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Abstract: Large-scale vegetation restoration has caused complex changes in ecosystem service (i.e.,
ES) interactions. However, current analysis on the spatial interactions of ESs and their driving mech-
anisms remains deficient, limiting the adaptive management in vegetation restoration areas. This
study focused on a representative restoration area (Yan’an) to analyze the relationships among car-
bon sequestration, water yield, baseflow regulation, and soil conservation from 1990 to 2020. Em-
ploying the bivariate boxplot and spatial autocorrelation methods, we identified the overall changes
and spatial patterns of ES interactions. The geographically and temporally weighted regression (i.e.,
GTWR) model was applied to elucidate the driving factors of these spatial ES interactions. The re-
sults indicated the following: (1) Over the past three decades, synergies between carbon sequestra-
tion and water yield emerged as the joint results of spatial ‘low-low” interactions and ‘high-high’
interactions between the two ESs, while other ES pairs generally exhibited comparatively weaker
synergies, due to their spatial ‘low-high’ interactions in southern semi-humid areas. (2) In the north-
ern semi-arid areas, both fractional vegetation cover (i.e.,, FVC) and climatic factors consistently ex-
erted negative influences on all ‘low-low’ ES interactions, which caused a reduced area in synergies,
while in the southern semi-humid areas, FVC suppressed the ‘low-high’ trade-offs between ESs,
indicating the adaptability of grassland restoration efforts. (3) The impact of human activities on ES
interactions has increased in the last 10 years, and exhibited positive effects on the ‘low-low” ES
interactions in northern semi-arid areas. However, the expansion of trade-off between soil conser-
vation and carbon sequestration warrants attention. This study offers important insights into un-
derstanding the spatial interactions among carbon, water, and soil-related ESs in drylands.

Keywords: ecosystem services; spatial interaction; driving factors; geographically and temporally
weighted regression

1. Introduction

Land degradation is the process of decline in land quality and productivity, typically
resulting from the combined interaction of human activities, climate change, and natural
factors [1]. In the past few decades, vegetation restoration measures have provided prom-
inent supports for curbing land degradation, which, therefore, are widely recognized as
the critical approach to achieve targets of sustainable development goals (i.e., SDGs) [2].
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Despite this, mounting evidence suggests that relationships among ecosystem services
(i.e., ESs) caused by vegetation restoration have become blurred and intricate, accompa-
nied by temporal variability and spatial non-stationarity. Under the interweaving influ-
ences of climate change, production demands, and restoration measures, the complexity
of ES interactions in drylands is especially prominent. Therefore, it is essential to deter-
mine whether explicit patterns of ES interactions have emerged in these contexts, as they
could largely influence dryland functioning [3].

Interactions among ESs occur when multiple services respond to the same driver of
change, or when interaction among the services themselves causes changes in one service
to alter another [4]. Trade-offs or synergistic effects are the primary manifestations of ES
interactions. Methods such as Pearson, Spearman, and root mean square error have been
widely applied to quantify the trade-offs and synergies between two ESs, providing the
basis for understanding ES interactions [5-7]. Previous studies revealed the fact that ES
trade-offs and synergies may change across spatial scales, but opinions on their multi-
scale effects vary across the scientific literature. In several studies, the correlation between
ESs weakened with increasing spatial scales, while other studies presented the opposite
results. For instance, a comprehensive study on the Loess Plateau indicated that the rela-
tionships among water yield, carbon sequestration, and sediment transport weakened
when expanding from the watershed scale to the entire study area [8], while similar stud-
ies concluded that most correlations between ESs would enhance as the scale increases,
due to an effect of “peak cutting and valley filling” of scaling up [9]. Undoubtedly, exclu-
sive dependence on global analysis proves to be inadequate for discerning spatial varia-
tions in intricate landscape [10-12]. Insightful knowledge of spatially explicit changes in
ES interactions is crucial to advance informed approaches for landscape management [13].
To date, however, understanding on the spatial interaction among ESs under vegetation
restoration remains insufficient, constraining the move from restoration efforts towards
adaptive management practices.

According to the theory of social-ecological systems, factors in the system exert their
influences by altering certain ESs, thereby driving the changes of trade-offs and synergies
among them [14]. Thus, existing research has primarily focused on identifying the driving
factors of ES changes to explore indirectly the changing mechanism of ES interactions
[15,16]. For example, redundancy analysis and geographical detectors were applied to de-
termine the driving mechanism of ES under climate change and urban expansion [17,18].
Using the geographically weighted regression (i.e., GWR), previous studies explored the
spatially non-stationary effects of various driving factors (such as climate, land use, and
socio-economic) influencing ESs [19]. However, due to the linkage between ecological
functions and social demands, changes in ES interactions are more likely to be the epitome
of the linkage between human activities and natural elements [20]. Moreover, the combi-
nation impacts of ecological process, climate, restoration measures, and social economics
often vary from place to place, which largely determines the spatially differentiated char-
acteristics of ES interactions [15,21,22]. Therefore, it is necessary to directly clarify the key
driving indicators on the ES interactions in a quantitative manner. This is to be expected
in formulating an integrated solution for the co-improvement of both the ecological con-
servation and socio-economics.

Under these contexts, we selected Yan’an, a typical vegetation restoration area in
China, as the case area to address the above issues. Since 1999, Yan'an has become a pilot
area of the Grain to Green Project and has achieved remarkable ‘greening’ performance
over the past 20 years. Nevertheless, a pronounced conflict has emerged between the de-
mands of re-vegetation efforts and those of economic development, particularly in hu-
man-land water utilization. Additionally, as a typical area in the semi-arid and semi-hu-
mid climate transition zone, ESs in this city are highly vulnerable to the influences of cli-
mate change and human activities. Therefore, we focused on the spatial interactions and
their driving mechanisms among four ESs from 1990 to 2020, and tried to answer the fol-
lowing issues: (1) Under the vegetation restoration, what spatial interaction patterns occur
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among the ES trade-offs and synergies? (2) Under the comprehensive influences of driving
factors, what have been the dominant factors affecting the spatial changes in ES relation-
ships over the past 30 years? (3) What management implications can we draw from this
pilot area for vegetation restoration in dryland areas?

2. Methods

2.1. Study Area

Yan’an is located in the northern part of Shaanxi, China (35°21' N-37°31' N, 107°41’
E-110°31" E) (Figure 1a). It covers a total area of 37,037 km?, and is divided into 13 admin-
istrative units. Topographically, Yan’an features higher elevations in the northwest and
lower elevations in the southeast, with an average elevation of approximately 1200 m (Fig-
ure 1b). According to the climate zoning in China [23], the northern part of Yan'an belongs
to the semi-arid area, while the southern part belongs to the semi-humid area (Figure 1c).
The annual mean temperature ranges from 10.3 to 11.6 degrees. The annual average pre-
cipitation in Yan’an is around 506 mm, primarily concentrated in July to August. Geolog-
ically, the study area belongs to the middle of hilly and rugged region on the Chinese
Loess Plateau, characterized by unstable soil texture and a history of severe soil erosion.
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Figure 1. The overview of Yan'an: (a) location, (b) elevation and administrative units, (c) land
use/cover and climate zone boundary.

Since the end of the last century, management measures such as small watershed
management and the Grain to Green Project have been implemented in Yan’an, which
have greatly contributed to the significantly increased vegetation coverage in this area.
Presently, the land use structure has undergone notable changes (Figure 1c), with 21.43%
of cropland being reallocated as woodland and grassland. The increased forestland is
mainly in northern Yan’an, while the increased grassland is in central and southern Yan’an.
In addition to re-vegetation measures, some engineering measures such as fish scale pits
and check dams were implemented in northern and eastern Yan’an. Over the past 30 years,
socio-economics in Yan’an has also shown consistent growth development. Fueled by
abundant mineral resources, the city has experienced a steady increase in gross domestic
product (i.e,, GDP) and its secondary industry, reaching approximately 160.15 billion
yuan and 88.57 billion yuan by 2020, respectively. However, extensive afforestation
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initiatives have imposed considerable pressure on local water resources, leading to in-
stances where restored vegetation in many areas has fallen short of expectations. Moreo-
ver, the rapid economic growth has introduced uncertainties in regional environmental
effects.

2.2. Research Design and Data Sources
2.2.1. Research Design

The research process of this study is shown in Figure 2. Details of the map legends
can be found in Supplementary Material Part I (Figure S1). Using the MODIS datasets and
InVEST model, we calculated the carbon sequestration (i.e., CS), water yield (i.e.,, WY),
baseflow regulation (i.e., BR), and soil conservation (i.e., SC) from 1990 to 2020 (Figure 2a),
as they concentrated reflection on changes to the ecosystem functions under vegetation
restoration. Subsequently, the Spearman correlation and bivariate boxplot analysis were
applied to determine the overall temporal changes in ES interactions over the past 30
years. The spatial ES interactions and their changes were identified by using the bivariate
spatial autocorrelation method (Figure 2b). Finally, the geographically and temporally
weighted regression (i.e., GTWR) model was employed to explore the driving factors in-
fluencing spatial ES interactions (Figure 2c). In this process, we implemented a sorting
method to identify the dominant driving factors over the past 30 years. This will offer
targeted insights for improving vegetation restoration in dryland areas.
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Figure 2. A working diagram of this study. Abbreviation description: C factor represents the vege-
tation cover factor; NDVI is normalized difference vegetation index; LS factor represents the slope-
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length factor; NL is Night-time light index; GDP is gross domestic product; FVC is fractional vege-
tation cover; AET is the actual evapotranspiration.

2.2.2. Data Information

In the above processes, meteorological data for this study were obtained from the
National Meteorological Information Centre “https://data.cma.cn (accessed on 15 October
2022)”. Kriging interpolation was employed to transform the meteorological station data
into continuously distributed spatial data, with a spatial resolution of 250 m. Soil data,
utilized to quantify the soil erodibility factor and calculate the volumetric plant available
water content, were obtained from the Harmonized World Soil Database (i.e., HWSD) at
a spatial resolution of 1000 m “https://data.tpdc.ac.cn/ (accessed on 2 January 2023)”. The
digital elevation model with a resolution of 30 m resolution was acquired from the Geo-
spatial Data Cloud “https://www.gscloud.cn/ (accessed on 3 October 2022)”. The vegeta-
tion index was derived from the MODIS dataset “https://earthexplorer.usgs.gov/ (ac-
cessed on 4 February 2023)”, including NDVI (MOD13Q1) and NPP (MOD17A2), with
spatial resolutions of 250 m and 500 m, respectively. Land use/cover data were obtained
from the Institute of Geographic Sciences and Natural Resources Research, Chinese Acad-
emy of Sciences “http://www.resdc.cn/ (accessed on 27 February 2023)”, with a spatial
resolution of 30 m. The land use/cover types used in this study were classified into six
categories as cropland, forestland, grassland, water body, urban land, and bare land. Eco-
logical parameters such as monthly evapotranspiration coefficients for crop (i.e., Kc) or
runoff curve number (i.e., CN) are elucidated in subsequent sections. Additionally, socio-
economic data, including night-time light index (500 m x 500 m) and GDP (1000 m = 1000
m), were collected for analysis of driving mechanisms. These data were all sourced from
the Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sci-
ences “https://www.resdc.cn/ (accessed on 5 March 2023)”. Finally, the WGS_1984_Albers
was adopted as a unified projection coordinate system. All raster data were standardized
to a spatial resolution of 250 m using a nearest neighbor method to facilitate subsequent
analysis.

2.3. ESs Quantification

Net primary productivity (i.e., NPP) serves as a crucial vegetation metric of the eco-
logical status and productivity of terrestrial ecosystems [24]. It is commonly utilized as an
indicator to reflect regional carbon sequestration dynamics [9,25]. In this study, CS was
assessed using NPP as a proxy indicator, sourced from the MODIS datasets.

Based on the revised universal soil loss equation (i.e., RUSLE) [26], SC was obtained
by calculating the difference between potential soil erosion and actual soil erosion. The
actual soil erosion was the result of potential soil erosion multiplied by a vegetation cover
factor and an erosion control practice factor [27,28]. The formula used is as follows:

SC() =Ep(x) — Ea(¥) 1)
B, =R(x) x K(x) x LS(x) x C(x) x P(x) )
Ep(x) = R(x) x K(x) x LS(x) ®)

where Ea(x) and Ep(x) refer to actual and potential soil erosion in pixel x, respectively; R(x)
is the rainfall erosion factor. The R factors in 1990, 2000, 2010, and 2020 were calculated
based on the monthly rainfall [29]. The erosion productivity impact calculator (i.e., EPIC)
equation was applied to calculate the soil erosion factor (i.e., K factor) [30], in which the
contents of sand, silt, clay, and organic carbon were obtained from the HWSD. LS(x) is the
slope length factor calculated from DEM. The C(x) is the vegetation cover factor in pixel
x, and the P(x) is the erosion control practice factor in pixel x. They were estimated by
using a fractional vegetation cover-based method [28] and a slope-based method [31], re-
spectively.
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Then, the InVEST water yield model, utilizing the principle of water balance to esti-
mate the depth of WY in each grid cell, was applied. The detailed theory can be found in
the InVEST User’s Guide. The formula employed is as follows:

AET
Y(x) = [1 - P(X()X)] < P(x) 4)
w 1/&)

AET(X) AET() AET(x)

e R il (R~ B ®)
PET(x) = K(ly) * ETy() ©
0x) =22V 4 55 %

TR

where Y(x) is the water yield in pixel x; AET is the actual evapotranspiration; P(x) is the
precipitation in pixel x, and the precipitation layers are mapped by spatial interpolation
based on the meteorological station data (Table 1); PET(x) is the potential evapotranspira-
tion; Kc(Ix) is the crop evapotranspiration correlation coefficient. Using the modified Har-
greaves equation, the annual reference evapotranspiration (i.e., ETo(x)) in 1990, 2000, 2010,
and 2020 were quantified [32]. The w(x) is an empirical parameter; AWC(x) is the volu-
metric plant available water content. The soil parameters were also obtained from the
HWSD and were used to calculate the volumetric plant available water content (i.e.,
PAWC). The Z parameter is an empirical constant reflecting the seasonal distribution of
precipitation ranging from 1 to 30. Using the empirical formula based on the number of
precipitation events in each year [33], we calculated the Z values as 20.26, 17.13, 20.4, and
19.47, respectively.

BR is the discharge from underground storage and can be the main source of stream-
flow in the dry season [34]. The InVEST seasonal water yield model was used to quantify
this service. Monthly precipitation and monthly evapotranspiration data were mapped
for each year. Meanwhile, we counted the number of monthly precipitation events in 1990,
2000, 2010, and 2020, respectively, to create a CSV table for the model input. The hydro-
logical soil group was classified based on soil texture derived from the HSWD. Values of
K. were readily available from the InVEST online resources “https://naturalcapitalpro-
ject.stanford.edu/software/invest/invest-downloads-data (accessed on 22 January 2023)”.
It is calculated as follows:

2
Qa0 = e (= T2) o (32 ()} Cosbi])

ai,m ai,m i i,m

where QF;m, REim, and aim are, respectively, the quick flow generated by pixel i in month
m, the number of rain events, and the mean rain depth. The irrigation and horticulture
handbooks published by FAO to determine the CN value for each soil group, were used
to calculate Si:

LizPi - QFI - AETI (9)

where Li is the local recharge derived from the annual water budget; Pi is the annual pre-
cipitation; AETi is the annual actual evapotranspiration.

If the local recharge is negative, the pixel does not contribute to baseflow and is as-
signed 0. If the pixel contributed to groundwater recharge, then it is a function of the
amount of flow leaving the pixel and of the relative contribution to recharge of this pixel.
For a pixel that is not adjacent to the stream channel, the cumulative baseflow is propor-
tional to the cumulative baseflow that leaves the adjacent downslope pixels minus the
cumulative baseflow generated on the same downslope pixel:

Bgsum,i = Lsum i, if j is @ nonstream pixel (10)
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or Bsum,i :Lsum,i ZjE{CEIIS to which cell i pours} Pij/ lf] is a stream Pixel (11)
Li
B; = max (Bsumi-—> ,0 (12)
" Lsum,i

where Bsum,i is the actual contribution of a pixel to the baseflow; Lsumiis the cumulative
upstream recharge; pj is the proportion of flow from cell i to j. And baseflow Bi, can be
directly derived from the proportion of the cumulative baseflow leaving cell i, with respect
to the available recharge to the upstream cumulative recharge.

The four ESs were all mapped in ArcGIS 10.5 to visualize their spatial patterns in
1990, 2000, 2010, and 2020. Their overall changes over the past 30 years were also provided
to facilitate subsequent analysis (Supplementary Material Part II).

2.4. Integrated Approach for Detecting ESs Interactions
2.4.1. Detecting Temporal Changes in ES Relationships

In this study, the Spearman analysis was applied to describe the average states of ES
interactions. It can be expressed as follows:

6y d?
N(N?-1)

r,=1— (13)

di=Xi - Yi (14)

where 1 is the rank correlation coefficient, ranging from -1 to 1, N refers to the total num-
ber of samples, Xi and Yi, respectively, represent the serial numbers of two datasets that
have been arranged from smallest to largest, di refers to the difference of each team sorting
variable. To perform the statistical analysis, we spatially sampled four ESs in each period.
The Z-score standardized method was employed to normalize the 6000 sample points.
Then, the Spearman analyses for all pairs of ESs were calculated in R v4.2.2. Referring to
the relevant research [17], correlation coefficients of Spearman were divided as high cor-
relation (Irl > 0.5), moderate correlation (0.3 < Ir| <£0.5), and low correlation (0.1 < Irl <
0.3). A significant positive correlation indicates a synergic relationship between the two
ESs, while a significant negative correlation suggests a trade-off between them.

The bivariate boxplot, a non-parametric statistical method, was then employed to de-
lineate the asymmetry and discrete correlations among ESs [35]. Bagplot provides a visual
representation of the interaction between two variables [36]. The position of the depth
median in the bagplot identifies the area where the data are relatively concentrated [37].
Combining bag direction (correlation), bag shape (distribution asymmetry and outliers),
and bag area (discretization of data distribution) enables a better understanding of the
relationship between ESs (Figure 2b). In this study, we plotted the bagplots for ES pairs
using the ‘aplpack’ package in R v4.2.2.

2.4.2. Spatially Explicit Analysis on ES Interactions

The bivariate spatial autocorrelation was employed to reveal the spatial interactions
between two ESs. This method can quantify relationships between two variables with spa-
tially interactive characteristics, thereby helping to reveal potential connections among
ESs. It comprises the global spatial autocorrelation and the local spatial autocorrelation.
The former reflects whether the ES interactions are spatially correlated across the entire
study area, typically quantified using the global Moran index (i.e., Moran’s I). Local spa-
tial autocorrelation examines the correlation between one variable at a specific location
with another variable at the neighboring location, often represented using a local indica-
tors of spatial association (i.e., LISA) cluster [38]. Hence, trade-off and synergy between
two ESs can be visualized by analyzing the LISA cluster types [39]. In other words, syn-
ergy or trade-off can be identified based on codirectional correlation (i.e., “high-high” or
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‘low-low’ interaction) or the inverse correlation (i.e., ‘high-low” or ‘low-high” interac-
tions) in the LISA cluster maps (Figure 2b).

Here, the global Moran’s I and local LISA cluster plots for each ES pair in 1990, 2000,
2010, and 2020 were calculated using the GeoDal.10 software. This software has been
widely used in geospatial data analysis to explore in-depth potential patterns, trends, and
correlations in geographic space [38]. We created grids with 2500 m x 2500 m in ArcGIS10.5
as the survey unit for mapping the LISA cluster between ESs. This grid scale can satisfy
the load for computer running and also provide more granular ES interaction information.
It should be pointed out that the spatial autocorrelation of variables is a prerequisite for
the application of the LISA and the GTWR analysis in subsequent sections. Thus, we ex-
amined the suitability for the ES interactions using the global Moran’s 1. The p-value of
the global Moran'’s I represents the probability of this trend occurring, and the Z-score is
a multiple of the standard deviation [40]. According to the test standards (Table S2), the
six ES pairs from 1990 to 2020 all passed the significance test with high degree of confi-
dence (Table S3). This process demonstrates the applicability of LISA in this study.

2.5. Analyzing the Spatial Driving Factors of ES Interactions
2.5.1. Theory on the GTWR Model

This study used the GTWR model to explore the driving mechanism on the ES inter-
actions over the past 30 years (Figure 2c). The GTWR is a local linear regression model
that incorporates spatiotemporal non-stationarity, in which each observation possesses a
unique temporal weight matrix. And the regression coefficient of observations to the de-
pendent variable attenuates with the increasing distance in time and space [41]. As an
extension for the GWR, this method not only captures the comprehensive spatial infor-
mation of driving factors, but also addresses the issue of their time-scale variations,
providing more accurate results in time series analysis [42]. The formula of the GTWR
model can be expressed as follows:

yi=[30(uifvi/ti) + ZE=1 ﬁk(uirVirti) Xk +E; (15)

where yi is the explanatory variable for the i-th sample; ui, vi, ti refer to the latitude, longi-
tude, and data time of the i-th sample, respectively; Po(u;, v, ti) refers to the regression
intercept; Px(ui, vi, ti) refers to the regression coefficient of the variable k; xix is the value of
variable x« at i sample; and i is the residual of the model.

2.5.2. Selection of Driving Factors

The direct ecological processes and the external ’'catalysis’ by nature or socio-eco-
nomics are commonly regarded as the two types of reasons for ES trade-offs and synergies
[43,44]. Consulting relevant studies in Table 1, we initially collected nine major indicators
for the GTWR analysis. The GTWR method emphasizes spatial variations of variables over
time [22]. Changes in terrain factors were generally weak on the 30-year time scale, thus,
they were consequently not included in the final analysis. Furthermore, the multicolline-
arity should be removed to avoid information redundancy among variables. Here, the
variance inflation factor (i.e., VIF) was used to test the multicollinearity among driving
factors. In this process, population density was excluded based on the results of multicol-
linearity tests. Ultimately, six driving factors (Table 1), including temperature, precipita-
tion, actual evapotranspiration (i.e.,, AET), fractional vegetation cover (i.e.,, FVC), GDP,
and night-time light index were selected to determine the impacts on ES trade-offs and
synergies. The results of VIF for the six variables in each year are shown as Table 2. All
values were below 10, suggesting there was no multicollinearity among these factors [45].
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Table 1. Selection of driving factors of ES interactions.

Types Variables References
Temperature
Meteorological factors Precipitation [46-48]

AET

Vegetation factors FvC [49]

Terrain factors Elevation [5,50]

Slope
GDP [51]

Socio-economic factors
' e Night-time light index

Population density
Note: the black variables denote the factors that were ultimately incorporated into the GTWR model,

whereas the italicized grey variables represent factors that were excluded in the analysis as they did
not meet the research requirements.

[52]

Table 2. VIF test for driving factors.

. VIF Results
Variables
1990 2000 2010 2020

Temperature 1.6 2.5 6.4 3.7
Precipitation 3.5 6.0 10.5 6.4
AET 6.5 7.7 5.4 3.7

FvC 5.6 53 5.0 3.5

GDP 1.2 1.2 1.4 11
Night-time light index 1.1 1.1 1.2 1.1

2.5.3. Model Execution and Goodness Detection

We performed the GTWR model using ArcGIS10.5. The Gaussian distance—decay-
based function was used to calculate the spatiotemporal weights. The corrected Akaike
information criterion (i.e., AICc) was utilized to determine the optimal bandwidth. Sub-
sequently, we examined the advantages of GTWR compared to the GWR using repre-
sentative statistical indices. The R? value indicates the goodness of fit of the independent
variables to the dependent variable. The AICc measures the balance between the accuracy
of different models and the number of calibration parameters, with lower values indicat-
ing better model performance [53]. The comparison results indicates that the latter had a
better fitting effect (Table 3).

Table 3. Comparison of goodness between the GWR and the GTWR models.

ES Pairs Model R2 AICc
TWR 74 20.

CSWY %V‘\//\]R 8.63 372;

o7 i

0 s

GTWR 0.68 1295.0

SCCS GWR 0.62 1294.7

2.5.4. Ranking the Driving Factors to Discern Dominant Factors in Each Period

Changes in direction and strength of influence are generally the two important as-
pects for detecting driving mechanisms [41,54]. The GTWR results presented maps of spa-
tial regression coefficients for each driving factor over the past 30 years. However, these



Land 2024, 13, 511

10 of 23

coefficients exhibited variations both in strength and direction across space, making it dif-
ficult to determine directly the dominant drivers on ES interactions in each location.

Here, we implemented a ranking approach to identify the dominant driving factors
based on the spatial regression coefficients of the six factors (Figure 3). First, we conducted
a ranking by comparing the absolute values of the normalized regression coefficients for
each driving factor. That is, the one with the largest regression coefficient was regarded
as the first driving factor for the analyzed unit, and so forth. This process eliminated the
interferences of the sign (i.e., direction) of coefficients on their strength. Based on the pre-
ceding step, we sequentially calculated the frequency of occurrence from the first to sixth
driving factors across the entire study area. The driving factor with the highest frequency
was identified as the primary driving force, followed by the subsequent factors in de-
scending order, ultimately establishing the final ranking of the driving factors. Conse-
quently, integrating local regression coefficients and global frequencies, the ranking ap-
proach offers a comprehensive reflection of the importance of driving factors. This high-
lighted those factors likely to have a particularly strong impact on the ES relationships. It
should be emphasized that we just screened out the dominant driving factors through the
ranking approach. Thus, the later section showed the original results obtained from the
GTWR model.

Step 1.

(a) Local regression
coefficients comparison

X2
e X
X1 X4 X2

importance

unsorted order after sorting

Figure 3. Schematic diagram of driving factor ranking; X1 to X6 refers to the six driving factors,
respectively.

3. Results
3.1. Temporal Changes in ES Interactions

The combined results of Spearman correlation and bivariate boxplot analysis indi-
cated changes in the interactions between ES pairs over time (Figure 4). In 1990, only three
of the six ES pairs showed statistically significant correlations, all of which were weakly
correlated (0.1 < Irl <0.3). After 2000, the significant synergistic relationships were con-
centrated among CS, WY, and SC, demonstrating an overall increase compared with 1990.
However, synergies between CS and WY have gradually weakened over the past 20 years.
Moreover, correlation between WY and SC, as well as CS and SC, reached their maximum
in 2010, followed by a declining trend in the last decade. A significant synergy was ob-
served between BR and WY, while relationships between BR and the other two ESs were
always very faint over the past 30 years.
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Figure 4. Bagplots and Spearman correlation coefficients for ES pairs from 1990 to 2020. Bold font
indicates a high correlation with Irl >0.5. Double asterisks (**) mean a significant trend at 0.01 level
(2-tailed). Single asterisk (*) means a significant at trend 0.05 level (2-tailed). Un-marked number
indicates a non-significant relationship.

The bagplots offered detailed information on the interaction types among the four
ESs. For the synergy between CS and WY in 1990 (Figure 4a), data values were concen-
trated in the high-value region along the CS axis, running almost parallel to the WY axis.
This suggested that the synergistic relationship between the two ESs was primarily driven
by areas with high CS values. From 2000 to 2010 (Figure 4b,c), however, the concentrated
values in bagplots emerged at both ends of the bags, suggesting the synergies between the
two ESs were contributed by both high-value CS areas and low-value CS areas. In contrast,
bagplots of CS and SC, as well as WY and SC, exhibited an approximately vertical distri-
bution over the past 30 years. This implied that the synergies were mainly contributed by
the low-value areas of SC. The bagplots of BR and other ESs showed a triangle and a larger
area of loop, representing the numerical discreteness in this service. And the distribution
of concentrated values indicated that the weak synergies related to BR and other ESs were
mainly contributed by the low values of BR.

3.2. Spatial Variations in ES Interactions

Water consumption during the growth stages of restored vegetation varies depend-
ing on natural conditions and vegetation types, largely leading to the differences in carbon
and water related ESs within a region [55]. Based on the results of bivariate spatial auto-
correlation, we exhibited the spatial interactions of ES pairs, including carbon sequestra-
tion and water yield (i.e., CS-WY), baseflow regulation and water yield (i.e., BR-WY),
baseflow regulation and carbon sequestration (i.e., BR-CS), soil conservation and carbon
sequestration (i.e., SC-CS). Indeed, these four ES pairs highlighted two distinct spatial in-
teractions (Figure 5), revealing the spatial differentiation of trade-offs and synergies in the
northern and southern areas.



Land 2024, 13, 511

12 of 23

(a) CS-WY . . I I I
80%
g . .Vf— i = et - e .-- P ke ;‘y‘- ; "' *
ok o . :

1990 2000 2010 2020
= 43%  075%  151%  368%
" 633%  491%  157%  438%
w 6.06% 2744% 2442% 17.01%
= 1555% 2186% 2216% 2003%

66.90% 4503% 5063% 54.91%

¥ % i I I
5 %
£,

fs "

1990 2000 2010 2020
" 051%  1.20%  0.34%  0.48%
" 2009% 2407% 2293% 2345%

m 1.08% 1.75% 072%  086%
29.15% 20.33% 24.23% 42.75%

1990 2000 2010 2020
12.99%

115
2036% 2428% 4277%

Figure 5. LISA cluster maps for the ES pairs from 1990 to 2020.

First, the spatial interaction patterns of CS-WY and BR-WY had similar features (Fig-
ure 5a,b). It can be observed that the two ES pairs manifested ‘low—low’ synergy in the
northern semi-arid areas, with an initially increased area followed by a decrease. In the
southern semi-humid counties, the two ES pairs also showed consistency in their spatial
distribution. However, CS-WY displayed the ‘high-high’ synergy, whereas BR-WY
showed ‘low-high’ trade-off, with the proportion exceeding 20%. It indicated these re-
gions had higher WY accompanied by lower BR. Second, BR-CS and SC-CS shared the
similar spatial interaction patterns, exhibiting ‘low-low’ synergy in the northern semi-
arid areas (Figure 5c,d). Interactions of the two ES pairs also showed differences in the
southern counties. The ‘low-high’ trade-off was evident in BR-CS, primarily distributed
in native vegetation areas in the southeast and southwest counties. In contrast, SC-CS
showed a certain area of ‘high-high’ synergy in the southern counties, peaking at 14.47%
in 2010.

3.3. Spatial Driving Mechanism of ES Interactions
3.3.1. Driver Changes in ES Interactions

Figure 6 illustrated the ranking of driving factors affecting the four types of ES inter-
actions at different periods. For the CS-WY and the BR-WY (Figure 6a,b), precipitation
emerged as a primary factor, consistently ranking a position in the top three over the past
30 years. Human activities, including night-time light index and GDP, also played a dom-
inant role before the vegetation restoration, reflecting the high sensitivity of ecosystem
functions to human disturbance. From 2000 to 2010, FVC became the dominant driver,
and its contribution continued to increase during this period. Meanwhile, impacts stem-
ming from GDP and night-time light index have weakened since 2000. Over the last dec-
ade, the increased forestlands and grasslands have gradually stabilized under artificial
management and natural regulation, while the contribution of human activities has been
on the rise.
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Figure 6. Changes in driving factors of ES pairs from 1990 to 2020. Abbreviation description: TEM —
temperature, PRE-precipitation, and NL —night-time light index.

Temperature and FVC have been the dominant driving factors for BR-CS and SC-CS
(Figure 6c,d), consistently ranking among the top three factors. In 1990, the impact of pre-
cipitation was comparatively weak. After 2000, while the effects of precipitation showed
fluctuating changes, its overall contributions to BR-CS increased. Accordingly, FVC and
temperature, along with precipitation determined the changes in the ES relationships
from 2000 to 2020. Meanwhile, contributions from AET exhibited a continuous upward
trend for SC-CS, reaching the second position in 2020. However, GDP or night-time light
index exerted stable and minor impacts on the two types of ES pairs over the past 30 years.

3.3.2. Spatial Changes in Driving Factors of ES Interactions

Here, the dominant driving factors of the four ES pairs were mapped (Figures 7 and
8). In general, the spatial dominant driving factors of CS-WY and BR-WY exhibited con-
sistency. A comparable picture was also observed for BR-CS and SC-CS.

For CS-WY, the results revealed the effects of spatial drivers on different types of
synergies between the two ESs in the northern and southern areas (Figure 7a). Precipita-
tion negatively affected the ‘low—low’ synergy of CS-WY in the northern semi-arid areas,
but had a positive effect on the ‘high-high’ synergy in the central-southern semi-humid
areas. Notably, as the impacts of FVC increased (Figure 6a), its positive effects on CS-WY
decreased from 19.06% to 2.17% from 2000 to 2010. By 2020, FVC exhibited entirely nega-
tive impacts on CS-WY, with more pronounced negative effects in the northern areas. Fur-
thermore, in 1990, both GDP and night-time light index had adverse effects on the ‘low—
low” synergy in the northern regions, and exhibited positive effects in the southern coun-
ties. However, in the last decade, night-time light index demonstrated positive impacts
(accounting for 35.04%) in most areas of the study area.
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Figure 7. Spatial effects of the driving factors for (a) CS-WY, and for (b) BR-WY from 1990 to 2020.
The red words indicate the area proportion of positive impacts, and the blue words indicate the area
proportion of negative impacts. The ‘strong’ and ‘weak’ statuses are divided based on whether they
exceed the mean values.

The spatial impacts of precipitation and FVC on BR-WY exhibited patterns similar to
their effects on CS-WY (Figure 7b). However, precipitation may exacerbate the ‘low—high’
trade-off in southern counties. Meanwhile, the positive impact area of FVC on the ‘low—
high’ trade-off in BR-WY decreased from 23.56% to 13.55% from 2000 to 2020, accompa-
nied by a significant shift of positive impacts on location. Compared to 2000, for instance,
FVC exhibited its negative impacts on the south counties in 2020. Additionally, the impact
pattern of night-time light index on BR-WY was almost the same as that of CS-WY in 2020,
with a positive impact area of 37.65%.

Overall, FVC, temperature, and precipitation exhibited comparable spatial influence
patterns on the BR-CS and SC-CS (Figure 8). In the northern semi-arid areas, the ‘low—
low” synergy was suffered mainly from precipitation, temperatures and FVC negative ef-
fects (Figure 8a). By contrast, the positive effects of FVC and precipitation on the ‘low—
high’ trade-off of BR-CS consistently expanded after 2000, reaching a proportion of 37.95%
and 29.65% in 2020. In other words, the increases in FVC and precipitation would intensify
the trade-offs between BR and CS. By 2020, AET exhibited a stronger influence on SC-CS,
as depicted in Figure 8b. This influence manifested positively in the northern region but
negatively impacted on the SC-CS in southern counties, accounting for 34.45% and
22.72%, respectively.
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4. Discussion
4.1. Differentiated Synergies among ESs under Vegetation Restoration

Trade-off theory that more vegetation leads to less water has become a prevailing
paradigm in recent decades [56,57]. However, conclusions on carbon and water-related
ES relationships resulting from re-vegetation in drylands often vary across the scientific
literature. Many regional-scale studies also verify that vegetation restoration enhances the
synergistic benefits between CS and water-related ESs [58,59]. Therefore, adopting an ex-
plicit perspective that considers both temporal and spatial changes is equally crucial for
analyzing ES interactions [60]. Through the long-term scale analysis on ES spatial interac-
tions in this study, the results revealed the distinctly different synergistic effects between
carbon and water-related ESs in semi-arid areas and semi-humid areas. This offers im-
portant insights for clarifying previous ambiguous information.

Over the past 30 years, the increase in forestland and grassland in Yan’an has been
primarily concentrated in the northern areas of Wugqji, Zichang, Zhidan, and Ansai, as well
as in the southern regions of Fu and Luochuan (Figure 9a). Changes in trade-offs and syn-
ergies of CS-WY and BR-WY have been indeed concentrated in these counties, indicating
the sensitivity of water-related ESs to vegetation restoration. Despite extensive reforesta-
tion efforts in the northern regions, the accumulated biomass remained lower. Meanwhile,
the arid climate conditions have led to a lower WY and BR in the northern counties. In
contrast, WY in the southern counties has been always the highest in the region due to the
abundant rainfall. Consequently, the patterns of the ‘low-low’ synergy in the northern
counties and the ‘high—high” synergy in the southern counties collectively contributed to
the positive relationships between CS and WY over the past 30 years (Figure 4).
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Figure 9. (a) Changes in land use/cover from 1990 to 2020. Field investigation on current status of
re-vegetation and engineering measures: (b) restored vegetation status in the north; (c) industrial
production; (d) fish scale pit management; (e) vegetation restoration status in central-southern areas;
(f) native vegetation status; (g) thinning of forests in native vegetation areas; (h) check dam; (i)
riverbank management. All photos (b—i) were collected during the same period of the vegetation
growing season (May-June).

During field surveys, we found that the recovery grasslands in the southern counties
typically manifested in the form of ‘patches’ intricately interwoven within the original
natural or secondary vegetation communities (Figure 9e). However, the efficiency of re-
covery grasslands for preventing soil loss and promoting water infiltration is notably in-
ferior to that of the surrounding perennial tree vegetation [61]. Moreover, Luochuan and
Fu have been the main counties for cropland utilization in the southern region, presenting
an increased area of croplands over the past 10 years. The loose soil resulting from agri-
cultural activities coupled with abundant rainfall renders these areas more prone to soil
erosion [62]. Consequently, the spatial mismatch between higher WY and lower SC or BR
in southern counties resulted in the spatial patterns of “low-high” trade-off for SC-WY or
BR-WY (Figure 5b).

However, the ‘low-high’ trade-offs