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Abstract: A clean environment is an essential component of sustainable development, which is based
on a comprehensive understanding of the behavior of water, soil, and air. The soil water reten-
tion (SWR) curve is a crucial function that describes how soil retains water, playing a fundamental
role in irrigation and drainage, soil conservation, as well as water and contaminant transport in
the vadose zone. This study evaluates the accuracy, performance, and prediction capabilities of
15 SWR models. A total of 140 soil samples were collected from different sites, covering all textural
classes. Standard suction tests, using both hanging column and ceramic pressure plate extractors,
were conducted to compile the SWR databank. 15 SWR models were selected and fitted to the
SWR data points. Soil texture, bulk density, and organic matter were used to determine their effect
on the performance of the SWR models. The results indicate that the Tani and Russo models exhibit
the lowest levels of accuracy and performance among the selected models. Based on the Akaike
and Bayesian information criteria analysis, the van Genuchten model exhibits the lowest values
among the selected models, with poor prediction capabilities in estimating the SWR curve. The
significance test at the 0.05 level (95% confidence interval) shows that according to the calculated
p-values for the Pearson correlation coefficient between RMSE and texture, the Brooks-Corey and van
Genuchten models are poorly influenced by soil properties. The performance of the models is not
significantly affected by the soil organic matter. Similarly, bulk density does not significantly affect
model performance except for the Brooks–Corey, van Genuchten, Tani, and Russo models. Among
the SWR models considered, the double exponential, Groenevelt and Grant, and Khlosi et al. models
demonstrate superior accuracy and performance in predicting the SWR curve. This is supported by
lower values for RMSE, Akaike, and Bayesian information criteria.

Keywords: soil water retention curve; soil matric suction; soil water content; closed-form expressions;
Akaike information criterion; Bayesian information criterion

1. Introduction

The soil water retention (SWR) curve is the main function to evaluate and elucidate
the soil’s capacity to retain water. It has an essential role in irrigation and drainage, soil
conservation, and modeling water and contaminant transport in the vadose zone. The
intricate nature of the soil media affects the SWR behavior so that the shape of the curve is
influenced by soil physicochemical properties such as texture, structure, porosity, particle
size distribution, permeability, and organic matter [1–3].

SWR curves can be measured directly or indirectly (predictive models) [4,5]. Despite
the relative advances in measurement methods, laboratory methods, besides the rigorous
and technical expertise, are still time-consuming, tedious, labor-intensive, and costly [6,7].
In addition, they are often performed on small and disturbed soil samples or small-scale
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in situ pilots that are less generalizable to the farm scale [8]. Therefore, to address the
aforementioned limitations and disadvantages, alternative indirect methods have garnered
significant interest. Many mathematical and conceptual models have been proposed in the
literature to describe soil hydrological properties. These models can be classified into three
main categories: physico–empirical models [9–14], pedotransfer functions (PTFs) [15–17],
and fractal methods [18–20].

Physico–empirical models aim to integrate physical concepts with empirical assump-
tions. The physical concepts in use mostly encompass particle size distribution, pore size
distribution, tortuosity, and pore connectivity [21]. The reliance on semi-physical mod-
els on soil texture and the credibility of empirical assumptions has prompted numerous
models suggested for SWR curve estimation. Naturally, the accuracy and performance of
SWR models in predicting the relationship between soil water content and matric potential
are closely tied to the adaptation of the model to the experimental data [22].

PTF methods use the relationship established between expensive measured properties
(SWR and hydraulic conductivity curves) and easily measured properties (texture, bulk
density, and organic matter). This is achieved through either multivariate regression
or artificial neural networks [23,24]. Nevertheless, the outcomes of the models are not
applicable to all types of soil, and the PTFs are strongly influenced by the sample database.
The inverse method (ICM) is a viable optimization technique for estimating unknown
parameters by minimizing an objective function [25]. Typically, the objective function is
defined as the difference between predicted and costly measured parameters [26]. Although
defining adjustable variables improves the flexibility of the algorithm considered in the ICM
to estimate the full range of the SWR curve, it also significantly increases non-uniqueness
and the correlation between the estimated parameters [25]. It is important to note that in the
ICM, the estimated parameters should not be strongly correlated [27]. On the other hand,
selecting the appropriate initial guess for the parameters is crucial since inappropriate
initial assumptions increase the possibility of divergence of the objective function [28].

Applications of fractal geometry in soil science have shown that the complicated
porous medium can be characterized by the fractal representation [29]. Fractal models of
soil hydraulic properties, such as the SWR, have been proposed [19,30,31]. Based on the
fractal scaling of soil structure, different SWRC models have been developed. Some are
mass fractal-based models [31]. Some are based on the fractal surface [32]. There are also
models based on the fractal scaling of PSD or the pore phase of soils [30,33]. To apply the
models, one needs to determine the fractal dimensions. However, it is rather challenging to
estimate the fractal dimensions because of the complexity of measurements of the pore size
and pore volume distributions.

Among semi-physical models, closed-form expressions are widely used by modelers
due to their approachability and practical application [1]. Some of the proposed hydraulic
functions have received more attention by researchers due to their performance and accu-
racy for estimating the SWR and hydraulic conductivity curves for the main twelve textural
soil classes [9–13,34–55]. In contrast, some other models had a lack of success due to failure
in generalizing for different soil types [56–75].

Closed-form functions are principally high-order nonlinear models that integrate
adjustable parameters with physical or mathematical meaning. They can explain the
relationship between soil water content and matric suction, as well as soil water content
and hydraulic conductivity, in the form of an analytical equation. The accuracy and
performance of models are normally evaluated by comparing fitted values from models
to experimental SWR measurements. Given the unique S-shape of the SWR curve, many
models in the form of sigmoid [9,10], multiple exponentials [13,46,54], lognormal [12],
hyperbolic [56,62], and hybrid functions [36,53] have been suggested for SWR models.

This study assesses the performance and accuracy of 15 SWR models using a set of
Iranian soils covering all textural classes. Furthermore, it evaluates the impact of soil
properties such as texture, organic matter, and bulk density on SWR model performance.
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2. SWR Models

Numerous SWR models have been proposed to describe the relationship between
soil water content, θ [L3 L−3], and matric suction, h [L]. Typically, model performance is
assessed using two θ ranges: one spanning from the saturated water content, θs [L3 L−3],
to the residual water content, θr [L3 L−3], and the other extend across the entire range from
the very dry part of the SWR curve. Estimating the SWR from the oven-dry region started
in the 1990s; previously, SWR models were limited to the wet range due to limitations in
technology and measuring equipment, especially at high suctions.

The Brooks and Corey model [9] is one of the most conventional and widespread
SWR models [76]:

θ =

{
θr + (θs − θr)(αh)−λ αh ≥ 1
θs αh < 1

(1)

where α [L−1] is the inverse of the air-entry suction and λ [-] > 0 is an index related to
the pore size distribution (PSD) with a maximum value around 4. In fact, λ is an index
that evaluates the non-uniformity of the PSD, where soils with a more uniform PSD result
in larger λ.

Another practical and widespread SWR model was proposed by van Genuchten [10].
The model is presented as follows:

θ = θr + (θs − θr)
(
1 + (αh)n)−m (2)

where m and n are dimensionless shape parameters without physical meaning, and α is
the inverse of the air-entry suction. It should be noted that considering m = 1, this type of
expression was previously used by other authors (e.g., [77–79].

One essential criterion for a SWR model is the conformity of the model to the inflection
point. Tani [67] proposed an exponential model considering the matric suction at the
inflection point, hi [L], of the SWR curve. This model has fewer parameters, resulting in a
low correlation between them.

θ = θr + (θs − θr)

(
1 +

h
hi

)
exp

(
− h

hi

)
(3)

Hutson and Cass [36] developed their model based on Campbell (1974). The intrinsic
flaw of the Campbell model was the inability of the model to estimate the SWR curve for
suctions less than the air-entry value. For this reason, Hutson and Cass [36] proposed a
SWR curve as a piecewise-modified function that comprises exponential and parabolic
functions as follows:

θ =


θs −

θsh2
(

1− θi
θs

)
a2
(

θi
θs

)−2b θ ≥ θi

θs

(
h
a

)− 1
b

θ < θi

(4)

where a [L] and b [-] are empirical parameters, the latter related to the slope of the SWR curve.
They used the parameter a instead of the air entry suction, which is merely a correction factor.

Russo [71] proposed an effective improvement for the Tani [67] model, particularly at
low suctions, and added another parameter as follows:

θ = θr + (θs − θr)[(1 + βh)exp(−βh)](2/(k+2)) (5)

where β refers to the empirical parameter attached to the Equation instead of the inflection
point matric suction, and k is a coefficient introduced by Mualem [80].
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Campbell and Shiozawa [38] proposed a reformulated expression for the
van Genuchten [10] model incorporating water content adsorbed on soil surfaces at very
low matric potentials as follows:

θ = θa

(
1 − ln(h)

ln(hO)

)
+ A

[
1

1 + (αh)4

] 1
m

(6)

where the first term on the right-hand side notes to adsorptive water; m [-], A [-], and
θa [L3 L−3] are curve-fitting parameters, and ho [L] (~105 m) is the matric suction at
oven dryness.

Fredlund and Xing [40] derived a five-parameter model to cover the entire range of
the SWR curve:

θ =

1 −
ln
(

1 + h
hr

)
ln
(

1 + 106

hr

)

 θs

ln
[
e +

(
h
a

)n]m

 (7)

where a [-], n [-], and m [-] are empirical shape parameters, and hr [L] corresponds to the
matric suction associated with θr.

Kosugi [12,42] proposed a lognormal SWR model considering the physical basis for
the description of the soil pore size.

θ =

θ = θr +
1
2 (θs − θr)erfc

[
ln( ha−h

ha−ho )−n2
√

2n

]
h > ha

θs h ≤ ha

(8)

where erfc is the complementary error function, and n [-], ho[L] and ha [L] are model
parameters. In fact, ha is the matric suction corresponding to the largest soil pore, ho is the
matric suction corresponding to the smallest soil pore, and n is the standard deviation of
the pore size distribution.

Fayer and Simmons [43] adapted the van Genuchten and the Brook-Corey models from
saturation to oven dryness using the approach of Campbell and Shiozawa [38] as follows:

θ = θa

(
1 − ln(h)

ln(h0)

)
+

[
θs − θa

(
1 − ln(h)

ln(h0)

)](
1 + (αh)n)−m (9)

θ =

{
θa

(
1 − ln(h)

ln(h0)

)
+

[
θs − θa

(
1 − ln(h)

ln(h0)

)]
(αh)−λ αh ≥ 1

θs αh < 1
(10)

In the above two equations, instead of θr in the van Genuchten and Brooks–Corey
models, the absorptive water content θa is used.

Assouline et al. [44] postulated a conceptual SWR model based on the conversion from
solid particle volume to pore volume.

θ = θL + (θs − θL)
{

1 − exp
[
−m

(
h−1 − h−1

L

)n]}
(11)

where θL [L3 L−3] is the water content whose hydraulic conductivity is a trifle and negligible,
and hL [L] is the matric suction corresponding to this very low water content. M [-] and n [-]
are curve-fitting parameters influenced by particle shapes, packing configuration, and PSD.

Groenevelt and Grant [46] presented a double exponential SWR model with high
mathematical versatility.

θ = θa + k1

{
exp

[
−
(

k0

ha

)n]
− exp

[
−
(

k0

h

)n]}
(12)
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k1, k0, and n are the curve-fitting parameters, while θa [L3 L−3] is the water content
corresponding to a remarkably high matric suction ha corresponding to permanent wilting
(15,000 cm H2O).

Khlosi et al. [47] used the adsorptive approach from Campbell and Shiozawa [38] to
adapt the Kosugi [81] model from saturation to oven dryness:

θ = θa

(
1 − ln(h)

ln(ho)

)
+

1
2

[
θs − θa

(
1 − ln(h)

ln(ho)

)]
erfc

 ln
(

h
α

)
√

2n

 (13)

Θa and ho are similar to those in the Fayer and Simmons [43] model, and the other
parameters are the same as in the Kosugi model [12].

Dexter et al. [13] proposed a double exponential model including five adjustable
parameters with physical meaning. The parameters correspond to the soil matrix and
the structural pore space, and the configuration of pores determines the shape of the
SWR function.

w = C + A1e(−
h

h1
)
+ A2e(−

h
h2
) (14)

where w is the gravimetric soil water content [M·M−1], C points to the asymptote of the model
when it approaches the residual water content, A1 [M·M−1] and A2 [M·M−1] are parameters
related to the matrix pores and the structural pores, and h1 [L] and h2 [L] are the matric suction
when water drains from the matrix (textural) and structural pores, respectively.

Similarly, Romano et al. [51] divided the soil pore system into two: textural and struc-
tural. They used a two-term SWR based on the lognormal Kosugi model [12] as follows:

θ = θr +
1
2
(θs − θr)

w erfc

 ln
(

h
α1

)
√

2n1

+ (1 − w) erfc

 ln
(

h
α2

)
√

2n2

 (15)

where 0 ≤ w ≤ 1 notes the weighting factor that considers the share of the textural and
structural pores in the soil and their influence on the SWR curve. α1, α2, n1, and n2 are
shape parameters of the model for the textural and structural pore systems, respectively.
This model was further improved by Pollacco et al. [82] avoiding the use of the empirical
weighting factor, w.

The selected set of SWR models are summarized in Table 1. It is worth noting that
SWR models can be categorized as one-, two-, and three-segment models. Fragmenting
the SWR curve using piecewise functions leads to an improved fit, but it also increases
problems of continuity and smoothness [41] with implications for the integrability and
derivability at the junctions points [83].

Table 1. Closed-form analytical expressions of SWR curves used in this study.

Model * Expression Fitting Parameters Number of
Adjustable Parameters

BC θ =

{
θr + (θs − θr)(αh)−λ αh ≥ 1
θs αh < 1

θr, θs, α, λ 4

VG θ = θr + (θs − θr)
(
1 + (αh)n)−m

θr, θs, α, n, m 5

TA θ = θr + (θs − θr)
(

1 + h
hi

)
exp

(
− h

hi

)
θr, θs, hi 3

RU θ = θr + (θs − θr)[(1 + βh)exp(−βh)](2/(k+2)) θr, θs, β, k 4

CS θ = θa

(
1 − ln(h)

ln(hO)

)
+ A

[
1

1+(αh)4

] 1
m

θa, ho, A, α, m 5

FX θ =

[
1 − ln(1+ h

hr )

ln
(

1+ 106
hr

)
][

θs

ln[e+( h
a )

n
]

m

]
θs, a, n, m 4
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Table 1. Cont.

Model * Expression Fitting Parameters Number of
Adjustable Parameters

HC θ =


θs

(
h
a

)− 1
b

θ < θi

θs −
θsh2

(
1− θi

θs

)
a2
(

θi
θs

)−2b θ ≥ θi

θs, θi, a, b 4

KO θ =

θ = θr +
1
2 (θs − θr)er f c

[
ln( ha−h

ha−ho )−n2
√

2n

]
h > ha

θs h ≤ ha

θr, θs, ha, ho, n 5

GG θ = θa + k1

{
exp

[
−
(

k0
ha

)n]
− exp

[
−
(

k0
h

)n]}
θa, k0, k1, ha, n 5

DEX w = C + A1e(−
h

h1
)
+ A2e(−

h
h2
) C, A1, A2, h1, h2 5

ATB θ = θL + (θs − θL)
{

1 − exp
[
−m

(
h−1 − h−1

L

)n]}
θs, θL, hL, n, m 5

BLF
θ = θr +

1
2 (θs − θr)

{
(w)er f c

[
ln
(

h
α1

)
√

2n1

]
+ (1 − w)er f c

[
ln
(

h
α2

)
√

2n2

]}
θr, θs, w, α1, α2,

n1, n2
7

KCGS
θ =

θa

(
1 − ln(h)

ln(ho)

)
+ 1

2

[
θs − θa

(
1 − ln(h)

ln(ho)

)]
er f c

(
ln( h

α )√
2n

)
θa, θs, ho, α, n 5

FSBC

θ ={
θa

(
1 − ln(h)

ln(h0)

)
+

[
θs − θa

(
1 − ln(h)

ln(h0)

)]
(αh)−λ αh ≥ 1

θs αh < 1
θa, θs, ho, α, λ 5

FSVG
θ =
θa

(
1 − ln(h)

ln(h0)

)
+

[
θs − θa

(
1 − ln(h)

ln(h0)

)](
1 + (αh)n)−m

θa, θs, ho,
α, n, m 6

* Models abbreviations: BC: Brooks and Corey model, VG: van Genuchten model, TA: Tani model, RU: Russo
model, CS: Campbell and Shiozawa model, FX: Fredlund and Xing model, HC: Hutson and Cass model, KO: Ko-
sugi model, GG: Groenevelt and Grant model, DEX: Dexter et al. double exponential model, ATB: Assouline,
Tessier, and Beruand model, BLF: Romano et al. Bimodal Lognormal Function, KCGS: Khlosi et al. model,
FSBC: modified BC model by Fayer and Simmons. FSVG: modified VG model by Fayer and Simmons.

3. Material and Methods
3.1. Soil Sampling and Characterization

Aiming to cover all textural classes, 140 samples were selected from different provinces
of Iran. The geographical location of the selected provinces is shown in Figure 1. For soil
sampling, disturbed and undisturbed samples were taken from 0–15 cm depth. Laboratory
experiments include water retention measurements as well as soil texture, organic matter,
bulk density, and particle density.

Soil bulk density was measured on undisturbed samples using 100 cm3 stainless steel
cylinders (5 cm internal diameter and 5.1 cm height). Collected samples were oven-dried
at 105 ◦C for 24 h prior to bulk density (ρb) determinations [84]. To measure other soil
properties, the disturbed soil samples were air-dried and sieved (2 mm mesh). The particle
size distribution (sand, silt, and clay percentages) was determined using the hydrometer
method [85]. Soil particle density was measured using a glass pycnometer. The soil organic
matter was determined by the wet oxidation method [86,87]. Table 2 summarizes soil
properties for the 140 samples, and Figure 2 displays soil texture, including the frequency
of each textural class. The international classification of the studied soils includes Saline
Alluvial soils, Salt March soils, Lithosols, Brown soils, Calcareous lithosols, Brown soils
and Chestnut soils, and Fine textured Alluvial soils. As shown in Table 2, bulk density
ranges from 0.95 to 1.91 g cm−3, with particle density from 2.23 to 2.71 g cm−3. Organic
matter is low, with values between 1.51 to 4.63%.
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Table 2. Summary of soil properties for the selected 140 soils.

Soil Properties Mean Max Min Standard Deviation

Clay (%) 31.34 70.51 2.12 16.13

Silt (%) 38.05 69.97 4.78 12.81

Sand (%) 30.61 88.97 1.11 19.21

Bulk Density (g cm−3) 1.38 1.91 0.95 0.19

Particle Density (g cm−3) 2.54 2.71 2.23 0.10

Organic Matter (%) 1.51 4.63 0.21 0.77

3.2. SWR Measurements

Experimental SWR data for disturbed and undisturbed soil samples were performed
in the laboratory. Standard suction experiments were divided into two groups: undisturbed
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soils for suction measurements below 1 bar (1000 cm H2O) and disturbed soils for suction
between 1 to 15 bar (1000 to 15,000 cm H2O). After saturating the samples from the bottom
for 24 h, they were drained to the corresponding suction level using different methods.
A hanging column apparatus was used for suctions of 10, 20, 30, 40, 50, 60, 70, 80, and
90 cm H2O using undisturbed soils. The ceramic pressure plate extractors were utilized
for suctions of 100, 300, 1000, 3000, 5000, and 15,000 cm H2O. It is noticeable that for
suctions of 100, 300, and 1000, undisturbed soil samples and for suctions of 3000, 5000,
and 15,000 cm, H2O-disturbed soil samples were used. The soil samples were placed on
porous pressure plates (ceramic). The soil was placed directly on the porous plates without
using cheesecloth to retain the soil in the samples. The soil samples placed on the pressure
plates were wetted from below and allowed to saturate overnight. The desired suction
was applied to the samples. After that, no water was removed from the sample, which
means that the samples reached equilibrium by suction. Soil samples were then removed
from the pressure plates and immediately covered with the sample holder cap to prevent
evaporation. The samples were immediately transferred to an oven for determination of
the soil water content (105 ◦C for 24 h) [88].

3.3. Evaluation and Ranking Criteria

Statistical measures such as the root mean square error (RMSE), Akaike information
criterion (AIC), and Bayesian information criterion (BIC) were used to assess and compare
the performance and goodness-of-fit of the selected SWR models. RMSE represents the
overall differences between the measured (observed) SWR data and the predicted (esti-
mated) values by the corresponding SWR model. These deviations are known as residuals,
and for the complete fitted SWR curve, the residual sum of squares approaches zero [47]:

RMSE =

√
1
n

n

∑
i=1

(θi,Estimated − θi,Observed)
2 (16)

where, θi,Estimated and θi,Observed refer to the estimated and measured soil water content,
respectively, and n is the number of measured suction data points. The AIC test allows
comparison and ranking of the models with disparate parameters (type and number):N ln

(
RSS

N

)
+ 2K N

K ≥ 40

N ln
(

RSS
N

)
+ 2K + 2K(K+1)

N−K−1
N
K < 40

(17)

where K is the number of adjustable parameters in the model, N is the number of suction
data points to be fitted, and RSS is the residual sum of squares. For two fitting models, the
one with a lower AIC value is suggested better [89,90].

BIC is a model selection criterion, which is modified from the AIC criterion. The
penalty term for BIC is similar to the AIC equation but uses a multiplier of ln(N) for
K instead of a constant value of 2 by incorporating the sample size N. This allows to resolve
the overfitting problem in data fitting [91]:

N ln
(

RSS
N

)
+ K ln (N) (18)

3.4. Analysis of 4 and 5 Parameter Logistic Curves

The general or standard form of four- and five-parameter logistic curves (4PLC and
5PLC) are represented by Equations (19) and (20) [92]:

y = Amin +
Amax − Amin[

1 +
( x

c
)d
] (19)
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y = Amin +
Amax − Amin[

1 +
( x

c
)b
]d (20)

where coefficients Amin and Amax indicate the minimum and maximum values of the de-
pendent variable and somehow control the location of the upper and the lower asymptotes
of the Equation. Coefficient c controls the location of the transition on the x-axis and refers
to the inflection point in the transition between the two asymptotes. Coefficient b is the
slope at the transition point c and controls the rate of approach to the asymptotes. The
sign of b controls whether the curve is monotonically ascending or descending. Coeffi-
cient d controls the degree of asymmetry in an arbitrary 5PLC. This is the difference in
the rates of approach from the inflection point c to the lower and the upper asymptotes.
Indeed, the 5PLC model is the extended edition of the 4PLC with more flexibility to control
the asymmetry of the curve [93]. The 4PLC is point symmetric on semi-log axes about
its midpoint.

3.5. Effect of K on AIC and BIC

AIC and BIC facilitate and make it possible to compare models with a different number
of parameters under equal conditions. As already mentioned, for different models, the
one with the smaller AIC value is suggested to be a better model for the dataset. When
comparing the fitting accuracy and performance of different models with different numbers
of parameters and identical RSS, priority is given to the model with fewer parameters.
Besides the smaller AIC (or BIC), a lower correlation between parameters results in in-
creased uniqueness for estimated values. For example, considering two models with K and
K + 1 parameters, substituting K + 1 in Equation (17) results in the following:

AICK+1 = N ln
(

RSS
N

)
+ 2(K + 1) + 2(K+1)(K+1+1)

N−(K+1)−1

≈ AICK + 2(N+K)
N−K−2

(21)

The above Equation indicates that regardless of the number of fitting data points (N),
the addition of one additional fitting parameter to the model increases AIC linearly.

4. Results and Discussions

Figures 3 and 4 and Tables 3 and 4 show results corresponding to RMSE, AIC, and
BIC of each SWR model using the 140 soils. According to Table 3, except for the Tani and
Russo models, the 10% percentile of the other 13 models is <0.01, while the 50% percentile
(median) of the other 13 models is <0.015. Therefore, selected SWR models have good
performance in fitting SWR data.

Table 3. Statistical details from box-and-whisker plots for RMSE, AIC, and BIC (15 SWRC models
are fitted to 140 empirical retention datasets). Model abbreviations: BC: Brooks and Corey model,
VG: van Genuchten model, TA: Tani model, RU: Russo model, CS: Campbell and Shiozawa model,
FX: Fredlund and Xing model, HC: Hutson and Cass model, KO: Kosugi model, GG: Groenevelt and
Grant model, DEX: Dexter et al. double exponential model, ATB: Assouline, Tessier, and Beruand
model, BLF: Romano et al. Bimodal Lognormal Function, KCGS: Khlosi et al. model, FSBC: modified
BC model by Fayer and Simmons. FSVG: modified VG model by Fayer and Simmons.

RMSE AIC BIC

Model 10% 50% 90% 10% 50% 90% 10% 50% 90%

BC 0.0059 0.0150 0.0300 −119.3 −71.8 −30.7 −119.8 −77.8 −51.0

VG 0.0001 0.0115 0.0274 −783.7 −78.7 −30.5 −778.8 −83.1 −50.9

TA 0.0168 0.0308 0.0447 −107.2 −60.8 −23.7 −106.9 −63.7 −44.7

RU 0.0129 0.0264 0.0434 −106.4 −61.3 −16.1 −106.7 −62.6 −44.2
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Table 3. Cont.

RMSE AIC BIC

Model 10% 50% 90% 10% 50% 90% 10% 50% 90%

CS 0.0035 0.0118 0.0241 −128.2 −72.0 −34.4 −128.8 −79.6 −54.5

FX 0.0014 0.0093 0.0233 −149.7 −72.9 −16.8 −151.1 −84.6 −53.4

HC 0.0043 0.0147 0.0275 −119.1 −68.7 −34.1 −123.6 −75.3 −54.3

KO 0.0020 0.0097 0.0250 −143.8 −73.4 −35.3 −146.6 −80.2 −54.8

GG 0.0009 0.0096 0.0219 −149.3 −76.6 −34.8 −153.1 −83.3 −55.2

DEX 0.0016 0.0074 0.0196 −154.7 −72.4 −38.7 −157.7 −85.3 −61.3

ATB 0.0009 0.0096 0.0201 −140.9 −68.3 −12.9 −150.5 −82.9 −56.9

BLF 0.0039 0.0095 0.0247 −135.3 −73.2 −48.7 −151.2 −81.8 −55.0

KCGS 0.0017 0.0082 0.0236 −161.2 −58.1 −34.7 −171.2 −87.0 −59.4

FSBC 0.0063 0.0126 0.0266 −129.7 −74.8 −49.8 −136.0 −83.2 −55.7

FSVG 0.0088 0.0113 0.0236 −145.4 −74.5 −47.9 −162.5 −83.2 −54.5

Table 4. Statistical detail of box-and-whisker plots for RMSE of the 15 fitted SWR curve models.
Model abbreviations: BC: Brooks and Corey model, VG: van Genuchten model, TA: Tani model,
RU: Russo model, CS: Campbell and Shiozawa model, FX: Fredlund and Xing model, HC: Hutson
and Cass model, KO: Kosugi model, GG: Groenevelt and Grant model, DEX: Dexter et al. double
exponential model, ATB: Assouline, Tessier, and Beruand model, BLF: Romano et al. Bimodal
Lognormal Function, KCGS: Khlosi et al. model, FSBC: modified BC model by Fayer and Simmons.
FSVG: modified VG model by Fayer and Simmons.

Model 50% 25% 75% Max Min 75–25% Max–Min

BC 0.0150 0.0085 0.0207 0.1749 2.3 × 10−5 0.0122 0.1749

VG 0.0115 0.0001 0.0199 0.2274 9.5 × 10−17 0.0199 0.2274

TA 0.0308 0.0234 0.0365 0.0618 7.4 × 10−3 0.0132 0.0544

RU 0.0264 0.0188 0.0347 0.0954 2.8 × 10−3 0.0159 0.0926

CS 0.0118 0.0052 0.0179 0.0334 1.8 × 10−3 0.0127 0.0316

FX 0.0093 0.0025 0.0179 0.0376 1.1 × 10−4 0.0153 0.0375

HC 0.0147 0.0070 0.0194 0.0388 1.7 × 10−3 0.0124 0.0372

KO 0.0097 0.0041 0.0172 0.0377 1.9 × 10−4 0.0131 0.0375

GG 0.0096 0.0024 0.0163 0.0405 8.2 × 10−6 0.0139 0.0405

DEX 0.0074 0.0031 0.0130 0.0444 6.9 × 10−5 0.0099 0.0443

ATB 0.0096 0.0025 0.0152 0.0372 5.9 × 10−4 0.0127 0.0366

BLF 0.0095 0.0024 0.0161 0.0401 8.2 × 10−6 0.0137 0.0401

KCGS 0.0082 0.0012 0.0132 0.0390 1.8 × 10−6 0.0120 0.0390

FSBC 0.0126 0.0046 0.0151 0.0369 7.6 × 10−4 0.0105 0.0361

FSVG 0.0113 0.0028 0.0168 0.0377 3.1 × 10−5 0.0139 0.0376
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Figure 4. Calculated AIC and BIC of the 15 models in the form of box-and-whisker plots. The hori-
zontal solid line indicates the median value and the solid square inside the box signifies the average
value. The bottom and top of each box represent the 25% and 75% percentiles, and the whiskers
represent the maximum and minimum values. SWR model abbreviations are indicated in Table 1.

Although for the Tani and Russo models the number of parameters is less than for
other models, the shape of suggested functions does not correspond to the behavior of the
SWR curve. Figure 5 clearly shows this demerit. Reducing the number of parameters in the
model reduces the correlation between the parameters and increases the uniqueness of the
parameters. The ideal SWR model will be able to account for the variations in the SWR data
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with the minimum number of parameters. Therefore, it is recommended to use models
with fewer parameters in the fitting process as much as possible. The Tani and Russo
models show the worst performance among the 15 utilized models; therefore, they are
less recommended. According to Table 4, among the remaining 13 models, the maximum
RMSE varies between 0.03 and 0.23, indicating that there are significant differences in the
accuracy and performance of the models.
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Figure 5. Fitted SWR curve using the Tani model with the highest RMSE, (worst performance corre-
sponding to loamy sand and clay soils) and corresponding Russo, Brook-Corey, and van Genuchten
SWR models.

Figure 3 shows that for the BC and VG models, despite the acceptable median and
90% percentile for both models, drastic and unusual changes are observed for the RMSE
(see Table 4), ranging from 2.3 × 10−5 to 0.175 and 9.5 × 10−17 to 0.227, respectively, indi-
cating that these models are significantly sensitive to soil type (or soil textures) compared to
other models. Based on the information in Table 3, the AIC and BIC analysis of the models
also shows that the VG model has the lowest AIC and BIC among the selected models, so
there are striking differences in the calculated AIC and BIC for the 10% percentile resulting
from the minimum 10% percentile for the RMSE. It seems that for some soils the VG model
has an excellent fit compared to other models. The reason for this peculiarity is discussed
in the manuscript. From Equation (17), by increasing the performance and accuracy of the
desired model in fitting the experimental data (goodness-of-fit) and also the number of
empirical SWR data (N), RSS

N approaches zero (0+ or zero limit). As a result, ln
(

RSS
N

)
takes

more negative values. In Table 3, models with more negative AIC (in other words, lower
values) have higher accuracy.
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The AIC and BIC results for the 15 selected models are shown in Figure 4. The results
show that despite the relative proximity for the 50% percentile (median) in all models, the
VG model results in wide alterations for AIC and BIC. It appears that the performance of
the model is influenced by soil type and soil physical properties.

BC and VG reformulated and transformed Equations (19) and (20) to Equations (1)
and (2), where the minimum and maximum soil water contents, θr and θs, are replaced
by Amin and Amax, respectively. Although these models, like the traditional models, have
acceptable performance for different soil types, they have some fundamental weaknesses
and drawbacks, as discussed below.

(1) Given the nature and behavior of Equations (19) and (20), BC and VG models
show excellent fit to the asymmetric retention data around the inflection point with
RMSE < 10−10 but are inherently and significantly sensitive to pure errors and outliers
in the dataset. Pure errors are errors caused by the presence of random variation
in the data such that despite high R2 values, the RMSE shows abnormal values
(see Figures 6–8).
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Figure 6. The maximum and minimum RMSE, RSS, and AIC (worst and best fitting corresponding to
clay loam and sandy clay loam soils) using the van Genuchten model.

The residual sum of squares can be decomposed into two components:
RSS = (sum of squares due to “pure error”) + (sum of squares due to “lack of fit”)
The sum of squares due to “pure error” is the sum of squares of the differences between

each observed y-value (water content) and the average of all y-values (θ̄) corresponding to
the same x-value (matric suction). The sum of squares due to lack of fit is the weighted sum
of squares of differences between each average of y-values (θ̄) corresponding to the same
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x-value and the corresponding fitted y-value (θEstimated), the weight in each case being
simply the number of observed y-values for that x-value:

RSS =
N
∑

i=1
(measured value − f itted value)2 =

N

∑
i=1

(measured value − local average)2

︸ ︷︷ ︸
pure error

+
N

∑
i=1

weight × (local average − f itted value)2

︸ ︷︷ ︸
lack o f f it

(22)
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Figure 7. The maximum and minimum RMSE, RSS, and AIC (worst and best fitting corresponding to
sandy loam and clay loam soils) using the Brooks-Corey model.

To minimize pure errors and obtain accurate empirical SWR for each soil sample,
replication and duplication simultaneously are used during experiments so that no out-
liers were observed for almost 99% of the averaged SWR data. To avoid abnormal and
illusive RMSEs, a few scattered outliers were ignored. In the presence of pure errors and
the erratic scattering of data around the regression curve, suitable R2 values are obtained
(see Figures 6–8 as typical examples), which by itself is not an acceptable criterion for mea-
suring the accuracy of the model (Figure 5). The best criteria to assess models’ performance
are RSS, RMSE, and AIC;

(2) Comparison of Equations (1) and (19) and Equations (2) and (20) shows that for
the BC and VG models, θr and θs are considered as the corresponding soil water
content values when the logarithm of the matric suction approaches zero and infinity,
respectively. Therefore, these parameters are fitting parameters without any specific
physical meaning. From the data fitting, the range of variation for θr was higher
compared to other models (0.00001 to 0.24 m3·m−3), indicating that these models,
regardless of soil type and data range, only tried to fit the data with unphysical θr;
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(3) For matric suction below air entry, the BC model treats the SWR curve as a vertical
line (Figures 6–8). In other words, as depicted in Figure 8 for suctions below air entry,
decreasing suction does not increase soil water content and its value remains constant
to saturated water content. For fine textured soils with large ha, the inability of the
model to simulate this part of the SWR becomes more pronounced, resulting in an
increase in the RMSE;

(4) The VG model does not consider the matric suction at the air entry suction. How-
ever, the strength of the model lies in having an inflection point which results in an
exceptional fit to measured data, particularly at high water content;

(5) As previously discussed, the BC and VG models assume that soil suction approaches
zero and infinity as the water content decreases to θr and increases to θs, respectively. This
results in the constant maintenance of θr with additional matric suction. While this may
be valid only for the wet part of the SWR, however, a large number of observed SWR data
indicates that for the dry part of the SWR (θ < θr), increasing matric suction results in
a decrease in water content that follows a linear relationship on a semi-logarithmic
scale [38,94]. Given the domain and range of 4- and 5PLCs, the major drawback of the
BC and VG models is that they do not define the SWR beyond θr;

(6) The correlation between parameters plays a significant role in the sensitivity of the
SWR model to the experimental data. In the VG model, the relationship between
the three parameters of α, n, and m is such an extent that minor alteration in one
parameter effectively changes the other two parameters. To better understand the
sensitivity of the VG model, the correlation matrix between the VG model parameters
(θr, θs, α, n, and m) for the maximum and minimum RMSE, RSS, and AIC (see Figure 6,
which shows the worst and the best fits corresponding to clay loam and sandy clay
loam soils) are presented in Table 5.
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This results in the constant maintenance of θr with additional matric suction. While 
this may be valid only for the wet part of the SWR, however, a large number of 
observed SWR data indicates that for the dry part of the SWR (θ < θr), increasing 
matric suction results in a decrease in water content that follows a linear relationship 
on a semi-logarithmic scale [38,94] . Given the domain and range of 4- and 5PLCs, 
the major drawback of the BC and VG models is that they do not define the SWR 
beyond θr; 

(6) The correlation between parameters plays a significant role in the sensitivity of the 
SWR model to the experimental data. In the VG model, the relationship between the 
three parameters of α, n, and m is such an extent that minor alteration in one 
parameter effectively changes the other two parameters. To better understand the 
sensitivity of the VG model, the correlation matrix between the VG model parameters 

Figure 8. SWR curves using the Brooks–Corey model for loam and loamy sand soils (highest R2).
Vertical lines represent matric suctions below air-entry value.
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Table 5. Calculated binary correlation matrix between VG model parameters (θr, θs, α, n, and m)
corresponding to Figure 6 (worst and best performance of the VG model). (a) Relates to the sandy
clay loam and (b) notes to the clay loam.

(a) θr θs α n m

θr 1

θs 0.341 1

α −0.948 −0.380 1

n −0.827 −0.657 0.968 1

m 0.977 0.452 −0.985 −0.924 1

(b) θr θs α n m

θr 1

θs 0.002 1

α −0.967 0.037 1

n −0.805 −0.009 0.933 1

m 0.924 0.008 −0.980 −0.996 1

The binary correlation matrix clearly shows that, regardless of model performance
and good-of-fitness, there is a high dependency between the three parameters (α, n, and m)
of the VG model.

The impact of soil properties on the performance of the SWR models is evaluated for
the 140 soils. The RMSE of each SWR model was correlated with the sand-silt-clay content,
bulk density, and organic matter. Results are summarized in Table 6.

Table 6. Pearson correlation coefficient (PCC, p-value) between RMSE and soil sand-silt-clay content,
bulk density (ρb), and organic matter (OM) plus related p-values at the significance level of 0.05. SWR
model abbreviations are indicated in Table 1.

Model Sand p-value Clay p-value Silt p-value ρb p-value OM p-value

BC 0.07 0.40 −0.11 0.21 0.02 0.81 0.02 0.84 −0.14 0.08

VG 0.02 0.80 −0.06 0.48 0.04 0.61 −0.04 0.63 −0.01 0.06

TA −0.17 0.05 −0.01 0.96 0.25 0.01 −0.09 0.31 −0.13 0.12

RU −0.01 0.92 −0.11 0.20 0.15 0.08 −0.03 0.71 −0.09 0.11

CS −0.06 0.46 −0.09 0.29 0.20 0.02 −0.19 0.04 −0.05 0.08

FX 0.03 0.71 −0.18 0.02 0.19 0.03 −0.03 0.11 −0.23 0.01

HC 0.07 0.38 −0.13 0.11 0.05 0.49 −0.16 0.06 0.09 0.11

KO 0.03 0.66 −0.15 0.07 0.13 0.11 −0.09 0.06 −0.17 0.08

GG −0.01 0.95 −0.15 0.06 0.20 0.01 −0.10 0.07 −0.15 0.06

DEX 0.13 0.01 −0.22 0.01 0.08 0.36 −0.13 0.05 −0.04 0.06

ATB 0.17 0.03 −0.21 0.02 0.01 0.97 −0.12 0.10 −0.09 0.09

BLF 0.08 0.29 −0.20 0.01 0.12 0.18 0.17 0.04 −0.10 0.08

KCGS −0.04 0.58 −0.10 0.27 0.19 0.02 −0.07 0.09 −0.18 0.06

FSBC 0.07 0.37 −0.16 0.05 0.09 0.27 −0.16 0.06 −0.07 0.12

FSVG −0.06 0.47 −0.08 0.29 0.20 0.01 −0.09 0.08 0.05 0.09
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In the current study, the null hypothesis (H0) is considered when there is no correlation
between RMSE (model performance) and soil properties (sand-silt-clay content, bulk
density, and organic matter) in the overall population, including 140 soil samples (r ≈ 0).
On the counterpoint, for the alternative hypothesis (H1), there is a correlation between
RMSE and soil properties in the overall population (r ̸= 0). To accept H1, calculated
p-values must be less than 0.05 or 0.01 for 95% and 99% confidence intervals, respectively.
To conclusively convict and reject H0, p-values must be less than 10−3.

Regarding the corresponding p-values in Table 6, it can be inferred that for the BC and
VG models, there is a weak correlation between model performance (RMSE) and soil prop-
erties (sand-silt-clay content, bulk density, and organic matter) in the overall population
including 140 soil samples. As mentioned before, the VG model is a closed-form sigmoid
expression including the adjustable parameters obtained from fitting. In the VG model,
m and n are called shape (fitting) parameters and do not have a physical meaning.

From Table 6, it can be concluded that for the BC and VG models, the model per-
formance is strongly independent of soil texture and bulk density. On the other hand,
almost in all SWR models, the model performance is impacted by organic matter, with
90% confidence. However, the calculated correlation between organic matter and RMSE is
not striking, and correlations are negligible.

Another important finding from Table 6 is the Dexter (double exponential) model,
where the model performance is noticeable under the influence of soil properties.

Evaluation of Equation (14) can shed more light on Table 6 results. DEX developed
model has five adjustable parameters with physical meaning. The parameters of this model
correspond to the soil matrix and the structural pore space. In general, for this model, the
pore configuration in the soil specifies the shape of the function. In Equation (14), w is the
gravimetric soil water content associated with the matric suction, C points to the asymptote
of the model when it approaches the residual soil water content, A1 and A2 are parameters
of the model associated with the matrix and structural pores of the soil, respectively, and
h1 and h2 are related to the matric suction when water drains from the textural (matrix) and
the structural pore space, respectively.

It can be deduced that the Dexter model is bimodal. The first part, (A1 exp(h/h1)),
represents the matrix pores, and the second part, (A2 exp(h/h2)), considers the effect of
structural pores on the SWR curve.

Table 6 also shows that at the significance level of 0.05, the PCC between RMSE and soil
texture shows higher values compared to ρb and OM. The findings of Table 6 are consistent
with Cornelis et al. [95] and Du [22]. When correlating the RMSE of the SWR model with
OM and ρb, Cornelis et al. [95] found no significant results at the 0.05 level. They compared
48 soil samples from Belgium using unimodal analytical expressions, evaluating the ac-
curacy, linearity, AIC, and prediction potential (PCC). Du [22] studied the performance of
closed-form expressions on 94 soil samples from saturation to oven-dry. Cornelis et al. [95]
observed that the VG model with m as a free parameter showed the highest accuracy and
the lowest AIC. However, it had a low prediction potential, which means that the model
is remarkably influenced by soil texture. Constraining m to 1 − 1/n did not resolve this
issue. However, reducing the number of parameters from 5 to 4 mitigated the model’s
dependence on soil texture. Both studies, Cornelis et al. [95] and Du [22] found a slight
correlation between RMSE and ρb, as well as RMSE and OM, for most SWR models, which
is attributed to the specific mathematical form of these models. The parameters within
the models are primarily defined through the integration of features such as PSD and
capillarity laws.

The SWR models show weak dependence on ρb and OM due to the narrow range
of variation in these parameters. However, when compared to previously published
data [38,95–97] and UNSODA data [98], some variations can be observed.

Evaluation of PCC between RMSE and the soil sand-silt-clay content reveals some
interesting features. For all SWR models, the RMSE values are negatively correlated with
clay. On the other hand, RMSE values are positively correlated with silt, indicating that
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by increasing clay content and decreasing silt content, the performance of the SWR model
increases (this effect is weak). For sand, RMSE and SWR models exhibit contrasting patterns.
The performance of all SWR models in Cornelis et al. [95] except one is also in agreement
with these results.

5. Conclusions

In this study, the performance and predictive potential of 15 soil water retention (SWR)
models have been assessed using 140 soils from Iran. The findings indicate important
conclusions summarized below.

Based on the Akaike information criterion (AIC) and Bayesian information crite-
rion (BIC), the van Genuchten model has the lowest values. There are significant differences
in AIC and BIC for the 10% percentile, which are a result of the minimum RMSE at the
10% percentile. This can be attributed to the symmetric SWR data around the inflec-
tion point, where the minimum RMSE values for these soils were 10−17. The Brooks
and Corey and van Genuchten models demonstrate inadequate predictive ability in es-
timating SWR curves. Results from the statistical test conducted at a significance level
of 0.05 (95% confidence) demonstrate that soil texture has not notable impact on both mod-
els, as suggested by calculated p-values for PCC between RMSE and soil texture. Despite
the relative proximity for the 50% percentile (median) in all models, the van Genuchten
model results in wide alterations for AIC and BIC. It reveals that the performance of the
model is influenced by soil type and soil physical properties.

The calculated Pearson correlation coefficient and associated p-values between RMSE
and organic matter reveal that in almost all SWR models, the model performance is weakly
influenced by organic matter, with an acceptable approximation (90% confidence). This
independence is also evident for the bulk density, apart from in four models BC, VG, Tani,
and Russo. Statistical investigation also reveals that the performance of the Dexter model
is noticeably influenced by soil properties. The parameters of the Dexter model correspond
to the soil matrix and the structural pore space, which is directly related to the shape of the
SWR function.

The TA and RU models exhibit the poorest performance and accuracy compared to the
studied SWR models. Among the SWR models, Dexter et al. double exponential, Groenevelt
and Grant, and Khlosi et al. models show higher accuracy and performance in predicting
the SWR curve in terms of RMSE, AIC, and BIC. The evaluation of prediction potential for
SWR models reveals that the DEX, GG, Kosugi, Assouline, Tessier, and Beruand models
show the least dependency on soil properties.

It should be noted that a small number of sandy soils were used in the data set, and
therefore, the results may not be fully generalizable to sandy soils.
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