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Abstract: Large-scale vegetation restoration has caused complex changes in ecosystem service (i.e., 
ES) interactions. However, current analysis on the spatial interactions of ESs and their driving mech-
anisms remains deficient, limiting the adaptive management in vegetation restoration areas. This 
study focused on a representative restoration area (Yan’an) to analyze the relationships among car-
bon sequestration, water yield, baseflow regulation, and soil conservation from 1990 to 2020. Em-
ploying the bivariate boxplot and spatial autocorrelation methods, we identified the overall changes 
and spatial patterns of ES interactions. The geographically and temporally weighted regression (i.e., 
GTWR) model was applied to elucidate the driving factors of these spatial ES interactions. The re-
sults indicated the following: (1) Over the past three decades, synergies between carbon sequestra-
tion and water yield emerged as the joint results of spatial ‘low–low’ interactions and ‘high–high’ 
interactions between the two ESs, while other ES pairs generally exhibited comparatively weaker 
synergies, due to their spatial ‘low–high’ interactions in southern semi-humid areas. (2) In the north-
ern semi-arid areas, both fractional vegetation cover (i.e., FVC) and climatic factors consistently ex-
erted negative influences on all ‘low–low’ ES interactions, which caused a reduced area in synergies, 
while in the southern semi-humid areas, FVC suppressed the ‘low–high’ trade-offs between ESs, 
indicating the adaptability of grassland restoration efforts. (3) The impact of human activities on ES 
interactions has increased in the last 10 years, and exhibited positive effects on the ‘low–low’ ES 
interactions in northern semi-arid areas. However, the expansion of trade-off between soil conser-
vation and carbon sequestration warrants attention. This study offers important insights into un-
derstanding the spatial interactions among carbon, water, and soil-related ESs in drylands. 

Keywords: ecosystem services; spatial interaction; driving factors; geographically and temporally 
weighted regression 
 

1. Introduction 
Land degradation is the process of decline in land quality and productivity, typically 

resulting from the combined interaction of human activities, climate change, and natural 
factors [1]. In the past few decades, vegetation restoration measures have provided prom-
inent supports for curbing land degradation, which, therefore, are widely recognized as 
the critical approach to achieve targets of sustainable development goals (i.e., SDGs) [2]. 
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Despite this, mounting evidence suggests that relationships among ecosystem services 
(i.e., ESs) caused by vegetation restoration have become blurred and intricate, accompa-
nied by temporal variability and spatial non-stationarity. Under the interweaving influ-
ences of climate change, production demands, and restoration measures, the complexity 
of ES interactions in drylands is especially prominent. Therefore, it is essential to deter-
mine whether explicit patterns of ES interactions have emerged in these contexts, as they 
could largely influence dryland functioning [3]. 

Interactions among ESs occur when multiple services respond to the same driver of 
change, or when interaction among the services themselves causes changes in one service 
to alter another [4]. Trade-offs or synergistic effects are the primary manifestations of ES 
interactions. Methods such as Pearson, Spearman, and root mean square error have been 
widely applied to quantify the trade-offs and synergies between two ESs, providing the 
basis for understanding ES interactions [5–7]. Previous studies revealed the fact that ES 
trade-offs and synergies may change across spatial scales, but opinions on their multi-
scale effects vary across the scientific literature. In several studies, the correlation between 
ESs weakened with increasing spatial scales, while other studies presented the opposite 
results. For instance, a comprehensive study on the Loess Plateau indicated that the rela-
tionships among water yield, carbon sequestration, and sediment transport weakened 
when expanding from the watershed scale to the entire study area [8], while similar stud-
ies concluded that most correlations between ESs would enhance as the scale increases, 
due to an effect of “peak cutting and valley filling” of scaling up [9]. Undoubtedly, exclu-
sive dependence on global analysis proves to be inadequate for discerning spatial varia-
tions in intricate landscape [10–12]. Insightful knowledge of spatially explicit changes in 
ES interactions is crucial to advance informed approaches for landscape management [13]. 
To date, however, understanding on the spatial interaction among ESs under vegetation 
restoration remains insufficient, constraining the move from restoration efforts towards 
adaptive management practices. 

According to the theory of social–ecological systems, factors in the system exert their 
influences by altering certain ESs, thereby driving the changes of trade-offs and synergies 
among them [14]. Thus, existing research has primarily focused on identifying the driving 
factors of ES changes to explore indirectly the changing mechanism of ES interactions 
[15,16]. For example, redundancy analysis and geographical detectors were applied to de-
termine the driving mechanism of ES under climate change and urban expansion [17,18]. 
Using the geographically weighted regression (i.e., GWR), previous studies explored the 
spatially non-stationary effects of various driving factors (such as climate, land use, and 
socio-economic) influencing ESs [19]. However, due to the linkage between ecological 
functions and social demands, changes in ES interactions are more likely to be the epitome 
of the linkage between human activities and natural elements [20]. Moreover, the combi-
nation impacts of ecological process, climate, restoration measures, and social economics 
often vary from place to place, which largely determines the spatially differentiated char-
acteristics of ES interactions [15,21,22]. Therefore, it is necessary to directly clarify the key 
driving indicators on the ES interactions in a quantitative manner. This is to be expected 
in formulating an integrated solution for the co-improvement of both the ecological con-
servation and socio-economics. 

Under these contexts, we selected Yan’an, a typical vegetation restoration area in 
China, as the case area to address the above issues. Since 1999, Yan’an has become a pilot 
area of the Grain to Green Project and has achieved remarkable ‘greening’ performance 
over the past 20 years. Nevertheless, a pronounced conflict has emerged between the de-
mands of re-vegetation efforts and those of economic development, particularly in hu-
man-land water utilization. Additionally, as a typical area in the semi-arid and semi-hu-
mid climate transition zone, ESs in this city are highly vulnerable to the influences of cli-
mate change and human activities. Therefore, we focused on the spatial interactions and 
their driving mechanisms among four ESs from 1990 to 2020, and tried to answer the fol-
lowing issues: (1) Under the vegetation restoration, what spatial interaction patterns occur 
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among the ES trade-offs and synergies? (2) Under the comprehensive influences of driving 
factors, what have been the dominant factors affecting the spatial changes in ES relation-
ships over the past 30 years? (3) What management implications can we draw from this 
pilot area for vegetation restoration in dryland areas? 

2. Methods 

2.1. Study Area 
Yan’an is located in the northern part of Shaanxi, China (35°21′ N–37°31′ N, 107°41′ 

E–110°31′ E) (Figure 1a). It covers a total area of 37,037 km2, and is divided into 13 admin-
istrative units. Topographically, Yan’an features higher elevations in the northwest and 
lower elevations in the southeast, with an average elevation of approximately 1200 m (Fig-
ure 1b). According to the climate zoning in China [23], the northern part of Yan’an belongs 
to the semi-arid area, while the southern part belongs to the semi-humid area (Figure 1c). 
The annual mean temperature ranges from 10.3 to 11.6 degrees. The annual average pre-
cipitation in Yan’an is around 506 mm, primarily concentrated in July to August. Geolog-
ically, the study area belongs to the middle of hilly and rugged region on the Chinese 
Loess Plateau, characterized by unstable soil texture and a history of severe soil erosion. 

 
Figure 1. The overview of Yan’an: (a) location, (b) elevation and administrative units, (c) land 
use/cover and climate zone boundary. 

Since the end of the last century, management measures such as small watershed 
management and the Grain to Green Project have been implemented in Yan’an, which 
have greatly contributed to the significantly increased vegetation coverage in this area. 
Presently, the land use structure has undergone notable changes (Figure 1c), with 21.43% 
of cropland being reallocated as woodland and grassland. The increased forestland is 
mainly in northern Yan’an, while the increased grassland is in central and southern Yan’an. 
In addition to re-vegetation measures, some engineering measures such as fish scale pits 
and check dams were implemented in northern and eastern Yan’an. Over the past 30 years, 
socio-economics in Yan’an has also shown consistent growth development. Fueled by 
abundant mineral resources, the city has experienced a steady increase in gross domestic 
product (i.e., GDP) and its secondary industry, reaching approximately 160.15 billion 
yuan and 88.57 billion yuan by 2020, respectively. However, extensive afforestation 
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initiatives have imposed considerable pressure on local water resources, leading to in-
stances where restored vegetation in many areas has fallen short of expectations. Moreo-
ver, the rapid economic growth has introduced uncertainties in regional environmental 
effects. 

2.2. Research Design and Data Sources 
2.2.1. Research Design 

The research process of this study is shown in Figure 2. Details of the map legends 
can be found in Supplementary Material Part I (Figure S1). Using the MODIS datasets and 
InVEST model, we calculated the carbon sequestration (i.e., CS), water yield (i.e., WY), 
baseflow regulation (i.e., BR), and soil conservation (i.e., SC) from 1990 to 2020 (Figure 2a), 
as they concentrated reflection on changes to the ecosystem functions under vegetation 
restoration. Subsequently, the Spearman correlation and bivariate boxplot analysis were 
applied to determine the overall temporal changes in ES interactions over the past 30 
years. The spatial ES interactions and their changes were identified by using the bivariate 
spatial autocorrelation method (Figure 2b). Finally, the geographically and temporally 
weighted regression (i.e., GTWR) model was employed to explore the driving factors in-
fluencing spatial ES interactions (Figure 2c). In this process, we implemented a sorting 
method to identify the dominant driving factors over the past 30 years. This will offer 
targeted insights for improving vegetation restoration in dryland areas. 

 
Figure 2. A working diagram of this study. Abbreviation description: C factor represents the vege-
tation cover factor; NDVI is normalized difference vegetation index; LS factor represents the slope-
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length factor; NL is Night-time light index; GDP is gross domestic product; FVC is fractional vege-
tation cover; AET is the actual evapotranspiration. 

2.2.2. Data Information 
In the above processes, meteorological data for this study were obtained from the 

National Meteorological Information Centre “https://data.cma.cn (accessed on 15 October 
2022)”. Kriging interpolation was employed to transform the meteorological station data 
into continuously distributed spatial data, with a spatial resolution of 250 m. Soil data, 
utilized to quantify the soil erodibility factor and calculate the volumetric plant available 
water content, were obtained from the Harmonized World Soil Database (i.e., HWSD) at 
a spatial resolution of 1000 m “https://data.tpdc.ac.cn/ (accessed on 2 January 2023)”. The 
digital elevation model with a resolution of 30 m resolution was acquired from the Geo-
spatial Data Cloud “https://www.gscloud.cn/ (accessed on 3 October 2022)”. The vegeta-
tion index was derived from the MODIS dataset “https://earthexplorer.usgs.gov/ (ac-
cessed on 4 February 2023)”, including NDVI (MOD13Q1) and NPP (MOD17A2), with 
spatial resolutions of 250 m and 500 m, respectively. Land use/cover data were obtained 
from the Institute of Geographic Sciences and Natural Resources Research, Chinese Acad-
emy of Sciences “http://www.resdc.cn/ (accessed on 27 February 2023)”, with a spatial 
resolution of 30 m. The land use/cover types used in this study were classified into six 
categories as cropland, forestland, grassland, water body, urban land, and bare land. Eco-
logical parameters such as monthly evapotranspiration coefficients for crop (i.e., Kc) or 
runoff curve number (i.e., CN) are elucidated in subsequent sections. Additionally, socio-
economic data, including night-time light index (500 m × 500 m) and GDP (1000 m × 1000 
m), were collected for analysis of driving mechanisms. These data were all sourced from 
the Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sci-
ences “https://www.resdc.cn/ (accessed on 5 March 2023)”. Finally, the WGS_1984_Albers 
was adopted as a unified projection coordinate system. All raster data were standardized 
to a spatial resolution of 250 m using a nearest neighbor method to facilitate subsequent 
analysis. 

2.3. ESs Quantification 
Net primary productivity (i.e., NPP) serves as a crucial vegetation metric of the eco-

logical status and productivity of terrestrial ecosystems [24]. It is commonly utilized as an 
indicator to reflect regional carbon sequestration dynamics [9,25]. In this study, CS was 
assessed using NPP as a proxy indicator, sourced from the MODIS datasets. 

Based on the revised universal soil loss equation (i.e., RUSLE) [26], SC was obtained 
by calculating the difference between potential soil erosion and actual soil erosion. The 
actual soil erosion was the result of potential soil erosion multiplied by a vegetation cover 
factor and an erosion control practice factor [27,28]. The formula used is as follows: 

SC(x) = Ep(x) −  Ea(x) (1)

Ea = R(x) × K(x) × LS(x) × C(x) × P(x) (2)

EP(x) = R(x) × K(x) × LS(x) (3)

where Ea(x) and Ep(x) refer to actual and potential soil erosion in pixel x, respectively; R(x) 
is the rainfall erosion factor. The R factors in 1990, 2000, 2010, and 2020 were calculated 
based on the monthly rainfall [29]. The erosion productivity impact calculator (i.e., EPIC) 
equation was applied to calculate the soil erosion factor (i.e., K factor) [30], in which the 
contents of sand, silt, clay, and organic carbon were obtained from the HWSD. LS(x) is the 
slope length factor calculated from DEM. The C(x) is the vegetation cover factor in pixel 
x, and the P(x) is the erosion control practice factor in pixel x. They were estimated by 
using a fractional vegetation cover-based method [28] and a slope-based method [31], re-
spectively. 
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Then, the InVEST water yield model, utilizing the principle of water balance to esti-
mate the depth of WY in each grid cell, was applied. The detailed theory can be found in 
the InVEST User’s Guide. The formula employed is as follows: 

Y(x) = ൤1 −  
AET(x)

P(x) ൨  × P(x) (4)

AET(x)
P(x)

=1 + AET(x)
P(x)

 −  ቂቀ1 + AET(x)
P(x)

ቁωቃ1 ωൗ
  (5)

PETሺxሻ = Kc(lx) × ET0(x) (6)

ω(x) = Z AWC(x)
P(x)  + 1.25 (7)

where Y(x) is the water yield in pixel x; AET is the actual evapotranspiration; P(x) is the 
precipitation in pixel x, and the precipitation layers are mapped by spatial interpolation 
based on the meteorological station data (Table 1); PET(x) is the potential evapotranspira-
tion; Kc(lx) is the crop evapotranspiration correlation coefficient. Using the modified Har-
greaves equation, the annual reference evapotranspiration (i.e., ET0(x)) in 1990, 2000, 2010, 
and 2020 were quantified [32]. The ω(x) is an empirical parameter; AWC(x) is the volu-
metric plant available water content. The soil parameters were also obtained from the 
HWSD and were used to calculate the volumetric plant available water content (i.e., 
PAWC). The Z parameter is an empirical constant reflecting the seasonal distribution of 
precipitation ranging from 1 to 30. Using the empirical formula based on the number of 
precipitation events in each year [33], we calculated the Z values as 20.26, 17.13, 20.4, and 
19.47, respectively. 

BR is the discharge from underground storage and can be the main source of stream-
flow in the dry season [34]. The InVEST seasonal water yield model was used to quantify 
this service. Monthly precipitation and monthly evapotranspiration data were mapped 
for each year. Meanwhile, we counted the number of monthly precipitation events in 1990, 
2000, 2010, and 2020, respectively, to create a CSV table for the model input. The hydro-
logical soil group was classified based on soil texture derived from the HSWD. Values of 
Kc were readily available from the InVEST online resources “https://naturalcapitalpro-
ject.stanford.edu/software/invest/invest-downloads-data (accessed on 22 January 2023)”. 
It is calculated as follows: 

QFi,m=REi,m× ቊ൫ai,m  −  Si൯ exp ቆ− 
0.2Si

ai,m
ቇ +

Si
2

ai,m
exp ቆ0.8Si

ai,m
ቇ E1 ቆ Si

ai,m
ቇቋ × ቀ25.4 ቂmm

in ቃቁ (8)

where QFi,m, REi,m, and ai,m are, respectively, the quick flow generated by pixel i in month 
m, the number of rain events, and the mean rain depth. The irrigation and horticulture 
handbooks published by FAO to determine the CN value for each soil group, were used 
to calculate Si: 

Li = Pi −  QFi −  AETi (9)

where Li is the local recharge derived from the annual water budget; Pi is the annual pre-
cipitation; AETi is the annual actual evapotranspiration. 

If the local recharge is negative, the pixel does not contribute to baseflow and is as-
signed 0. If the pixel contributed to groundwater recharge, then it is a function of the 
amount of flow leaving the pixel and of the relative contribution to recharge of this pixel. 
For a pixel that is not adjacent to the stream channel, the cumulative baseflow is propor-
tional to the cumulative baseflow that leaves the adjacent downslope pixels minus the 
cumulative baseflow generated on the same downslope pixel: 

Bsum,i = Lsum,i, if j is a nonstream pixel  (10)
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or Bsum,i =Lsum,i ∑ Pij, if j is a stream pixelj∈ሼcells to which cell i poursሽ   (11)

Bi = max ൬Bsum,i·
Li

Lsum,i
൰ ,0  (12)

where Bsum,i is the actual contribution of a pixel to the baseflow; Lsum,i is the cumulative 
upstream recharge; pij is the proportion of flow from cell i to j. And baseflow Bi, can be 
directly derived from the proportion of the cumulative baseflow leaving cell i, with respect 
to the available recharge to the upstream cumulative recharge. 

The four ESs were all mapped in ArcGIS 10.5 to visualize their spatial patterns in 
1990, 2000, 2010, and 2020. Their overall changes over the past 30 years were also provided 
to facilitate subsequent analysis (Supplementary Material Part II). 

2.4. Integrated Approach for Detecting ESs Interactions 
2.4.1. Detecting Temporal Changes in ES Relationships 

In this study, the Spearman analysis was applied to describe the average states of ES 
interactions. It can be expressed as follows: 

rs = 1 −  6 ∑ di
2

N(N2ି1)
  (13)

di=Xi  −  Yi (14)

where rs is the rank correlation coefficient, ranging from −1 to 1, N refers to the total num-
ber of samples, Xi and Yi, respectively, represent the serial numbers of two datasets that 
have been arranged from smallest to largest, di refers to the difference of each team sorting 
variable. To perform the statistical analysis, we spatially sampled four ESs in each period. 
The Z-score standardized method was employed to normalize the 6000 sample points. 
Then, the Spearman analyses for all pairs of ESs were calculated in R v4.2.2. Referring to 
the relevant research [17], correlation coefficients of Spearman were divided as high cor-
relation (|r| ≥ 0.5), moderate correlation (0.3 ≤ |r| ≤ 0.5), and low correlation (0.1 ≤ |r| ≤ 
0.3). A significant positive correlation indicates a synergic relationship between the two 
ESs, while a significant negative correlation suggests a trade-off between them. 

The bivariate boxplot, a non-parametric statistical method, was then employed to de-
lineate the asymmetry and discrete correlations among ESs [35]. Bagplot provides a visual 
representation of the interaction between two variables [36]. The position of the depth 
median in the bagplot identifies the area where the data are relatively concentrated [37]. 
Combining bag direction (correlation), bag shape (distribution asymmetry and outliers), 
and bag area (discretization of data distribution) enables a better understanding of the 
relationship between ESs (Figure 2b). In this study, we plotted the bagplots for ES pairs 
using the ‘aplpack’ package in R v4.2.2. 

2.4.2. Spatially Explicit Analysis on ES Interactions 
The bivariate spatial autocorrelation was employed to reveal the spatial interactions 

between two ESs. This method can quantify relationships between two variables with spa-
tially interactive characteristics, thereby helping to reveal potential connections among 
ESs. It comprises the global spatial autocorrelation and the local spatial autocorrelation. 
The former reflects whether the ES interactions are spatially correlated across the entire 
study area, typically quantified using the global Moran index (i.e., Moran’s I). Local spa-
tial autocorrelation examines the correlation between one variable at a specific location 
with another variable at the neighboring location, often represented using a local indica-
tors of spatial association (i.e., LISA) cluster [38]. Hence, trade-off and synergy between 
two ESs can be visualized by analyzing the LISA cluster types [39]. In other words, syn-
ergy or trade-off can be identified based on codirectional correlation (i.e., ‘high–high’ or 
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‘low–low’ interaction) or the inverse correlation (i.e., ‘high–low’ or ‘low–high’ interac-
tions) in the LISA cluster maps (Figure 2b). 

Here, the global Moran’s I and local LISA cluster plots for each ES pair in 1990, 2000, 
2010, and 2020 were calculated using the GeoDa1.10 software. This software has been 
widely used in geospatial data analysis to explore in-depth potential patterns, trends, and 
correlations in geographic space [38]. We created grids with 2500 m × 2500 m in ArcGIS10.5 
as the survey unit for mapping the LISA cluster between ESs. This grid scale can satisfy 
the load for computer running and also provide more granular ES interaction information. 
It should be pointed out that the spatial autocorrelation of variables is a prerequisite for 
the application of the LISA and the GTWR analysis in subsequent sections. Thus, we ex-
amined the suitability for the ES interactions using the global Moran’s I. The p-value of 
the global Moran’s I represents the probability of this trend occurring, and the Z-score is 
a multiple of the standard deviation [40]. According to the test standards (Table S2), the 
six ES pairs from 1990 to 2020 all passed the significance test with high degree of confi-
dence (Table S3). This process demonstrates the applicability of LISA in this study. 

2.5. Analyzing the Spatial Driving Factors of ES Interactions 
2.5.1. Theory on the GTWR Model 

This study used the GTWR model to explore the driving mechanism on the ES inter-
actions over the past 30 years (Figure 2c). The GTWR is a local linear regression model 
that incorporates spatiotemporal non-stationarity, in which each observation possesses a 
unique temporal weight matrix. And the regression coefficient of observations to the de-
pendent variable attenuates with the increasing distance in time and space [41]. As an 
extension for the GWR, this method not only captures the comprehensive spatial infor-
mation of driving factors, but also addresses the issue of their time-scale variations, 
providing more accurate results in time series analysis [42]. The formula of the GTWR 
model can be expressed as follows: 

yi=β0(ui,vi,ti) + ∑ βk(ui,vi,ti)
p
k=1 xik+εi  (15)

where yi is the explanatory variable for the i-th sample; ui, vi, ti refer to the latitude, longi-
tude, and data time of the i-th sample, respectively; β0(ui, vi, ti) refers to the regression 
intercept; βk(ui, vi, ti) refers to the regression coefficient of the variable k; xik is the value of 
variable xk at i sample; and εi is the residual of the model. 

2.5.2. Selection of Driving Factors 
The direct ecological processes and the external ’catalysis’ by nature or socio-eco-

nomics are commonly regarded as the two types of reasons for ES trade-offs and synergies 
[43,44]. Consulting relevant studies in Table 1, we initially collected nine major indicators 
for the GTWR analysis. The GTWR method emphasizes spatial variations of variables over 
time [22]. Changes in terrain factors were generally weak on the 30-year time scale, thus, 
they were consequently not included in the final analysis. Furthermore, the multicolline-
arity should be removed to avoid information redundancy among variables. Here, the 
variance inflation factor (i.e., VIF) was used to test the multicollinearity among driving 
factors. In this process, population density was excluded based on the results of multicol-
linearity tests. Ultimately, six driving factors (Table 1), including temperature, precipita-
tion, actual evapotranspiration (i.e., AET), fractional vegetation cover (i.e., FVC), GDP, 
and night-time light index were selected to determine the impacts on ES trade-offs and 
synergies. The results of VIF for the six variables in each year are shown as Table 2. All 
values were below 10, suggesting there was no multicollinearity among these factors [45]. 
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Table 1. Selection of driving factors of ES interactions. 

Types Variables References 

Meteorological factors 
Temperature 

[46–48] Precipitation 
AET 

Vegetation factors FVC [49] 

Terrain factors Elevation [5,50] 
Slope 

Socio-economic factors GDP [51] 
Night-time light index 

[52]  Population density 
Note: the black variables denote the factors that were ultimately incorporated into the GTWR model, 
whereas the italicized grey variables represent factors that were excluded in the analysis as they did 
not meet the research requirements. 

Table 2. VIF test for driving factors. 

Variables 
VIF Results 

1990 2000 2010 2020 
Temperature 1.6 2.5 6.4 3.7 
Precipitation 3.5 6.0 10.5 6.4 

AET 6.5 7.7 5.4 3.7 
FVC 5.6 5.3 5.0 3.5 
GDP 1.2 1.2 1.4 1.1 

Night-time light index 1.1 1.1 1.2 1.1 

2.5.3. Model Execution and Goodness Detection 
We performed the GTWR model using ArcGIS10.5. The Gaussian distance–decay-

based function was used to calculate the spatiotemporal weights. The corrected Akaike 
information criterion (i.e., AICc) was utilized to determine the optimal bandwidth. Sub-
sequently, we examined the advantages of GTWR compared to the GWR using repre-
sentative statistical indices. The R2 value indicates the goodness of fit of the independent 
variables to the dependent variable. The AICc measures the balance between the accuracy 
of different models and the number of calibration parameters, with lower values indicat-
ing better model performance [53]. The comparison results indicates that the latter had a 
better fitting effect (Table 3). 

Table 3. Comparison of goodness between the GWR and the GTWR models. 

ES Pairs Model R2 AICc 

CS-WY GTWR 0.74 920.3 
GWR 0.63 978.7 

BR-WY GTWR 0.79 1181.0 
GWR 0.71 1240.7 

BR-CS 
GTWR 0.69 1280.6 
GWR 0.64 1272.7 

SC-CS 
GTWR 0.68 1295.0 
GWR 0.62 1294.7 

2.5.4. Ranking the Driving Factors to Discern Dominant Factors in Each Period 
Changes in direction and strength of influence are generally the two important as-

pects for detecting driving mechanisms [41,54]. The GTWR results presented maps of spa-
tial regression coefficients for each driving factor over the past 30 years. However, these 
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coefficients exhibited variations both in strength and direction across space, making it dif-
ficult to determine directly the dominant drivers on ES interactions in each location. 

Here, we implemented a ranking approach to identify the dominant driving factors 
based on the spatial regression coefficients of the six factors (Figure 3). First, we conducted 
a ranking by comparing the absolute values of the normalized regression coefficients for 
each driving factor. That is, the one with the largest regression coefficient was regarded 
as the first driving factor for the analyzed unit, and so forth. This process eliminated the 
interferences of the sign (i.e., direction) of coefficients on their strength. Based on the pre-
ceding step, we sequentially calculated the frequency of occurrence from the first to sixth 
driving factors across the entire study area. The driving factor with the highest frequency 
was identified as the primary driving force, followed by the subsequent factors in de-
scending order, ultimately establishing the final ranking of the driving factors. Conse-
quently, integrating local regression coefficients and global frequencies, the ranking ap-
proach offers a comprehensive reflection of the importance of driving factors. This high-
lighted those factors likely to have a particularly strong impact on the ES relationships. It 
should be emphasized that we just screened out the dominant driving factors through the 
ranking approach. Thus, the later section showed the original results obtained from the 
GTWR model. 

 
Figure 3. Schematic diagram of driving factor ranking; X1 to X6 refers to the six driving factors, 
respectively. 

3. Results 
3.1. Temporal Changes in ES Interactions 

The combined results of Spearman correlation and bivariate boxplot analysis indi-
cated changes in the interactions between ES pairs over time (Figure 4). In 1990, only three 
of the six ES pairs showed statistically significant correlations, all of which were weakly 
correlated (0.1 ≤ |r| ≤ 0.3). After 2000, the significant synergistic relationships were con-
centrated among CS, WY, and SC, demonstrating an overall increase compared with 1990. 
However, synergies between CS and WY have gradually weakened over the past 20 years. 
Moreover, correlation between WY and SC, as well as CS and SC, reached their maximum 
in 2010, followed by a declining trend in the last decade. A significant synergy was ob-
served between BR and WY, while relationships between BR and the other two ESs were 
always very faint over the past 30 years. 
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Figure 4. Bagplots and Spearman correlation coefficients for ES pairs from 1990 to 2020. Bold font 
indicates a high correlation with |r| ≥ 0.5. Double asterisks (**) mean a significant trend at 0.01 level 
(2-tailed). Single asterisk (*) means a significant at trend 0.05 level (2-tailed). Un-marked number 
indicates a non-significant relationship. 

The bagplots offered detailed information on the interaction types among the four 
ESs. For the synergy between CS and WY in 1990 (Figure 4a), data values were concen-
trated in the high-value region along the CS axis, running almost parallel to the WY axis. 
This suggested that the synergistic relationship between the two ESs was primarily driven 
by areas with high CS values. From 2000 to 2010 (Figure 4b,c), however, the concentrated 
values in bagplots emerged at both ends of the bags, suggesting the synergies between the 
two ESs were contributed by both high-value CS areas and low-value CS areas. In contrast, 
bagplots of CS and SC, as well as WY and SC, exhibited an approximately vertical distri-
bution over the past 30 years. This implied that the synergies were mainly contributed by 
the low-value areas of SC. The bagplots of BR and other ESs showed a triangle and a larger 
area of loop, representing the numerical discreteness in this service. And the distribution 
of concentrated values indicated that the weak synergies related to BR and other ESs were 
mainly contributed by the low values of BR. 

3.2. Spatial Variations in ES Interactions 
Water consumption during the growth stages of restored vegetation varies depend-

ing on natural conditions and vegetation types, largely leading to the differences in carbon 
and water related ESs within a region [55]. Based on the results of bivariate spatial auto-
correlation, we exhibited the spatial interactions of ES pairs, including carbon sequestra-
tion and water yield (i.e., CS-WY), baseflow regulation and water yield (i.e., BR-WY), 
baseflow regulation and carbon sequestration (i.e., BR-CS), soil conservation and carbon 
sequestration (i.e., SC-CS). Indeed, these four ES pairs highlighted two distinct spatial in-
teractions (Figure 5), revealing the spatial differentiation of trade-offs and synergies in the 
northern and southern areas. 
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Figure 5. LISA cluster maps for the ES pairs from 1990 to 2020. 

First, the spatial interaction patterns of CS-WY and BR-WY had similar features (Fig-
ure 5a,b). It can be observed that the two ES pairs manifested ‘low–low’ synergy in the 
northern semi-arid areas, with an initially increased area followed by a decrease. In the 
southern semi-humid counties, the two ES pairs also showed consistency in their spatial 
distribution. However, CS-WY displayed the ‘high–high’ synergy, whereas BR-WY 
showed ‘low–high’ trade-off, with the proportion exceeding 20%. It indicated these re-
gions had higher WY accompanied by lower BR. Second, BR-CS and SC-CS shared the 
similar spatial interaction patterns, exhibiting ‘low–low’ synergy in the northern semi-
arid areas (Figure 5c,d). Interactions of the two ES pairs also showed differences in the 
southern counties. The ‘low–high’ trade-off was evident in BR-CS, primarily distributed 
in native vegetation areas in the southeast and southwest counties. In contrast, SC-CS 
showed a certain area of ‘high–high’ synergy in the southern counties, peaking at 14.47% 
in 2010. 

3.3. Spatial Driving Mechanism of ES Interactions 
3.3.1. Driver Changes in ES Interactions 

Figure 6 illustrated the ranking of driving factors affecting the four types of ES inter-
actions at different periods. For the CS-WY and the BR-WY (Figure 6a,b), precipitation 
emerged as a primary factor, consistently ranking a position in the top three over the past 
30 years. Human activities, including night-time light index and GDP, also played a dom-
inant role before the vegetation restoration, reflecting the high sensitivity of ecosystem 
functions to human disturbance. From 2000 to 2010, FVC became the dominant driver, 
and its contribution continued to increase during this period. Meanwhile, impacts stem-
ming from GDP and night-time light index have weakened since 2000. Over the last dec-
ade, the increased forestlands and grasslands have gradually stabilized under artificial 
management and natural regulation, while the contribution of human activities has been 
on the rise. 
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Figure 6. Changes in driving factors of ES pairs from 1990 to 2020. Abbreviation description: TEM—
temperature, PRE-precipitation, and NL—night-time light index. 

Temperature and FVC have been the dominant driving factors for BR-CS and SC-CS 
(Figure 6c,d), consistently ranking among the top three factors. In 1990, the impact of pre-
cipitation was comparatively weak. After 2000, while the effects of precipitation showed 
fluctuating changes, its overall contributions to BR-CS increased. Accordingly, FVC and 
temperature, along with precipitation determined the changes in the ES relationships 
from 2000 to 2020. Meanwhile, contributions from AET exhibited a continuous upward 
trend for SC-CS, reaching the second position in 2020. However, GDP or night-time light 
index exerted stable and minor impacts on the two types of ES pairs over the past 30 years. 

3.3.2. Spatial Changes in Driving Factors of ES Interactions 
Here, the dominant driving factors of the four ES pairs were mapped (Figures 7 and 

8). In general, the spatial dominant driving factors of CS-WY and BR-WY exhibited con-
sistency. A comparable picture was also observed for BR-CS and SC-CS. 

For CS-WY, the results revealed the effects of spatial drivers on different types of 
synergies between the two ESs in the northern and southern areas (Figure 7a). Precipita-
tion negatively affected the ‘low–low’ synergy of CS-WY in the northern semi-arid areas, 
but had a positive effect on the ‘high–high’ synergy in the central-southern semi-humid 
areas. Notably, as the impacts of FVC increased (Figure 6a), its positive effects on CS-WY 
decreased from 19.06% to 2.17% from 2000 to 2010. By 2020, FVC exhibited entirely nega-
tive impacts on CS-WY, with more pronounced negative effects in the northern areas. Fur-
thermore, in 1990, both GDP and night-time light index had adverse effects on the ‘low–
low’ synergy in the northern regions, and exhibited positive effects in the southern coun-
ties. However, in the last decade, night-time light index demonstrated positive impacts 
(accounting for 35.04%) in most areas of the study area. 
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Figure 7. Spatial effects of the driving factors for (a) CS-WY, and for (b) BR-WY from 1990 to 2020. 
The red words indicate the area proportion of positive impacts, and the blue words indicate the area 
proportion of negative impacts. The ‘strong’ and ‘weak’ statuses are divided based on whether they 
exceed the mean values. 

The spatial impacts of precipitation and FVC on BR-WY exhibited patterns similar to 
their effects on CS-WY (Figure 7b). However, precipitation may exacerbate the ‘low–high’ 
trade-off in southern counties. Meanwhile, the positive impact area of FVC on the ‘low–
high’ trade-off in BR-WY decreased from 23.56% to 13.55% from 2000 to 2020, accompa-
nied by a significant shift of positive impacts on location. Compared to 2000, for instance, 
FVC exhibited its negative impacts on the south counties in 2020. Additionally, the impact 
pattern of night-time light index on BR-WY was almost the same as that of CS-WY in 2020, 
with a positive impact area of 37.65%. 

Overall, FVC, temperature, and precipitation exhibited comparable spatial influence 
patterns on the BR-CS and SC-CS (Figure 8). In the northern semi-arid areas, the ‘low–
low’ synergy was suffered mainly from precipitation, temperatures and FVC negative ef-
fects (Figure 8a). By contrast, the positive effects of FVC and precipitation on the ‘low–
high’ trade-off of BR-CS consistently expanded after 2000, reaching a proportion of 37.95% 
and 29.65% in 2020. In other words, the increases in FVC and precipitation would intensify 
the trade-offs between BR and CS. By 2020, AET exhibited a stronger influence on SC-CS, 
as depicted in Figure 8b. This influence manifested positively in the northern region but 
negatively impacted on the SC-CS in southern counties, accounting for 34.45% and 
22.72%, respectively. 



Land 2024, 13, 511 15 of 23 
 

 

 
Figure 8. Spatial influences of the driving factors for (a) BR-CS, and for (b) SC-CS from 1990 to 2020. 
The red words indicate the area proportion of positive impacts, and the blue words indicate the area 
proportion of negative impacts. The ‘strong’ and ‘weak’ statuses are divided based on whether they 
exceed the mean values. 

4. Discussion 
4.1. Differentiated Synergies among ESs under Vegetation Restoration 

Trade-off theory that more vegetation leads to less water has become a prevailing 
paradigm in recent decades [56,57]. However, conclusions on carbon and water-related 
ES relationships resulting from re-vegetation in drylands often vary across the scientific 
literature. Many regional-scale studies also verify that vegetation restoration enhances the 
synergistic benefits between CS and water-related ESs [58,59]. Therefore, adopting an ex-
plicit perspective that considers both temporal and spatial changes is equally crucial for 
analyzing ES interactions [60]. Through the long-term scale analysis on ES spatial interac-
tions in this study, the results revealed the distinctly different synergistic effects between 
carbon and water-related ESs in semi-arid areas and semi-humid areas. This offers im-
portant insights for clarifying previous ambiguous information. 

Over the past 30 years, the increase in forestland and grassland in Yan’an has been 
primarily concentrated in the northern areas of Wuqi, Zichang, Zhidan, and Ansai, as well 
as in the southern regions of Fu and Luochuan (Figure 9a). Changes in trade-offs and syn-
ergies of CS-WY and BR-WY have been indeed concentrated in these counties, indicating 
the sensitivity of water-related ESs to vegetation restoration. Despite extensive reforesta-
tion efforts in the northern regions, the accumulated biomass remained lower. Meanwhile, 
the arid climate conditions have led to a lower WY and BR in the northern counties. In 
contrast, WY in the southern counties has been always the highest in the region due to the 
abundant rainfall. Consequently, the patterns of the ‘low–low’ synergy in the northern 
counties and the ‘high–high’ synergy in the southern counties collectively contributed to 
the positive relationships between CS and WY over the past 30 years (Figure 4). 
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Figure 9. (a) Changes in land use/cover from 1990 to 2020. Field investigation on current status of 
re-vegetation and engineering measures: (b) restored vegetation status in the north; (c) industrial 
production; (d) fish scale pit management; (e) vegetation restoration status in central-southern areas; 
(f) native vegetation status; (g) thinning of forests in native vegetation areas; (h) check dam; (i) 
riverbank management. All photos (b–i) were collected during the same period of the vegetation 
growing season (May–June). 

During field surveys, we found that the recovery grasslands in the southern counties 
typically manifested in the form of ‘patches’ intricately interwoven within the original 
natural or secondary vegetation communities (Figure 9e). However, the efficiency of re-
covery grasslands for preventing soil loss and promoting water infiltration is notably in-
ferior to that of the surrounding perennial tree vegetation [61]. Moreover, Luochuan and 
Fu have been the main counties for cropland utilization in the southern region, presenting 
an increased area of croplands over the past 10 years. The loose soil resulting from agri-
cultural activities coupled with abundant rainfall renders these areas more prone to soil 
erosion [62]. Consequently, the spatial mismatch between higher WY and lower SC or BR 
in southern counties resulted in the spatial patterns of ‘low–high’ trade-off for SC-WY or 
BR-WY (Figure 5b). 

However, the ‘low–high’ trade-offs in BR-CS and SC-CS were completely different in 
the native vegetation areas in the southeast (i.e., Yichuan and Huanglong) and southwest 
(i.e., Fu and Huangling). In regions with a high cover of native vegetation (Figure 9f), the 
penetration of vegetation roots effectively stabilizes the soil and prevents soil erosion [63]. 
Meanwhile, the densely staggered canopy directly intercepts precipitation and stores it 
within the plant canopy for subsequent evaporation, resulting in less water infiltration 
into the ground [46]. Therefore, the ‘low–high’ trade-offs of BR-CS reflect the direct inter-
actions of ecosystem functions rather than the deterioration of ESs (Figure 5c). Addition-
ally, the synergy of SC-CS in mature forests has been widely demonstrated in numerous 
studies [64]. However, this study further revealed that in the later growth stage of mature 
forests, the ‘high–high’ synergy area of SC-CS decreased to 9.59% (Figure 5d). According 
to the field surveys, thinning may be one of the reasons. Coincidentally, recent research 
also indicated that CS and SC exhibited trade-off interactions under the combined influ-
ences of climate and vegetation change [65]. These insights all emphasized the necessity 
to analyze ES interactions based on local drivers. 
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4.2. Driving Forces with Spatial Differences Jointly Affect ES Interactions 
Time lags in ES responses caused by vegetation growth or climate changes, along 

with the spatial heterogeneity of ESs induced by spatial isolation or human activities, con-
tribute to the intricate interactions of the ESs [12,66]. This study revealed that the interac-
tions among carbon, water, and soil related ESs have been primarily driven by FVC, pre-
cipitation, and temperature, and exhibited spatially differentiated effects in northern and 
southern areas (Figures 7 and 8). 

In an arid climate environment, increased FVC and temperature directly aggravate 
vegetation water consumption and water evaporation [67], resulting in reduced WY and 
BR [68]. Thus, the increase in FVC and climatic factors have been the main reasons for the 
resulting decline in ‘low–low’ synergy among the four ES pairs (Figure 5). This under-
scores the heightened sensitivity of ‘low–low’ synergy in the northern region to climate 
change and vegetation growth [69]. More importantly, the ‘low–low’ synergy does not 
necessarily signify a favorable state of ES interactions. Despite the current re-vegetation, 
endeavors have combined engineering measures such as check dams (Figure 9h), fish 
scale pits (Figure 9d), striving to enhance the effective utilization of water resources 
through changing microtopography [58,70]. But their effects in enhancing soil moisture 
and reducing nutrient loss in the eastern and northern areas of Yan’an are quite different 
(Figure 9b,i). As we observed, the area of ‘low–low’ synergy among the four ES pairs has 
already shown a shrinking trend in the last 10 years. Therefore, the picture of northern 
regions exchanging ‘water’ for ‘carbon’ or ‘soil’ ESs reflected the potential risks of unsus-
tainable re-vegetation in semi-arid areas. These findings highlight the challenges in future 
adaptive management in semi-arid areas: under the uncertain influence of human activi-
ties, how to integrate effectively vegetation restoration with the advantages of microto-
pography to cope with the constraints of climatic context. 

By contrast, in regions characterized by a higher level of humidity, vegetation growth 
experiences less constraint due to the higher water availability [46]. Therefore, in the 
southern subhumid areas, precipitation positively affected the ‘high–high’ synergy of CS-
WY (Figure 7a). FVC exerted negative impacts both on the synergy in CS-WY and ‘low–
high’ tradeoff of BR-WY, which essentially reflects the basic fact that growth in re-vegeta-
tion reduces WY. On the flip side, it demonstrated the adaptability of grassland restora-
tion efforts in the southern region. That is, compared with forestlands, the increased grass-
land in the southern region exhibits a lower water consumption during its growth process. 
Therefore, in the central-southern region focused on grassland restoration, FVC sup-
pressed the ‘low–high’ trade-off of BR-WY (Figure 7b). 

However, in southern areas with native vegetation cover, the higher FVC and precip-
itation could further intensify the ‘low–high’ trade-offs of BR-CS (Figure 8a). For SC-CS, 
there is a consensus that augmenting FVC in mature forests can promote a synergistic 
relationship between the two ESs [71], while recent studies have revealed that rising tem-
peratures will affect vegetation photosynthesis, leading to a decrease in the CS capacity of 
mature forests [46,72]. Therefore, temperature suppressed the ‘low–high’ trade-off in BR-
CS and SC-CS through limiting excessive CS (Figure 8). Moreover, the field survey indi-
cated thinning operations are commonly carried out for native forests in southern areas 
such as Huangling and Huanglong (Figure 9g). Some studies have confirmed that inade-
quate thinning methods are often closely linked to diminished SC and water quality 
[73,74]. Particularly in mountainous areas, where there are significant variations in tem-
perature and precipitation along the elevation gradient, the stability of ecosystems after 
logging were easily disturbed [75]. In this study, owing to the upstream and downstream 
relationships in topography, changes in the native vegetation areas may also diminish the 
potential for surrounding ecosystem restoration. As observed, from 2010 to 2010, the ‘low–
high’ trade-off of SC-CS in the southwest and southeast regions exhibited a more pro-
nounced spread towards the central grassland restoration area (Figure 5d). This implies 
that thinning practices in native vegetation areas should be approached cautiously to mit-
igate potential adverse effects on ecosystem functioning [76,77]. 
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4.3. Uncertain Impacts of Human Activities 
Although ES characteristics mainly depend on natural elements that act on their func-

tioning directly, human activities play an increasingly important role in shaping the ES 
interactions [78]. Recently, a national scale research study indicated that over the past dec-
ade, China’s ecological restoration has been mainly influenced by anthropogenic factors, 
such as population, land use, and urbanization [79,80]. Even in Yan’an, an area dominated 
by natural ecosystems, an enhanced influence of night-time light index and GDP within 
the re-vegetated areas from 2010 to 2020 also can be observed (Figure 6), which was con-
centrated on water-related ESs. Not only that, this study found that the impacts of anthro-
pogenic factors shifted from negative or insignificant effects to promoting effects on ‘low–
low’ synergy in the northern areas (Figure 7). Relevant research reported that the imple-
mentation of ecological restoration projects in dryland areas positively contributed to the 
progressive integration and landscape connectivity [81]. In addition, the connected land-
scapes can improve ES interactions by influencing the flow and distribution of water re-
sources and enhancing the runoff-generation capacity of natural systems [82]. 

However, field investigations indicated that in northern Yan’an, the re-vegetated ar-
eas have been subjected to several years of pressure from industrial activities, such as oil 
and gas extraction (Figure 9c). Industrial production has escalated the demand for water 
supplies while diminishing the essential role of ecosystems in delivering a water-related 
service [83]. This could also exacerbate the observed decline in WY and BR (Table S1). 
Additionally, industrial activities, mainly focused on energy development and utilization, 
have undoubtedly enhanced carbon emissions in the region, thereby impairing the net CS 
of regenerated vegetation [84,85]. Consequently, an alternative and more realistic reason 
is that human activities have simultaneously impaired both the water-related functions 
and net carbon sink benefits, and reinforced their interactions. It still requires more in-
depth quantitative analysis and continuous monitoring to determine the impacts of inten-
sified human activities. 

5. Conclusions 
Based on the spatially explicit analysis of the ES trade-offs and synergies, this study 

explored the spatiotemporal effects of natural and social drivers on ES interactions. The 
current results enlighten us with several means to answer the questions we proposed at 
the beginning. First, in the distinct vegetation restoration environments across northern 
and southern Yan’an, spatial patterns of ES interactions exhibited entirely different char-
acteristics. In the northern semi-arid areas, the ES interactions were primarily character-
ized by ‘low–low’ synergies, yet their extent has gradually diminished from 2000 to 2020. 
In contrast, in the southern semi-humid areas, ES pairs (except the CS-WY) exhibited 
‘low–high’ trade-off, encompassing more than 20% of the study area. Second, although 
precipitation, temperature, and FVC have been the primary drivers since vegetation res-
toration, the impacts of human activities on CS-WY and BR-WY have continued to escalate 
in the last ten years. From a spatial perspective, the weakening of the ‘low–low’ synergy 
in the northern re-vegetation areas can be attributed to the negative effects from climatic 
contexts and FVC increase, while the ES interactions in the southern re-vegetation areas 
showed better adaptability. Finally, under the uncertain influence of climate and human 
activities, effective methods should be actively explored to enhance water resource utili-
zation for re-vegetation in an arid environment. Additionally, changes in native vegeta-
tion areas have shown their impacts on the ES interactions in adjacent vegetation restora-
tion areas. Therefore, it is also crucial to meticulously evaluate the impact of vegetation 
management measures in native vegetation areas on local and downstream water and soil 
processes. 

In future, the ongoing intensification of human activities is anticipated to amplify 
uncertainties regarding the efficacy of vegetation restoration in drylands. Further in-depth 
quantitative analysis of the underlying mechanisms is an urgent need, while long-term 
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and sustained observations of ESs and their interactions are crucial steps in assessing the 
adaptation of restoration efforts. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/land13040511/s1, Figure S1: Key Data for quantification of 
ecosystem services and analysis of driving factors (exemplified by the year 2020); Table S1: Average 
values of the four ESs in Yanʹan City from 1990 to 2020; Table S2: Significance test standard; Table 
S3: Global bivariate spatial autocorrelation results for each ES pair during 1990 to 2020. 

Author Contributions: T.L.: Conceptualization, Methodology, Writing—original draft and revision. 
Y.R. (Yu Ren): Investigation, Data curation, Formal analysis, Visualization, Writing—original draft 
and revision. Z.A.: Scientific advice, Writing—review and editing. Z.Q.: Investigation, Writing—
review and editing. Y.R. (Yanjiao Ren): Scientific advice, Writing—review and editing. L.M.: Visual-
ization, Scientific advice, Writing—review and editing. Y.Y.: Scientific advice, Writing—review and 
editing. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Key R&D Program of China (grant number 
2022YFE0119200), the National Natural Science Foundation of China (grant number 42001219, 
42271401), and the Humanities and Social Sciences Foundation of the Ministry of Education of China 
(grant number 23YJC630132). 

Data Availability Statement: The original contributions presented in the study are included in the 
article/Supplementary Materials, further inquiries can be directed to the corresponding author. 

Conflicts of Interest: The authors declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work reported in this paper. 

References 
1. Wei, W.; Chen, D.; Wang, L.X.; Daryanto, S.; Chen, L.D.; Yu, Y.; Lu, Y.L.; Sun, G.; Feng, T.J. Global synthesis of the classifications, 

distributions, benefits and issues of terracing. Earth-Sci. Rev. 2016, 159, 388–403. https://doi.org/10.1016/j.earscirev.2016.06.010. 
2. Lü, Y.H.; Lü, D.; Feng, X.M.; Fu, B.J. Multi-scale analyses on the ecosystem services in the Chinese Loess Plateau and implica-

tions for dryland sustainability. Curr. Opin. Env. Sust. 2021, 48, 1–9. https://doi.org/10.1016/j.cosust.2020.08.001. 
3. Manzano, P.; Burgas, D.; Cadahía, L.; Eronen, J.T.; Fernández-Llamazares, Á.; Bencherif, S.; Holand, Ø.; Seitsonen, O.; Byambaa, 

B.; Fortelius, M.; et al. Toward a holistic understanding of pastoralism. One Earth 2021, 4, 651–665. 
https://doi.org/10.1016/j.oneear.2021.04.012. 

4. Raudsepp-Hearne, C.; Peterson, G.D. Scale and ecosystem services: How do observation, management, and analysis shift with 
scale—Lessons from Québec. Ecol. Soc. 2016, 21, 16. https://doi.org/Stable/26269960. 

5. Lorilla, R.S.; Poirazidis, K.; Detsis, V.; Kalogirou, S.; Chalkias, C. Socio-ecological determinants of multiple ecosystem services 
on the Mediterranean landscapes of the Ionian Islands (Greece). Ecol. Model. 2020, 422, 108994. 
https://doi.org/10.1016/j.ecolmodel.2020.108994. 

6. Chang, H.S.; Lin, Z.H.; Hsu, Y.Y. Planning for green infrastructure and mapping synergies and trade-offs: A case study in the 
Yanshuei River Basin, Taiwan. Urban For. Urban Gree. 2021, 65, 127325. https://doi.org/10.1016/j.ufug.2021.127325. 

7. Xu, J.Y.; Chen, J.X.; Liu, Y.X. Partitioned responses of ecosystem services and their tradeoffs to human activities in the Belt and 
Road region. J. Clean. Prod. 2020, 276, 123205. https://doi.org/10.1016/j.jclepro.2020.123205. 

8. Su, C.H.; Dong, M.; Fu, B.J.; Liu, G.H. Scale effects of sediment retention, water yield, and net primary production: A case-study 
of the Chinese Loess Plateau. Land Degrad. Dev. 2020, 31, 1408–1421. https://doi.org/10.1002/ldr.3536. 

9. Yang, M.H.; Gao, X.D.; Zhao, X.N.; Wu, P.T. Scale effect and spatially explicit drivers of interactions between ecosystem 
services—A case study from the Loess Plateau. Sci. Total Environ. 2021, 785, 147389. https://doi.org/10.1016/j.sci-
totenv.2021.147389. 

10. Feng, J.Y.; Chen, F.S.; Tang, F.R.; Wang, F.C.; Liang, K.; He, L.Y.; Huang, C. The Trade-Offs and Synergies of Ecosystem Services 
in Jiulianshan National Nature Reserve in Jiangxi Province, China. Forests 2022, 13, 416. https://doi.org/10.3390/f13030416. 

11. Locatelli, B.; Imbach, P.; Wunder, S. Synergies and trade-offs between ecosystem services in Costa Rica. Environ. Conserv. 2013, 
41, 27–36. https://doi.org/10.1017/s0376892913000234. 

12. Renard, D.; Rhemtulla, J.M.; Bennett, E.M. Historical dynamics in ecosystem service bundles. Proc. Natl. Acad. Sci. USA 2015, 
112, 13411–13416. https://doi.org/10.1073/pnas.1502565112. 

13. Dade, M.C.; Mitchell, M.G.E.; McAlpine, C.A.; Rhodes, J.R. Assessing ecosystem service trade-offs and synergies: The need for 
a more mechanistic approach. Ambio 2019, 48, 1116–1128. https://doi.org/10.1007/s13280-018-1127-7. 

14. Feng, Q.; Zhao, W.; Hu, X.; Liu, Y.; Daryanto, S.; Cherubini, F. Trading-off ecosystem services for better ecological restoration: 
A case study in the Loess Plateau of China. J. Clean. Prod. 2020, 257, 120469. https://doi.org/10.1016/j.jclepro.2020.120469. 



Land 2024, 13, 511 20 of 23 
 

 

15. Cademus, R.; Escobedo, F.J.; McLaughlin, D.L.; Abd-Elrahman, A.H. Analyzing Trade-Offs, Synergies, and Drivers among Timber 
Production, Carbon Sequestration, and Water Yield in Pinus elliotii Forests in Southeastern USA. Forests 2014, 5, 1409–1431. 
https://doi.org/10.3390/f5061409. 

16. Tian, A.; Wang, Y.H.; Webb, A.A.; Liu, Z.B.; Ma, J.; Yu, P.T.; Wang, X. Water yield variation with elevation, tree age and density 
of larch plantation in the Liupan Mountains of the Loess Plateau and its forest management implications. Sci. Total Environ. 
2021, 752, 141752. https://doi.org/10.1016/j.scitotenv.2020.141752. 

17. Sun, X.Y.; Shan, R.F.; Liu, F. Spatio-temporal quantification of patterns, trade-offs and synergies among multiple hydrological 
ecosystem services in different topographic basins. J. Clean. Prod. 2020, 268, 122338. https://doi.org/10.1016/j.jclepro.2020.122338. 

18. Wei, J.X.; Hu, A.; Gan, X.Y.; Zhao, X.D.; Huang, Y. Spatial and Temporal Characteristics of Ecosystem Service Trade-Off and 
Synergy Relationships in the Western Sichuan Plateau, China. Forests 2022, 13, 1845. https://doi.org/10.3390/f13111845. 

19. Ahmadi Mirghaed, F.; Souri, B. Technology. Monitoring ecosystem services through land use change in a semiarid region: A 
case study of the Taluk watershed, southwestern Iran. Int. J. Environ. Sci. Technol. 2022, 19, 12523–12536. 
https://doi.org/10.1007/s13762-022-04490-4. 

20. Reyers, B.; Biggs, R.; Cumming, G.S.; Elmqvist, T.; Hejnowicz, A.P.; Polasky, S. Getting the measure of ecosystem services: A 
social–ecological approach. Front. Ecol. Environ. 2013, 11, 268–273. https://doi.org/10.1890/120144. 

21. Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Fernandes Filho, E.I.; Schulte, R.P.O. Land use change drives the spatio-temporal 
variation of ecosystem services and their interactions along an altitudinal gradient in Brazil. Landsc. Ecol. 2020, 35, 1571–1586. 
https://doi.org/10.1007/s10980-020-01037-1. 

22. Jiang, W.; Fu, B.J.; Gao, G.; Lv, Y.H.; Wang, C.; Sun, S.; Wang, K.; Schuler, S.; Shu, Z.G. Exploring spatial-temporal driving factors 
for changes in multiple ecosystem services and their relationships in West Liao River Basin, China. Sci. Total Environ. 2023, 904, 
166716. https://doi.org/10.1016/j.scitotenv.2023.166716. 

23. Zheng, J.Y.; Yin, Y.H.; Li, B.Y. A new scheme for climate regionalization in China. Acta Geogr. Sin. 2010, 65, 3–12. 
https://doi.org/10.11821/xb201001002. 

24. Hao, R.F.; Yu, D.Y.; Huang, T.; Li, S.H.; Qiao, J.M. NPP plays a constraining role on water-related ecosystem services in an alpine 
ecosystem of Qinghai, China. Ecol. Indic. 2022, 138, 108846. https://doi.org/10.1016/j.ecolind.2022.108846. 

25. Luo, Y.; Guo, X.J.; Lü, Y.H.; Zhang, L.W.; Li, T. Combining spatiotemporal interactions of ecosystem services with land patterns 
and processes can benefit sensible landscape management in dryland regions. Sci. Total Environ. 2024, 909, 168485. 
https://doi.org/10.1016/j.scitotenv.2023.168485. 

26. Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation 
Planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service: 
Washington, DC, USA, 1997. 

27. Cheng, L.; Yang, Q.K.; Xie, H.X.; Wang, C.M.; Guo, W.L. GIS and CSLE Based Quantitative Assessment of Soil Erosion in 
Shaanxi, China. J. Soil Water Conserv. 2009, 23, 61–66. https://doi.org/10.13870/j.cnki.stbcxb.2009.05.022. 

28. Cai, C.F.; Ding, S.W.; Shi, Z.H.; Huang, L.; Zhang, G.Y. Study of Applying USLE and Geographical Information System IDRISI 
to Predict Soil Erosion in Small Watershed. J. Soil Water Conserv. 2000, 14, 19–24. 
https://doi.org/10.13870/j.cnki.stbcxb.2000.02.005. 

29. Angulo-Martínez, M.; Beguería, S. Estimating rainfall erosivity from daily precipitation records: A comparison among methods 
using data from the Ebro Basin (NE Spain). J. Hydrol. 2009, 379, 111–121. https://doi.org/10.1016/j.jhydrol.2009.09.051. 

30. Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. T. Asabe. 1989, 32, 497–0511. 
https://doi.org/10.13031/2013.31032. 

31. Lufafa, A.; Tenywa, M.M.; Isabirye, M.; Majaliwa, M.; Woomer, P. Prediction of soil erosion in a Lake Victoria basin catchment 
using a GIS-based Universal Soil Loss model. Agr. Syst. 2003, 76, 883–894. https://doi.org/10.1016/S0308-521X(02)00012-4. 

32. Droogers, P.; Allen, R.G. Estimating Reference Evapotranspiration Under Inaccurate Data Conditions. Irrig. Drain. 2002, 16, 33–45. 
https://doi.org/10.1023/A:1015508322413. 

33. Anjinho, P.D.S.; Barbosa, M.A.G.A.; Mauad, F.F. Evaluation of InVEST’s Water Ecosystem Service Models in a Brazilian 
Subtropical Basin. Water 2022, 14, 1559. https://doi.org/10.3390/w14101559. 

34. Hamel, P.; Valencia, J.; Schmitt, R.; Shrestha, M.; Piman, T.; Sharp, R.P.; Francesconi, W.; Guswa, A.J. Modeling seasonal water 
yield for landscape management: Applications in Peru and Myanmar. J. Environ. Manag. 2020, 270, 110792. 
https://doi.org/10.1016/j.jenvman.2020.110792. 

35. Jopke, C.; Kreyling, J.; Maes, J.; Koellner, T. Interactions among ecosystem services across Europe: Bagplots and cumulative 
correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol. Indic. 2015, 49, 46–52. 
https://doi.org/10.1016/j.ecolind.2014.09.037. 

36. Schirpke, U.; Candiago, S.; Egarter Vigl, L.; Jager, H.; Labadini, A.; Marsoner, T.; Meisch, C.; Tasser, E.; Tappeiner, U. Integrating 
supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ. 
2019, 651, 928–941. https://doi.org/10.1016/j.scitotenv.2018.09.235. 

37. Ellili-Bargaoui, Y.; Walter, C.; Lemercier, B.; Michot, D. Assessment of six soil ecosystem services by coupling simulation 
modelling and field measurement of soil properties. Ecol. Indic. 2021, 121, 107211. https://doi.org/10.1016/j.ecolind.2020.107211. 

  



Land 2024, 13, 511 21 of 23 
 

 

38. Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2005, 38, 5–22. 
https://doi.org/10.1111/j.0016-7363.2005.00671.x. 

39. Shirvani, Z.; Abdi, O.; Buchroithner, M.F.; Pradhan, B. Analysing Spatial and Statistical Dependencies of Deforestation Affected 
by Residential Growth: Gorganrood Basin, Northeast Iran. Land Degrad. Dev. 2017, 28, 2176–2190. 
https://doi.org/10.1002/ldr.2744. 

40. Bing, Z.; Qiu, Y.; Zhong, W.; Jiang, H. Study On The Spatial Relationship Between Landscape Recreation Service Demand And 
Urbanization—A Case Study In Shanghai. Appl. Ecol. Env. Res. 2019, 17, 7535–7548. https://doi.org/10.15666/aeer/1704_75357548. 

41. Ran, P.L.; Hu, S.G.; Frazier, A.E.; Yang, S.F.; Song, X.Y.; Qu, S.J. The dynamic relationships between landscape structure and 
ecosystem services: An empirical analysis from the Wuhan metropolitan area, China. J. Environ. Manag. 2023, 325, 116575. 
https://doi.org/10.1016/j.jenvman.2022.116575. 

42. Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in 
house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. https://doi.org/10.1080/13658810802672469. 

43. Benra, F.; Nahuelhual, L.; Gaglio, M.; Gissi, E.; Aguayo, M.; Jullian, C.; Bonn, A. Ecosystem services tradeoffs arising from non-
native tree plantation expansion in southern Chile. Landscape Urban Plan. 2019, 190, 103589. https://doi.org/10.1016/j.landur-
bplan.2019.103589. 

44. Jiang, C.; Zhang, H.Y.; Zhang, Z.D. Spatially explicit assessment of ecosystem services in China’s Loess Plateau: Patterns, 
interactions, drivers, and implications. Global Planet. Change 2018, 161, 41–52. https://doi.org/10.1016/j.gloplacha.2017.11.014. 

45. Zhang, H.Y.; Jiang, C.; Wang, Y.X.; Zhao, Y.; Gong, Q.H.; Wang, J.; Yang, Z.Y. Linking land degradation and restoration to 
ecosystem services balance by identifying landscape drivers: Insights from the globally largest loess deposit area. Environ. Sci. 
Pollut. R. 2022, 29, 83347–83364. https://doi.org/10.1007/s11356-022-21707-8. 

46. Rötzer, T.; Rahman, M.A.; Moser-Reischl, A.; Pauleit, S.; Pretzsch, H. Process based simulation of tree growth and ecosystem 
services of urban trees under present and future climate conditions. Sci. Total Environ. 2019, 676, 651–664. 
https://doi.org/10.1016/j.scitotenv.2019.04.235. 

47. Ahammad, R.; Stacey, N.; Eddy, I.M.S.; Tomscha, S.A.; Sunderland, T.C.H. Recent trends of forest cover change and ecosystem 
services in eastern upland region of Bangladesh. Sci. Total Environ. 2019, 647, 379–389. https://doi.org/10.1016/j.sci-
totenv.2018.07.406. 

48. Sirimarco, X.; Barral, M.P.; Villarino, S.H.; Laterra, P. Water regulation by grasslands: A global meta-analysis. Ecohydrology 2017, 
11, e1934. https://doi.org/10.1002/eco.1934. 

49. Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, 
A.A.; et al. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, 
Ethiopia. Sci. Total Environ. 2019, 648, 1462–1475. https://doi.org/10.1016/j.scitotenv.2018.08.273. 

50. Li, D.L.; Cao, W.F.; Dou, Y.H.; Wu, S.Y.; Liu, J.G.; Li, S.C. Non-linear effects of natural and anthropogenic drivers on ecosystem 
services: Integrating thresholds into conservation planning. J. Environ. Manag. 2022, 321, 116047. https://doi.org/10.1016/j.jen-
vman.2022.116047. 

51. Culhane, F.; Teixeira, H.; Nogueira, A.J.A.; Borgwardt, F.; Trauner, D.; Lillebø, A.; Piet, G.; Kuemmerlen, M.; McDonald, H.; 
O’Higgins, T.; et al. Risk to the supply of ecosystem services across aquatic ecosystems. Sci. Total Environ. 2019, 660, 611–621. 
https://doi.org/10.1016/j.scitotenv.2018.12.346. 

52. Abraham, H.; Scantlebury, D.M.; Zubidat, A.E. The loss of ecosystem-services emerging from artificial light at night. Chronobiol. 
Int. 2019, 36, 296–298. https://doi.org/10.1080/07420528.2018.1534122. 

53. Yanagihara, H.; Kamo, K.I.; Imori, S.; Satoh, K. Bias-corrected AIC for selecting variables in multinomial logistic regression 
models. Linear. Algebra. Appl. 2012, 436, 4329–4341. https://doi.org/10.1016/j.laa.2012.01.018. 

54. Liu, Y.X.; Liu, S.L.; Wang, F.F.; Liu, H.; Li, M.Q.; Sun, Y.X.; Wang, Q.B.; Yu, L. Identification of key priority areas under different 
ecological restoration scenarios on the Qinghai-Tibet Plateau. J. Environ. Manag. 2022, 323, 116174. https://doi.org/10.1016/j.jen-
vman.2022.116174. 

55. Brogna, D.; Vincke, C.; Brostaux, Y.; Soyeurt, H.; Dufrêne, M.; Dendoncker, N. How does forest cover impact water flows and 
ecosystem services? Insights from “real-life” catchments in Wallonia (Belgium). Ecol. Indic. 2017, 72, 675–685. 
https://doi.org/10.1016/j.ecolind.2016.08.011. 

56. Ilstedt, U.; Bargués Tobella, A.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, 
H.; et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 2016, 6, 21930. 
https://doi.org/10.1038/srep21930. 

57. Zhao, J.C.; Pan, D.L.; Wei, W.; Duan, X.W. Simulation experiment on the influence of vegetation pattern on soil infiltration and 
water and sediment process. Acta Ecol. Sin. 2021, 41, 1373–1380. https://doi.org/10.5846/stxb202004180934. 

58. Liu, Y.F.; Liu, Y.; Wu, G.L.; Shi, Z.H. Runoff maintenance and sediment reduction of different grasslands based on simulated 
rainfall experiments. J. Hydrol. 2019, 572, 329–335. https://doi.org/10.1016/j.jhydrol.2019.03.008. 

59. Yu, P.; Zhou, T.; Luo, H.; Liu, X.; Shi, P.J.; Zhang, Y.J.; Zhang, J.Z.; Zhou, P.F.; Xu, Y.X. Global Pattern of Ecosystem Respiration 
Tendencies and Its Implications on Terrestrial Carbon Sink Potential. Earthʹs Future 2022, 10, e2022EF002703. 
https://doi.org/10.1029/2022ef002703. 

60. Qiu, J.X.; Carpenter, S.; Booth, E.; Motew, M.; Kucharik, C. Spatial and temporal variability of future ecosystem services in an 
agricultural landscape. Landsc. Ecol. 2020, 35, 2569–2586. https://doi.org/10.1007/s10980-020-01045-1. 



Land 2024, 13, 511 22 of 23 
 

 

61. Yang, J.; Xie, B.P.; Zhang, D.G. Spatial-temporal heterogeneity of ecosystem services trade-off synergy in the Yellow River Basin. 
J. Desert Res. 2021, 41, 78–87. https://doi.org/10.7522/j.issn.1000-694X.2021.00088. 

62. Lang, Y.Q.; Yang, X.H.; Cai, H.Y. Quantifying anthropogenic soil erosion at a regional scale—The case of Jiangxi Province, China. 
Catena 2023, 226, 107081. https://doi.org/10.1016/j.catena.2023.107081. 

63. Hao, R.F.; Yu, D.Y.; Wu, J.G. Relationship between paired ecosystem services in the grassland and agro-pastoral transitional 
zone of China using the constraint line method. Agr. Ecosyst. Environ. 2017, 240, 171–181. 
https://doi.org/10.1016/j.agee.2017.02.015. 

64. Yin, L.C.; Wang, X.F.; Zhang, K.; Xiao, F.Y.; Cheng, C.W.; Zhang, X.R. Trade-offs and synergy between ecosystem services in 
National Barrier Zone. Geogr. Res. 2019, 38, 2162–2172. https://doi.org/10.11821/dlyj020180578. 

65. Li, G.Y.; Jiang, C.H.; Gao, Y.; Du, J. Natural driving mechanism and trade-off and synergy analysis of the spatiotemporal 
dynamics of multiple typical ecosystem services in Northeast Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 374, 134075. 
https://doi.org/10.1016/j.jclepro.2022.134075. 

66. Walker, B.H.; Carpenter, S.R.; Rockstrom, J.; Crépin, A.-S.; Peterson, G.D. Drivers, “Slow” Variables, “Fast” Variables, Shocks, 
and Resilience. Ecol. Soc. 2012, 17, 30. https://doi.org/10.5751/es-05063-170330. 

67. Jiang, H.L.; Xu, X.; Guan, M.X.; Wang, L.F.; Huang, Y.M.; Jiang, Y. Determining the contributions of climate change and human 
activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020, 
718, 134871. https://doi.org/10.1016/j.scitotenv.2019.134871. 

68. Xu, Z.H.; Peng, J.; Zhang, H.B.; Liu, Y.X.; Dong, J.Q.; Qiu, S.J. Exploring spatial correlations between ecosystem services and 
sustainable development goals: A regional-scale study from China. Landsc. Ecol. 2022, 37, 3201–3221. 
https://doi.org/10.1007/s10980-022-01542-5. 

69. Bejagam, V.; Sharma, A. Remote sensing-based multi-scale characterization of ecohydrological indicators (EHIs) in India. Ecol. 
Eng. 2023, 187, 106841. https://doi.org/10.1016/j.ecoleng.2022.106841. 

70. Li, T.; Lü, Y.H.; Ma, L.Y.; Li, P.F. Exploring cost-effective measure portfolios for ecosystem services optimization under large-
scale vegetation restoration. J. Environ. Manag. 2023, 325, 116440. https://doi.org/10.1016/j.jenvman.2022.116440. 

71. Pan, J.H.; Wei, S.M.; Li, Z. Spatiotemporal pattern of trade-offs and synergistic relationships among multiple ecosystem services 
in an arid inland river basin in NW China. Ecol. Indic. 2020, 114, 106345. https://doi.org/10.1016/j.ecolind.2020.106345. 

72. Liu, Q.Y.; Peng, C.; Schneider, R.; Cyr, D.; McDowell, N.; Kneeshaw, D. Drought-induced increase in tree mortality and 
corresponding decrease in the carbon sink capacity of Canada’s boreal forests from 1970 to 2020. Glob. Chang Biol. 2023, 29, 2274–
2285. https://doi.org/10.1111/gcb.16599. 

73. Daryanto, S.; Wang, L.X.; Fu, B.J.; Zhao, W.W.; Wang, S. Development. Vegetation responses and trade-offs with soil-related 
ecosystem services after shrub removal: A meta-analysis. Land Degrad. Dev. 2019, 30, 1219–1228. https://doi.org/10.1002/ldr.3310. 

74. Wenger, A.S.; Atkinson, S.; Santini, T.; Falinski, K.; Hutley, N.; Albert, S.; Horning, N.; Watson, J.E.M.; Mumby, P.J.; Jupiter, S.D. 
Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands. Environ. Res. Lett. 
2018, 13, 044035. https://doi.org/10.1088/1748-9326/aab9eb. 

75. Chaves, J.E.; Aravena Acuña, M.C.; Rodríguez-Souilla, J.; Cellini, J.M.; Rappa, N.J.; Lencinas, M.V.; Peri, P.L.; Martínez Pastur, 
G.J. Carbon pool dynamics after variable retention harvesting in Nothofagus pumilio forests of Tierra del Fuego. Ecol. Process. 
2023, 12, 5. https://doi.org/10.1186/s13717-023-00418-z. 

76. Edwards, D.P.; Tobias, J.A.; Sheil, D.; Meijaard, E.; Laurance, W.F. Maintaining ecosystem function and services in logged 
tropical forests. Trends. Ecol. Evol. 2014, 29, 511–520. https://doi.org/10.1016/j.tree.2014.07.003. 

77. Ranius, T.; Hämäläinen, A.; Egnell, G.; Olsson, B.; Eklöf, K.; Stendahl, J.; Rudolphi, J.; Sténs, A.; Felton, A. The effects of logging 
residue extraction for energy on ecosystem services and biodiversity: A synthesis. J. Environ. Manag. 2018, 209, 409–425. 
https://doi.org/10.1016/j.jenvman.2017.12.048. 

78. Manzoor, S.A.; Malik, A.; Zubair, M.; Griffiths, G.; Lukac, M. Linking social perception and provision of ecosystem services in 
a sprawling urban landscape: A case study of Multan, Pakistan. Sustainability 2019, 11, 654. https://doi.org/10.3390/su11030654. 

79. Li, F.Z.; Yin, X.X.; Shao, M. Natural and anthropogenic factors on China’s ecosystem services: Comparison and spillover effect 
perspective. J. Environ. Manag. 2022, 324, 116064. https://doi.org/10.1016/j.jenvman.2022.116064. 

80. Zhang, Y.Q.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y.P. Effectiveness and driving mechanism of ecological restoration efforts in China 
from 2009 to 2019. Sci. Total Environ. 2024, 910, 168676. https://doi.org/10.1016/j.scitotenv.2023.168676. 

81. Fan, X.; Yu, H.R.; Tiando, D.S.; Rong, Y.J.; Luo, W.X.; Eme, C.; Ou, S.Y.; Li, J.F.; Liang, Z. Impacts of human activities on 
ecosystem service value in arid and semi-arid ecological regions of China. Int. J. Environ. Res. Public Health 2021, 18, 11121. 
https://doi.org/10.3390/ijerph182111121. 

82. Thorslund, J.; Cohen, M.J.; Jawitz, J.W.; Destouni, G.; Creed, I.F.; Rains, M.C.; Badiou, P.; Jarsjö, J. Solute evidence for 
hydrological connectivity of geographically isolated wetlands. Land Degrad. Dev. 2018, 29, 3954–3962. 
https://doi.org/10.1002/ldr.3145. 

83. Bi, Y.Z.; Zheng, L.; Wang, Y.; Li, J.F.; Yang, H.; Zhang, B.W. Coupling relationship between urbanization and water-related 
ecosystem services in China’s Yangtze River economic Belt and its socio-ecological driving forces: A county-level perspective. 
Ecol. Indic. 2023, 146, 109871. https://doi.org/10.1016/j.ecolind.2023.109871. 

  



Land 2024, 13, 511 23 of 23 
 

 

84. Deng, C.; Liu, J.; Liu, Y.; Li, Z.; Nie, X.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; Zhu, D.; et al. Spatiotemporal dislocation of 
urbanization and ecological construction increased the ecosystem service supply and demand imbalance. J. Environ. Manag. 
2021, 288, 112478. https://doi.org/10.1016/j.jenvman.2021.112478. 

85. Erb, K.H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; 
et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 2018, 553, 73–76. 
https://doi.org/10.1038/nature25138. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


