. Second, BR-CS and SC-CS shared the similar
spatial interaction patterns, exhibiting ‘low–low’ synergy in the northern semi-arid areas
(Figure 5c,d). Interactions of the two ES pairs also showed differences in the southern
counties. The ‘low–high’ trade-off was evident in BR-CS, primarily distributed in native
vegetation areas in the southeast and southwest counties. In contrast, SC-CS showed a
certain area of ‘high–high’ synergy in the southern counties, peaking at 14.47% in 2010.
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3.3. Spatial Driving Mechanism of ES Interactions
3.3.1. Driver Changes in ES Interactions

Figure 6 illustrated the ranking of driving factors affecting the four types of ES
interactions at different periods. For the CS-WY and the BR-WY (Figure 6a,b), precipita-
tion emerged as a primary factor, consistently ranking a position in the top three over
the past 30 years. Human activities, including night-time light index and GDP, also
played a dominant role before the vegetation restoration, reflecting the high sensitivity
of ecosystem functions to human disturbance. From 2000 to 2010, FVC became the domi-
nant driver, and its contribution continued to increase during this period. Meanwhile,
impacts stemming from GDP and night-time light index have weakened since 2000. Over
the last decade, the increased forestlands and grasslands have gradually stabilized under
artificial management and natural regulation, while the contribution of human activities
has been on the rise.

Temperature and FVC have been the dominant driving factors for BR-CS and SC-CS
(Figure 6c,d), consistently ranking among the top three factors. In 1990, the impact of
precipitation was comparatively weak. After 2000, while the effects of precipitation showed
fluctuating changes, its overall contributions to BR-CS increased. Accordingly, FVC and
temperature, along with precipitation determined the changes in the ES relationships from
2000 to 2020. Meanwhile, contributions from AET exhibited a continuous upward trend
for SC-CS, reaching the second position in 2020. However, GDP or night-time light index
exerted stable and minor impacts on the two types of ES pairs over the past 30 years.
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3.3.2. Spatial Changes in Driving Factors of ES Interactions

Here, the dominant driving factors of the four ES pairs were mapped (Figures 7 and 8).
In general, the spatial dominant driving factors of CS-WY and BR-WY exhibited consistency.
A comparable picture was also observed for BR-CS and SC-CS.
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For CS-WY, the results revealed the effects of spatial drivers on different types of
synergies between the two ESs in the northern and southern areas (Figure 7a). Precipitation
negatively affected the ‘low–low’ synergy of CS-WY in the northern semi-arid areas, but
had a positive effect on the ‘high–high’ synergy in the central-southern semi-humid areas.
Notably, as the impacts of FVC increased (Figure 6a), its positive effects on CS-WY decreased
from 19.06% to 2.17% from 2000 to 2010. By 2020, FVC exhibited entirely negative impacts
on CS-WY, with more pronounced negative effects in the northern areas. Furthermore, in
1990, both GDP and night-time light index had adverse effects on the ‘low–low’ synergy
in the northern regions, and exhibited positive effects in the southern counties. However,
in the last decade, night-time light index demonstrated positive impacts (accounting for
35.04%) in most areas of the study area.

The spatial impacts of precipitation and FVC on BR-WY exhibited patterns similar to
their effects on CS-WY (Figure 7b). However, precipitation may exacerbate the ‘low–high’
trade-off in southern counties. Meanwhile, the positive impact area of FVC on the ‘low–
high’ trade-off in BR-WY decreased from 23.56% to 13.55% from 2000 to 2020, accompanied
by a significant shift of positive impacts on location. Compared to 2000, for instance, FVC
exhibited its negative impacts on the south counties in 2020. Additionally, the impact
pattern of night-time light index on BR-WY was almost the same as that of CS-WY in 2020,
with a positive impact area of 37.65%.

Overall, FVC, temperature, and precipitation exhibited comparable spatial influence
patterns on the BR-CS and SC-CS (Figure 8). In the northern semi-arid areas, the ‘low–low’
synergy was suffered mainly from precipitation, temperatures and FVC negative effects
(Figure 8a). By contrast, the positive effects of FVC and precipitation on the ‘low–high’
trade-off of BR-CS consistently expanded after 2000, reaching a proportion of 37.95% and
29.65% in 2020. In other words, the increases in FVC and precipitation would intensify
the trade-offs between BR and CS. By 2020, AET exhibited a stronger influence on SC-
CS, as depicted in Figure 8b. This influence manifested positively in the northern region
but negatively impacted on the SC-CS in southern counties, accounting for 34.45% and
22.72%, respectively.
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4. Discussion
4.1. Differentiated Synergies among ESs under Vegetation Restoration

Trade-off theory that more vegetation leads to less water has become a prevailing
paradigm in recent decades [56,57]. However, conclusions on carbon and water-related
ES relationships resulting from re-vegetation in drylands often vary across the scientific
literature. Many regional-scale studies also verify that vegetation restoration enhances
the synergistic benefits between CS and water-related ESs [58,59]. Therefore, adopting an
explicit perspective that considers both temporal and spatial changes is equally crucial
for analyzing ES interactions [60]. Through the long-term scale analysis on ES spatial
interactions in this study, the results revealed the distinctly different synergistic effects
between carbon and water-related ESs in semi-arid areas and semi-humid areas. This offers
important insights for clarifying previous ambiguous information.

Over the past 30 years, the increase in forestland and grassland in Yan’an has been
primarily concentrated in the northern areas of Wuqi, Zichang, Zhidan, and Ansai, as well
as in the southern regions of Fu and Luochuan (Figure 9a). Changes in trade-offs and
synergies of CS-WY and BR-WY have been indeed concentrated in these counties, indicating
the sensitivity of water-related ESs to vegetation restoration. Despite extensive reforestation
efforts in the northern regions, the accumulated biomass remained lower. Meanwhile, the
arid climate conditions have led to a lower WY and BR in the northern counties. In contrast,
WY in the southern counties has been always the highest in the region due to the abundant
rainfall. Consequently, the patterns of the ‘low–low’ synergy in the northern counties and
the ‘high–high’ synergy in the southern counties collectively contributed to the positive
relationships between CS and WY over the past 30 years (Figure 4).
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Figure 9. (a) Changes in land use/cover from 1990 to 2020. Field investigation on current status of
re-vegetation and engineering measures: (b) restored vegetation status in the north; (c) industrial
production; (d) fish scale pit management; (e) vegetation restoration status in central-southern
areas; (f) native vegetation status; (g) thinning of forests in native vegetation areas; (h) check dam;
(i) riverbank management. All photos (b–i) were collected during the same period of the vegetation
growing season (May–June).

During field surveys, we found that the recovery grasslands in the southern counties
typically manifested in the form of ‘patches’ intricately interwoven within the original
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natural or secondary vegetation communities (Figure 9e). However, the efficiency of recov-
ery grasslands for preventing soil loss and promoting water infiltration is notably inferior
to that of the surrounding perennial tree vegetation [61]. Moreover, Luochuan and Fu
have been the main counties for cropland utilization in the southern region, presenting
an increased area of croplands over the past 10 years. The loose soil resulting from agri-
cultural activities coupled with abundant rainfall renders these areas more prone to soil
erosion [62]. Consequently, the spatial mismatch between higher WY and lower SC or BR
in southern counties resulted in the spatial patterns of ‘low–high’ trade-off for SC-WY or
BR-WY (Figure 5b).

However, the ‘low–high’ trade-offs in BR-CS and SC-CS were completely different in
the native vegetation areas in the southeast (i.e., Yichuan and Huanglong) and southwest
(i.e., Fu and Huangling). In regions with a high cover of native vegetation (Figure 9f), the
penetration of vegetation roots effectively stabilizes the soil and prevents soil erosion [63].
Meanwhile, the densely staggered canopy directly intercepts precipitation and stores it
within the plant canopy for subsequent evaporation, resulting in less water infiltration into
the ground [46]. Therefore, the ‘low–high’ trade-offs of BR-CS reflect the direct interactions
of ecosystem functions rather than the deterioration of ESs (Figure 5c). Additionally, the
synergy of SC-CS in mature forests has been widely demonstrated in numerous studies [64].
However, this study further revealed that in the later growth stage of mature forests, the
‘high–high’ synergy area of SC-CS decreased to 9.59% (Figure 5d). According to the field
surveys, thinning may be one of the reasons. Coincidentally, recent research also indicated
that CS and SC exhibited trade-off interactions under the combined influences of climate
and vegetation change [65]. These insights all emphasized the necessity to analyze ES
interactions based on local drivers.

4.2. Driving Forces with Spatial Differences Jointly Affect ES Interactions

Time lags in ES responses caused by vegetation growth or climate changes, along with
the spatial heterogeneity of ESs induced by spatial isolation or human activities, contribute
to the intricate interactions of the ESs [12,66]. This study revealed that the interactions
among carbon, water, and soil related ESs have been primarily driven by FVC, precipitation,
and temperature, and exhibited spatially differentiated effects in northern and southern
areas (Figures 7 and 8).

In an arid climate environment, increased FVC and temperature directly aggravate
vegetation water consumption and water evaporation [67], resulting in reduced WY and
BR [68]. Thus, the increase in FVC and climatic factors have been the main reasons for the
resulting decline in ‘low–low’ synergy among the four ES pairs (Figure 5). This underscores
the heightened sensitivity of ‘low–low’ synergy in the northern region to climate change
and vegetation growth [69]. More importantly, the ‘low–low’ synergy does not necessarily
signify a favorable state of ES interactions. Despite the current re-vegetation, endeavors
have combined engineering measures such as check dams (Figure 9h), fish scale pits
(Figure 9d), striving to enhance the effective utilization of water resources through changing
microtopography [58,70]. But their effects in enhancing soil moisture and reducing nutrient
loss in the eastern and northern areas of Yan’an are quite different (Figure 9b,i). As we
observed, the area of ‘low–low’ synergy among the four ES pairs has already shown a
shrinking trend in the last 10 years. Therefore, the picture of northern regions exchanging
‘water’ for ‘carbon’ or ‘soil’ ESs reflected the potential risks of unsustainable re-vegetation
in semi-arid areas. These findings highlight the challenges in future adaptive management
in semi-arid areas: under the uncertain influence of human activities, how to integrate
effectively vegetation restoration with the advantages of microtopography to cope with the
constraints of climatic context.

By contrast, in regions characterized by a higher level of humidity, vegetation growth
experiences less constraint due to the higher water availability [46]. Therefore, in the
southern subhumid areas, precipitation positively affected the ‘high–high’ synergy of
CS-WY (Figure 7a). FVC exerted negative impacts both on the synergy in CS-WY and
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‘low–high’ tradeoff of BR-WY, which essentially reflects the basic fact that growth in re-
vegetation reduces WY. On the flip side, it demonstrated the adaptability of grassland
restoration efforts in the southern region. That is, compared with forestlands, the increased
grassland in the southern region exhibits a lower water consumption during its growth
process. Therefore, in the central-southern region focused on grassland restoration, FVC
suppressed the ‘low–high’ trade-off of BR-WY (Figure 7b).

However, in southern areas with native vegetation cover, the higher FVC and precipi-
tation could further intensify the ‘low–high’ trade-offs of BR-CS (Figure 8a). For SC-CS,
there is a consensus that augmenting FVC in mature forests can promote a synergistic
relationship between the two ESs [71], while recent studies have revealed that rising tem-
peratures will affect vegetation photosynthesis, leading to a decrease in the CS capacity of
mature forests [46,72]. Therefore, temperature suppressed the ‘low–high’ trade-off in BR-CS
and SC-CS through limiting excessive CS (Figure 8). Moreover, the field survey indicated
thinning operations are commonly carried out for native forests in southern areas such
as Huangling and Huanglong (Figure 9g). Some studies have confirmed that inadequate
thinning methods are often closely linked to diminished SC and water quality [73,74]. Par-
ticularly in mountainous areas, where there are significant variations in temperature and
precipitation along the elevation gradient, the stability of ecosystems after logging were
easily disturbed [75]. In this study, owing to the upstream and downstream relationships
in topography, changes in the native vegetation areas may also diminish the potential
for surrounding ecosystem restoration. As observed, from 2010 to 2010, the ‘low–high’
trade-off of SC-CS in the southwest and southeast regions exhibited a more pronounced
spread towards the central grassland restoration area (Figure 5d). This implies that thinning
practices in native vegetation areas should be approached cautiously to mitigate potential
adverse effects on ecosystem functioning [76,77].

4.3. Uncertain Impacts of Human Activities

Although ES characteristics mainly depend on natural elements that act on their
functioning directly, human activities play an increasingly important role in shaping the
ES interactions [78]. Recently, a national scale research study indicated that over the
past decade, China’s ecological restoration has been mainly influenced by anthropogenic
factors, such as population, land use, and urbanization [79,80]. Even in Yan’an, an area
dominated by natural ecosystems, an enhanced influence of night-time light index and
GDP within the re-vegetated areas from 2010 to 2020 also can be observed (Figure 6), which
was concentrated on water-related ESs. Not only that, this study found that the impacts
of anthropogenic factors shifted from negative or insignificant effects to promoting effects
on ‘low–low’ synergy in the northern areas (Figure 7). Relevant research reported that the
implementation of ecological restoration projects in dryland areas positively contributed
to the progressive integration and landscape connectivity [81]. In addition, the connected
landscapes can improve ES interactions by influencing the flow and distribution of water
resources and enhancing the runoff-generation capacity of natural systems [82].

However, field investigations indicated that in northern Yan’an, the re-vegetated areas
have been subjected to several years of pressure from industrial activities, such as oil
and gas extraction (Figure 9c). Industrial production has escalated the demand for water
supplies while diminishing the essential role of ecosystems in delivering a water-related
service [83]. This could also exacerbate the observed decline in WY and BR (Table S1).
Additionally, industrial activities, mainly focused on energy development and utilization,
have undoubtedly enhanced carbon emissions in the region, thereby impairing the net CS
of regenerated vegetation [84,85]. Consequently, an alternative and more realistic reason is
that human activities have simultaneously impaired both the water-related functions and
net carbon sink benefits, and reinforced their interactions. It still requires more in-depth
quantitative analysis and continuous monitoring to determine the impacts of intensified
human activities.
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5. Conclusions

Based on the spatially explicit analysis of the ES trade-offs and synergies, this study
explored the spatiotemporal effects of natural and social drivers on ES interactions. The
current results enlighten us with several means to answer the questions we proposed at the
beginning. First, in the distinct vegetation restoration environments across northern and
southern Yan’an, spatial patterns of ES interactions exhibited entirely different characteris-
tics. In the northern semi-arid areas, the ES interactions were primarily characterized by
‘low–low’ synergies, yet their extent has gradually diminished from 2000 to 2020. In con-
trast, in the southern semi-humid areas, ES pairs (except the CS-WY) exhibited ‘low–high’
trade-off, encompassing more than 20% of the study area. Second, although precipitation,
temperature, and FVC have been the primary drivers since vegetation restoration, the
impacts of human activities on CS-WY and BR-WY have continued to escalate in the last
ten years. From a spatial perspective, the weakening of the ‘low–low’ synergy in the
northern re-vegetation areas can be attributed to the negative effects from climatic contexts
and FVC increase, while the ES interactions in the southern re-vegetation areas showed
better adaptability. Finally, under the uncertain influence of climate and human activities,
effective methods should be actively explored to enhance water resource utilization for
re-vegetation in an arid environment. Additionally, changes in native vegetation areas
have shown their impacts on the ES interactions in adjacent vegetation restoration areas.
Therefore, it is also crucial to meticulously evaluate the impact of vegetation management
measures in native vegetation areas on local and downstream water and soil processes.

In future, the ongoing intensification of human activities is anticipated to amplify
uncertainties regarding the efficacy of vegetation restoration in drylands. Further in-depth
quantitative analysis of the underlying mechanisms is an urgent need, while long-term
and sustained observations of ESs and their interactions are crucial steps in assessing the
adaptation of restoration efforts.
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