
Citation: Chen, W.; Lu, Y.; Yin, H.;

Zhou, X.; Li, Z.; Liu, Y. A Typical

Small Watershed in Southwestern

China Is Demonstrated as a

Significant Carbon Sink. Land 2024, 13,

458. https://doi.org/10.3390/

land13040458

Academic Editor: Nick B. Comerford

Received: 24 February 2024

Revised: 28 March 2024

Accepted: 2 April 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

A Typical Small Watershed in Southwestern China Is
Demonstrated as a Significant Carbon Sink
Wenguang Chen 1,2, Yafeng Lu 1,* , He Yin 3 , Xiaokang Zhou 1,2, Zhengyang Li 1,2 and Yanguo Liu 4

1 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Geography, Kent State University, 325 S. Lincoln Street, Kent, OH 44242, USA; hyin3@kent.edu
4 Mianyang Science and Technology City Division, the National Remote Sensing Center of China, Southwest

University of Science and Technology, Mianyang 621010, China; liuyg@swust.edu.cn
* Correspondence: luyafeng@imde.ac.cn

Abstract: Small watersheds are fundamental units for natural processes and social management in
Southwestern China. Accurately assessing carbon sinks in small watersheds is crucial for formulating
carbon sink management policies. However, there has been a lack of assessment of the dynamics of
carbon fluxes in the major ecosystems of small watersheds. Here, we selected the Reshuihe River
watershed, which is a typical small watershed in Southwestern China, to measure carbon fluxes using
eddy covariance systems for two years (October 2021 to September 2023) from three major ecosystems,
namely forest, cropland, and non-timber forest. We compared variations and controlling factors of net
ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (Re) among
different ecosystems, and estimated annual watershed carbon flux based on the land cover areas of
the three ecosystems. This study found that three ecosystems were net annual carbon sinks during
the study period. Forest was the strongest (−592.8 and −488.1 gC m−2 a−1), followed by non-timber
forest (−371.0 gC m−2 a−1), and cropland was the smallest (−92.5 and −71.6 gC m−2 a−1), after
taking fallow period into account. Weeds were a significant source of carbon flux in non-timber forest
ecosystems. It was also found that variations in daily NEE were controlled by photosynthetically
active radiation and soil volumetric water content, with weak effects related to temperature also
being observed. However, when the temperature exceeded 21 ◦C, GPP and Re were significantly
reduced in cropland. Finally, it was discovered that the total carbon sink of the three ecosystems in
the watershed for one year was −52.15 Gg C. Overall, we found that small watersheds dominated by
forest ecosystems in Southwestern China have a strong carbon sink capacity.

Keywords: small watershed; carbon fluxes; forest-cropland-non-timber forest ecosystems; eddy
covariance; path analysis

1. Introduction

Southwestern China is rich in forests and agroecosystems and has strong carbon sink
capacity in its terrestrial ecosystems [1,2]. Ecosystem carbon uptake is considered to be one
of the most cost-effective methods for mitigating human carbon emissions [3]. Therefore, it
is crucial to protect and enhance the carbon sink capacity of ecosystems in the Southwestern
region to achieve the strategic goals of a carbon peak before 2030 and carbon neutrality
before 2060. As independent natural catchment units [4], small watersheds act as a bridge
between the site scale and the regional scale and are also important natural ecological and
social functional areas. Southwestern China is made up of many small watersheds. To
understand the functions of carbon sources and sinks in these watersheds and to formulate
regional carbon sink management measures, it is essential to accurately estimate carbon
fluxes from major ecosystems in small watersheds.

Currently, methods for carbon estimation include both ‘top-down’ and ‘bottom-up’
approaches [5]. The ‘top-down’ approach mainly refers to the atmospheric inversion
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method. This method utilizes an atmospheric transport model and CO2 concentration,
in conjunction with carbon emissions from human activities, to estimate the regional
carbon sink. However, carbon flux data based on the atmospheric inversion method has
low spatial resolution and cannot accurately differentiate carbon fluxes among different
ecosystems [6], thus making it difficult to apply this method to assess the carbon budget of
small watersheds. ‘Bottom-up’ approaches mainly include the application of process-based
ecosystem models and the eddy covariance method [5]. Ecosystem process models simulate
the carbon cycle with drivers to estimate carbon flux data across multiple timescales;
however, there are uncertainties in the model parameters [6], which makes it more difficult
for the models to accurately obtain carbon flux data in small watersheds. Eddy covariance
is a method of directly observing the net carbon exchange between ecosystems and the
atmosphere through in-situ monitoring [7]. These observations are then scaled up to
determine the regional carbon balance [8,9]. In recent years, studies have shown that
‘top-down’ estimates of carbon sinks in Southwestern China are highly uncertain, and that
the size of the land sink in this region has been estimated differently [10,11]. Therefore, it is
imperative to conduct more accurate carbon flux observations using eddy covariance in
Southwestern China.

The characteristics of small watersheds determine the complexity of carbon flux stud-
ies. On the one hand, various ecosystems have their own unique structures and functions,
and all simultaneously exchange carbon with the atmosphere as either carbon sources or
sinks, leading to large uncertainties in the estimation of carbon flux components [4,12].
On the other hand, changes in carbon fluxes in different ecosystems may be correlated
due to similar meteorological conditions within the watershed. Therefore, to accurately
assess the carbon sinks of small watersheds containing multiple ecosystems, it is necessary
to monitor ecosystem–atmosphere carbon fluxes for major ecosystems in the region [13].
Furthermore, researchers are currently not only concerned with the carbon source/sink
function of ecosystems, but also with the responses of carbon flux to ecological environ-
mental factors [14–16]. Despite similar meteorological factors within the same watershed,
different ecosystems may respond differently to extreme climate events [17,18]. There-
fore, understanding the relationships between carbon fluxes and environmental factors in
different ecosystems will help to develop and validate biophysical models.

The study area selected for this research is the Reshuihe River watershed in South-
western China. The watershed is mainly composed of forest, cropland, and non-timber
forest ecosystems, which account for over 75% of the total area. Carbon flux data from the
three ecosystems were continuously monitored for two years (October 2021 to September
2023) using eddy covariance systems, and environmental factor data were recorded at
each site using meteorological instruments. The annual carbon balance was estimated
based on observational data combined with the area of different ecosystems in the small
watershed. The specific objectives of this study are as follows: (1) characterize carbon
fluxes (including the net ecosystem exchange (NEE), gross primary productivity (GPP),
and ecosystem respiration (Re)) in forest, cropland, and non-timber forest ecosystems;
(2) determine the drivers of NEE, GPP, and Re in different ecosystems and the effects of
high temperature on carbon fluxes; and (3) combine the NEE data of the three ecosystems
to determine the carbon source/sink function of the watershed.

2. Materials and Methods
2.1. Site Area and Flux Sites

The study area is located in the Reshuihe River watershed in Liangshan Yi Au-
tonomous Prefecture, Sichuan Province, Southwestern China (Figure 1), with a total area of
151 km2. The study area is characterized by a subtropical alpine climate, with an average
annual temperature of about 13.1 ◦C and a long-term average annual precipitation of
about 1075 mm. The wet season starts in May or June and ends in September each year,
during which more than 80% of the total annual precipitation falls. The ecosystems in
the watershed primarily consist of forest, cropland, and non-timber forest, accounting for
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75.4% of the total watershed area. The dominant tree species in the forest ecosystem is
Pinus yunnanensi, the cropland is mainly planted with potatoes and maize, and the regional
non-timber forest focuses on the cultivation of Zanthoxylum bungeanum Maxim.

Three eddy covariance systems were deployed at locations in the watershed where
forest, cropland, and non-timber forest were evenly distributed. Figure 1 and Table 1 show
the basic information of the three eddy covariance sites, such as the location, altitude,
vegetation types, etc.
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Figure 1. (a) Location of the Reshuihe River watershed in Southwestern China; (b) watershed
boundary and the distribution of forest, cropland, and non-timber forest within the watershed; eddy
covariance systems installed in (c) non-timber forest, (d) forest, and (e) cropland.

Table 1. Overview of eddy covariance sites for forest, cropland, and non-timber forest in the Reshuihe
River watershed.

Sites Geographical
Location

Altitude
(m)

Vegetation
Types

Observation
Height (m) Observation Time

Forest 28◦8′18.4′′ N,
102◦19′20.2′′ E 2343

Pinus
yunnanensis
dominates

12 October
2021–September 2023

Cropland 28◦8′36.0′′ N,
102◦20′53.9′′ E 2359 Potatoes and

maize 6 October
2021–September 2023

Non-timber
forest

28◦7′55.6′′ N,
102◦17′20.6′′ E 2218

Zanthoxylum
bungeanum

Maxim
6 October

2021–September 2023

2.2. Eddy Covariance and Ancillary Data

Three sets of integrated CO2/H2O open-path gas analyzers and three-dimensional
sonic anemometers (IRGASON, Campbell Scientific Inc., Logan, UT, USA) were used to
observe carbon flux between forest, cropland, and non-timber forest ecosystems and the
atmosphere, as well as the three wind speed components (uy, uz, and ux). The instruments
were installed on flux towers at three sites, with the instrument installation height at the
forest site being 12 m (Figure 1d), and the instrument installation height at the cropland site
(Figure 1e) and non-timber forest site (Figure 1c) being 6 m. Air temperature and relative
humidity sensors (HMP155, Vaisala, Helsinki, Finland), photosynthetically active radiation
sensors (LI190R, Campbell Scientific Inc., Logan, UT, USA), and tipping-bucket rain gauges
(TE525MM; Campbell Scientific Inc., Logan, UT, USA), which record precipitation, were
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also installed on the flux towers at each site to record meteorological data. Soil temperature
and moisture were obtained using time-domain reflectometer (TDR) moisture sensors (True
TDR-315, Acclima, Inc., Meridian, ID, USA) installed in the soil at a depth of 10 cm near
each flux tower. VPD was computed based on the air temperature and relative humidity
measurements. A data collector (CR1000X, Campbell Scientific Inc., Logan, UT, USA)
collected the carbon fluxes and 3D wind speed data at 10 Hz, as well as the averages or
sums of meteorological data recorded at 30 min intervals. The instrument was maintained
and inspected at an average of every 45 days.

In this study, we collected carbon flux and environmental factor data from October 2021
to September 2023 at forest, cropland, and non-timber forest sites. Due to field instrument
failures and power supply problems, some data were missing, including soil temperature
data at forest site from 9 January 2022 to 25 June 2022, and carbon flux data and some
meteorological data at the non-timber forest site from 1 March 2022 to 13 May 2022.

2.3. Eddy Covariance Data Processing, Gap Filling and Flux Partitioning

Eddypro 7.0.9 software (LI-COR Biosciences, Lincoln, NE, USA) was used to process
the raw 10 Hz flux data. Data processing flow was as follows: data quality control was
carried out according to the method recommended by Vickers et al. [19], and a double
rotation [20] (forest and cropland sites) and planar fit coordinate rotation [21] (non-timber
forest site) were used to eliminate the influence of instrument tilt or terrain irregularity
on airflow. The effects of air density fluctuations due to heat and water vapor transfer
were corrected using Webb–Pearman–Leuning (WPL) correction [22]. Further, flux data
were deleted for precipitation time periods. A quality check was performed on the flux
data based on internal turbulence tests [23], removing low quality flux data marked as 2.
To mitigate the impact of low turbulence on flux data at night time (shortwave incoming
global radiation less than 10 W m−2), the friction velocity (u*) thresholds (0.26–0.37 m s−1

for forest dataset, 0.19–0.21 m s−1 for cropland dataset, and 0.23–0.25 m s−1 for non-timber
forest dataset) determined based on the moving point test (MPT) were applied to filter
nighttime carbon flux data [24]. After conducting quality control and u* filtering, the carbon
flux datasets for the three sites over two years showed a percentage of missing data ranging
from 33.9% to 39.6% (Table 2). The percentage of missing eddy covariance data typically
ranged from 20% to 60% and was mainly concentrated at night [25]. Therefore, the rates of
missing data at our three sites are reasonable.

Table 2. Percentage of carbon flux data gaps for three eddy covariance sites after quality control and
u* filtering.

Sites October 2021 to
September 2022 (%)

October 2022 to
September 2023 (%) Averaged-Gaps (%)

Forest 41.8 25.9 33.9
Cropland 37.2 32.7 35.0

Non-timber forest 46.8 42.4 39.6
Notes: The count does not include data from non-timber forest site between 1 March and 13 May 2022.

Missing data was filled using marginal distribution sampling (MDS) [26]. The MDS
method has been widely used to fill carbon flux data gaps [18,25,27]. It takes into account
the temporal autocorrelation of fluxes and the covariance between meteorological variables
and fluxes, and uses shortwave incoming global radiation (Rg), air temperature (Tair), and
vapor pressure deficit (VPD) to fill the half-hourly NEE. A more detailed description can
be found in the paper by Wutzler et al. [27].The gap filling process was performed using
the REddyProC package [27].
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Half-hourly NEE was partitioned into GPP and Re. At night, NEE is equal to Re, when
GPP is equal to 0. Based on the half-hourly nighttime data, the relationship between Re
and Tair was established using Equation (1) [28]:

Re = Rref · exp
(

E0 ·
(

1
Tref − T0

− 1
Tair − T0

))
(1)

where Re (µmol m−2 s−1) is the ecosystem respiration, Rref (µmol m−2 s−1) is the ecosystem
respiration rate at a reference temperature (Tref) of 15 ◦C, T0 is kept constant at −46.02 ◦C,
E0 (K) is the activation energy, and Tair is air temperature. After Re and Tair for the nighttime
data were linked through Equation (1), the Re values could be estimated as a function of
Tair during the daytime. Subsequently, GPP could be calculated using Equation (2):

GPP = Re − NEE (2)

Both Re and GPP were calculated using the REddyProC package [27]. This paper
follows the convention that, when NEE is negative, the ecosystem is acting as a net carbon
sink; when NEE is positive, it is a net carbon source.

2.4. Response Curves for Photosynthesis

To assess the influence of PAR and SVWC on carbon exchange, we divided SVWC of
the three ecosystems into three change intervals based on the average value of SVWC during
the dry seasons (October 2021–April 2022 and October 2022–May 2023) and wet seasons
(May 2022–September 2022 and June 2023–September 2023), and the relationships between
half-hourly NEE and PAR during daytime hours at different intervals were analyzed
separately. The Michaelis–Menten model [29,30] (Equation (3)) was used to fit the daytime
NEE and PAR to the light response curves:

NEE = −ε× Amax × PAR
ε× PAR + Amax

+ Re (3)

where ε (µmol CO2/µmol PAR) is the apparent quantum yield, Amax (µmol CO2 m−2 s−1)
is apparent maximum photosynthetic rate, and Re (µmol CO2 m−2 s−1) is the ecosystem res-
piration. To avoid data scattering, the analysis used half-hour NEE averages in increments
of 60 µmol m−2 s−1 PAR.

2.5. Path Analysis

Carbon flux is controlled by various environmental factors. However, environmental
factors are essentially interrelated, and it is difficult for common correlation analysis
methods to truly identify the main factors that control ecosystem carbon absorption and
release [31]. Therefore, our study used path analysis to investigate the relationships between
carbon fluxes (NEE, GPP, and Re) and major environmental factors in forest, cropland, and
non-timber forest ecosystems at the daily scale.

Path analysis, a statistical method for assessing the relationships between different
variables based on priori causal knowledge, has been widely used in studies analyzing
carbon fluxes and environmental factors [18,32]. Our study selected photosynthetically
active radiation, air temperature, and soil volumetric water content as explanatory variables
for NEE and GPP, and selected air temperature and soil volumetric water content as the
explanatory variables for Re. All variables were standardized using Z-score, and the R
package ‘lavaan’ [33] was used to conduct path analysis. A total of nine path analysis
models were constructed.
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3. Results
3.1. Environmental Conditions

Environmental factors in the forest, cropland, and non-timber forest sites exhibited
obvious seasonal variations (Figure 2). The results showed that (1) PAR was low at the
beginning of the year and trended upwards thereafter, peaking in June and July and then
gradually declining; (2) the trends of Tair and Tsoil exhibited a unimodal pattern in one
year; however, the fluctuation of Tsoil was smaller. The daily minimum of Tair occurs from
January to February, and the maximum occurs from May to July; and (3) SVWC was found
to be closely related to precipitation. In both years, the wet seasons were from May to
September and from June to September, respectively, and the proportion of wet season
precipitation to total annual precipitation was more than 80%. Additionally, VPD was also
affected by variability in precipitation.
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Figure 2. Seasonal variations of meteorological elements in forest, cropland, and non-timber for-
est sites in the Reshuihe River watershed between October 2021 and September 2023, including
(a1–a3) daily summed photosynthetically active radiation (PAR); (b1–b3) daily mean air temperature
(Tair) and soil temperature (Tsoil) at −10 cm; (c1–c3) soil volumetric water content (SVWC) at −10 cm
and daily summed precipitation; and (d1–d3) daily mean vapor pressure deficit (VPD).

Overall, the watershed was characterized by precipitation and heat during the same
period. Environmental factors were higher between May and September each year and
relatively lower during the rest of the year. Furthermore, the forest and cropland sites
exhibited fewer differences in environmental factors due to their similar elevation (about
2400 m). The non-timber forest site was situated at a relatively lower elevation (2218 m)
and had higher mean annual temperatures, less annual precipitation, and lower mean
annual SVWC.
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3.2. Variations in Carbon Fluxes
3.2.1. Diurnal Variations

Seasonal and annual mean diurnal variation characteristics of carbon fluxes at each
site are shown in Figure 3. Net carbon uptake was higher from July to September, with
longer durations of negative daytime NEE values. The daytime NEE values for the forest
site were generally smaller than those of the other two sites, indicating that its carbon sink
capacity was stronger.
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Figure 3. Diurnal variation characteristics of carbon fluxes in forest and cropland sites from October
2021 to September 2023 and in non-timber forest site from October 2022 to September 2023, including
(a1–a3) diurnal variation of NEE in different months, and (b1–b3) diurnal variation of NEE, GPP, and
Re during the corresponding data periods. The shaded areas represent the standard deviations for
each half-hourly value.

Diurnal variations of NEE and GPP were consistent, and both exhibited typical single-
peak curves during the daytime. Over a 24 h cycle, the minimum values of NEE and the
maximum values of GPP appeared at 13:30–14:00. The net carbon release stage occurred at
night. The peak occurrence of daytime Re was delayed by 2.5–3 h compared to the GPP.

3.2.2. Seasonal and Annual Carbon Fluxes

Carbon fluxes (NEE, GPP, and Re) at the three sites over the course of two years are
shown in Figure 4. The annual NEE values were −592.8 and −488.1 gC m−2 a−1 for forest,
and −92.5 and −71.6 gC m−2 a−1 for cropland, respectively. The carbon sink for non-timber
forests was −371.0 gC m−2 a−1 from October 2022 to September 2023.
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Figure 4. Changes in (a1–a3) daily and (b1–b3) monthly NEE, GPP, and Re in forest, cropland, and
non-timber forest sites from October 2021 to September 2023.

The variation in daily NEE at the forest site over the two-year period ranged from
−8.0 to 5.9 gC m−2 d−1. Monthly NEE values were negative for 24 months, with the lowest
value occurring in July 2022. GPP and Re values increased rapidly from around May each
year, peaked in July and August, and then gradually decreased. Daily NEE at the cropland
site varied within the range of −5 to 4.6 gC m−2 d−1. In the two-year period, the site
acted as a carbon sink for 197 and 213 days, respectively. Potatoes and maize were planted
around the observation site in mid-March and mid-May, which facilitated carbon uptake.
There were two phases of decline in GPP and Re after the maturation of potatoes in late
August and maize in mid-September. From October 2022 to September 2023, the minimum
and maximum daily NEE values at the non-timber forest site were −4.5 and 1.9 gC m−2

d−1, respectively. Carbon sinks were observed on 88% of the days during this period.
Monthly NEE was only slightly positive (0.8 gC m−2 mon−1) in June 2023, and negative in
the remaining months. Mid-July was the ripening and harvesting period of Zanthoxylum
bungeanum Maxim fruits. At this time, NEE increased (i.e., carbon uptake decreased) and
GPP and Re decreased. Subsequently, there was another period of decline in NEE. The
defoliation of Zanthoxylum bungeanum Maxim trees started in early November, and both
GPP and Re remained low afterwards.
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Furthermore, significant positive correlations were found between daily changes in
NEE across the various ecosystems (p < 0.001, Figure 5). The correlation between NEE in
each of the two ecosystems was consistently greater than 0.45 when analyzing data from
the two years of the study period.
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3.3. Carbon Fluxes in Relation to Environmental Factors
3.3.1. Drivers of Carbon Fluxes in Different Ecosystems

Daily carbon fluxes in different ecosystems were controlled by different combinations
of environmental factors (Figure 6). The results of path analysis showed that PAR was
the most important factor controlling NEE, with the magnitudes of the total effects of
forest, cropland, and non-timber forest being −0.7, −0.59, and −0.55, respectively. We
also observed significant negative correlations (p < 0.001) between SVWC and NEE. This
suggested that higher PAR and SVWC could favor net carbon uptake. Interestingly, the
effects of Tair on NEE were weak, and the relationship between NEE and Tair in non-timber
forest did not pass the significance test (p > 0.05).

PAR, SVWC, and Tair were all significantly positively correlated with GPP (p < 0.001),
but there were differences in path coefficients. Path coefficients between PAR and GPP
were the largest at the forest site. However, at the cropland and non-timber forest sites,
SVWC was the best explanatory variable for changes in daily GPP. In contrast to NEE, the
daily variation of Tair had significant effects on GPP.

Daily variations in Re were influenced by Tair and SVWC. SVWC had a greater effect
on Re than Tair at the non-timber forest site (0.71), while Tair was more important at the
forest and cropland sites (0.61 and 0.55).
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Figure 6. Path diagrams illustrating the effects of PAR, SVWC, and Tair on NEE (left panels), GPP
(middle panels), and Re (right panels) in (a) forest, (b) cropland, and (c) non-timber forest sites.
The values on the arrows indicate the path coefficients. The width of the arrows is proportional to
the strength of the path coefficients, and the green and red colors indicate positive and negative
effects, respectively. Data were available from October 2021 to September 2023 for forest and cropland
sites, and from October 2022 to September 2023 for the non-timber forest site. * p < 0.05; ** p < 0.01;
*** p < 0.001.

3.3.2. Responses of Carbon Fluxes to PAR, SVWC and Tair

In this study, the Michaelis–Menten equation (Equation (3)) was used to fit the
relationships between NEE and PAR during the daytime (shortwave incoming global
radiation > 10 W m−2) under different SVWC conditions for different sites (Figure 7). The
results showed that all daytime NEE decreased with increases in PAR, and the rate of
change of daytime NEE decreased with increases in PAR. Furthermore, the effects of PAR
on daytime NEE were also regulated by SVWC. The light response curves of different sites
differed under different SVWC conditions. In general, the values of Amax, ε, and Re of
the light response curves were higher under high SVWC conditions (>29%, 33%, and 26%,
respectively) (Table 3).
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Figure 7. Relationships between daytime NEE and PAR under different SVWC conditions for
the (a) forest, (b) cropland, and (c) non-timber forest sites. Daytime half-hourly NEE data were
averaged at PAR intervals of 60 µmol m−2 s−1. Fitted curves were rectangular hyperbolic based on
Equation (3), and the fitted parameters are shown in Table 2; error bars indicate standard errors. Data
were available from October 2021 to September 2023 for forest and cropland sites and from October
2022 to September 2023 for the non-timber forest site.

Table 3. Fitting parameters, standard errors, and coefficients of determination (R2) of Equation (3) for
forest, cropland, and non-timber forest sites under different SVWC conditions in Figure 7. Significant
differences in a given parameter among the three levels of SVWC are indicated by different letters
(p < 0.05, one-way ANOVA and Tukey’s HSD test).

Sites
ε

(µmol CO2
µmol−1 PAR)

Amax
(µmol CO2
m−2 s−1)

Re
(µmol CO2
m−2 s−1)

R2

Forest
SVWC < 22% 0.0200 ± 0.0002 a 19.96 ± 3.02 a 2.43 ± 1.94 a 0.94

22% < SVWC < 29% 0.0485 ± 0.0125 a 23.80 ± 3.04 a 4.56 ± 2.09 a 0.98
SVWC > 29% 0.0608 ± 0.0307 a 33.41 ± 1.99 b 6.38 ± 0.21 a 0.95

Cropland
SVWC < 27% 0.0091 ± 0.0011 a 10.38 ± 0.39 a 1.77 ± 1.43 a 0.95

27% < SVWC < 33% 0.0258 ± 0.0067 ab 16.48 ± 3.83 a 3.51 ± 1.45 ab 0.88
SVWC > 33% 0.0527 ± 0.0148 b 28.49 ± 3.48 b 6.66 ± 1.02 b 0.97

Non-timber
forest

SVWC < 11% 0.0050 ± 0.0017 a 17.42 ± 2.12 a 0.49 ± 0.38 a 0.98
11% < SVWC < 26% 0.0256 ± 0.0039 ab 15.96 ± 4.18 a 2.57 ± 1.98 ab 0.85

SVWC > 26% 0.0455 ± 0.0163 b 18.50 ± 3.59 a 4.47 ± 0.32 b 0.96

Figure 8 illustrated the relationships between carbon fluxes with daily mean Tair at
different sites. GPP and Re tended to zero when Tair was below 0 ◦C. When Tair < 21 ◦C in
cropland site, GPP and Re increased with increasing Tair; however, when Tair > 21 ◦C, GPP
and Re decreased significantly (p < 0.01) compared to 18 ◦C < Tair < 21 ◦C. Overall, GPP
and Re increased with Tair in forest and non-timber forest sites, and no significant changes
were observed in GPP and Re when T > 21 ◦C.
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Figure 8. Relationships between NEE, GPP, and Re with Tair for the (a1–a3) forest, (b1–b3) cropland,
and (c1–c3) non-timber forest sites. Boxplots represent the 50% distribution percentile, horizontal
lines in the boxes indicate the median, and vertical bars indicate a 99% distribution. Each color
represents an interval in the distribution of Tair. Data were available from October 2021 to September
2023 for forest and cropland sites, and from October 2022 to September 2023 for the non-timber forest
site. ** p < 0.01; *** p < 0.001.

3.4. Total Annual Carbon Fluxes in the Three Ecosystems in the Reshuihe River Watershed

To estimate the regional carbon budget for this small watershed in our study area,
the annual carbon fluxes observed in forest, cropland, and non-timber forest sites were
multiplied by the area of the corresponding land use type to obtain the annual carbon
budget of each ecosystem within the small watershed. The results showed that the annual
carbon uptake in the watershed was −50.3, −1.7, and −0.15 Gg C for forest, cropland, and
non-timber forest ecosystems, respectively. These three ecosystems accounted for 75.4%
of the total area of the watershed, with a total carbon sink of −52.15 Gg C in one year
(Figure 9).
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4. Discussion
4.1. Effects of Environmental Factors on Carbon Fluxes

Ecosystem carbon fluxes are affected to varying degrees by various environmental
factors (e.g., radiation, temperature, and moisture) [17,34,35]. In the Reshuihe River water-
shed, PAR is the most important environmental factor influencing the carbon-sink capacity
of forest, cropland, and non-timber forest ecosystems. Among them, the strong correlation
between NEE and radiation in forest ecosystems has been widely recognized in previous
studies [16,18,36]. Similar results show that PAR is the dominant factor controlling the
variation in daily NEE in cropland ecosystems. This was verified in a wheat–maize rotation
system in the Huaibei Plain of China [37], and a maize field in the arid areas upstream
of the Yellow River Basin [38]. In addition, the carbon-sink capacity of the non-timber
forest ecosystem (Zanthoxylum bungeanum Maxim plantation) in this study area was closely
related to PAR, which is consistent with the light preference of Zanthoxylum bungeanum
Maxim growth [39].

Soil volumetric water content regulates photosynthesis and respiration processes by
affecting plant transpiration and soil respiration [40,41], thus determining carbon cycle. In
different ecosystems of our study area, SVWC is significantly positively correlated with
GPP. The reason for this is that more SVWC enhances the photosynthetic capacity of plants
(Figure 7 and Table 2). Since soil drought inhibits the activities of plant roots and soil
microorganisms, leading to decreased soil respiration [42], more SVWC is beneficial for
reducing drought stress. Moreover, increases in SVWC correspond to smaller NEE values,
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i.e., stronger carbon sinks, suggesting that SVWC promotes GPP more than Re, resulting in
greater carbon absorption than carbon release.

The effects of air temperature on daily NEE were small (Figure 6); however, its effects
on GPP and Re were larger (Figures 6 and 8). In the coniferous forest ecosystems of our
study area, the effect of Tair on the variation of daily NEE was weak (path coefficient was
0.08). However, Fei et al. found through long-term observations in the Yunnan Province,
Southwestern China that temperature had a large effect on the monthly NEP in a subalpine
coniferous forest ecosystem [17]. This discrepancy may be due to the different timescales
used in the analyses. Here, it was found that carbon fluxes in cropland ecosystems in
this study area were more susceptible to high temperatures. On the one hand, higher
temperatures (Tair > 21◦) inhibit GPP in the cropland ecosystem. This phenomenon may be
the result of plants adapting to greater evaporative demands and less soil moisture, where
stomatal conductance is reduced at high temperatures, thus reducing GPP [43]. In addition,
Tair is positively correlated with VPD, leading to a high VPD at high temperatures, and
a high VPD causes GPP to decrease [44,45]. On the other hand, Re increases with Tair in
the appropriate temperature range, but high temperatures (Tair > 21◦) suppress Re in the
cropland ecosystem. Analyzing the effects of high temperatures on respiration is further
complicated by the fact that ecosystem respiration comprises the respiration of plant roots,
stems, and foliage, as well as the heterotrophic respiration of soil microorganisms [46].
Moreover, in the three ecosystems, GPP and Re are suppressed when temperatures are
below 0 ◦C because low temperatures lead to processes such as reduced water and nutrient
uptake, as well as stomatal closure [47], resulting in limited plant production [32,48].

Since the effects of temperature on NEE are relatively small compared to SVWC, we
expect that the carbon sink capacity of forest, cropland, and non-timber forest ecosystems
in the region will decrease in the future against the backdrop of rising temperatures and
decreasing precipitation in Southwestern China [49]. It is important to note that this is only
a preliminary extrapolation, as changes in carbon sinks are also subject to a combination of
seasonality and other factors [17].

4.2. Carbon Flux Variability

In the Reshuihe River watershed, forest, cropland, and non-timber forest ecosystems
serve as significant carbon sinks. The annual carbon sequestration capacity (per unit
area) is in the following order: forest (−592.8, −488.1 gC m−2 a−1) > non-timber forest
(−371.0 gC m−2 a−1) > cropland (−92.5, −71.6 gC m−2 a−1). In terms of seasonal variations,
the factors that control NEE (including PAR, Tair, and SVWC) are more abundant during
the wet seasons, resulting in a significant carbon sink during this period [15,17].

Forest ecosystems make up over 60% of the study area, which is dominated by conif-
erous forests. Compared to coniferous forests in other areas and different types of forests
(such as coastal plain, dry tropical, temperate, and boreal, etc.) (Table 4), the forest in this
study area was found to have a strong carbon sink capacity. This corroborates previous
research that has shown that Southwestern China’s forests are considered to have a strong
carbon sink capacity [1,2]. Additionally, we observed a carbon sink in the forest site every
month for two years. This phenomenon has been found in numerous forest ecosystems
with strong carbon sinks, such as broadleaved forest ecosystems and subalpine coniferous
forest ecosystems in the Yunnan Province, China [17], and evergreen forest ecosystems in
South China [50].
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Table 4. Comparison of carbon fluxes in different forest ecosystems.

Country Area Functional Type Mean Annual
NEE (gC m−2)

Mean Annual
GPP (gC m−2)

Mean Annual Re
(gC m−2) Reference

China Liangshan Subtropical, coniferous
forest −540 1845 1304 This study

China Changbai
Mountain

Temperate, coniferous
forest −169~−187 − - [51]

China Lijiang Cold-temperate,
coniferous forest −405 1392 987 [17]

Finland Hyytiälä Boreal, coniferous forest −206 1,031 826 [52]

Israel Yatir Semi-arid, coniferous
forest −211 830 620 [53]

US Arizona Temperate, coniferous
forest −112 935 844 [54]

US Washington Temperate, coniferous
forest −32 1382 1350 [55]

US North Carolina Coastal plain, coniferous
forest −640 2719 2082 [56]

US Florida Subtropical, coniferous
forest −669 2490 1821 [57]

Netherlands centre Temperate, coniferous
forest −338 1221 1559 [58]

Brazil semiarid lands Dry tropical, deciduous
and semi-deciduous forest −169 415 246 [16]

Brazil Jaru Biological
Reserve

Tropical, broadleaved
forest −450 3413 2963 [59]

Canada Saskatchewan Boreal, broadleaved forest −168 1252 1084 [60]

During the crop growth stage, cropland ecosystems exhibit a rapid increase in GPP
and Re [61]. By comparing the annual NEE of cropland ecosystems in different locations
(Table 5), we found that the carbon sink capacity of cropland in the Reshuihe River water-
shed was relatively weak. This is mainly due to the long fallow period of local cropland
(about 6 months per year), during which carbon release from soil respiration reduces the
annual carbon sink.

Table 5. Comparison of carbon fluxes in different cropland ecosystems.

Country Area Functional
Type

Mean Annual
NEE (gC m−2)

Mean Annual
GPP (gC m−2)

Mean
Annual Re
(gC m−2)

Reference

China Liangshan Potatoes
and maize −82 1437 1354 This study

China Heihe
river basin maize −536 - - [62]

China North
Plain

wheat and
maize −258 - - [63]

Canada Breton secale −89 1242 1153 [25]

US Ponca wheat −155 1395 1240 [64]

US Nebraska maize and
soybean −225 1201 976 [65]

Germany Thuringia wheat −185~−245 - - [66]

Non-timber forest ecosystems have a strong carbon sink capacity. Moreover, the period
of net carbon uptake after harvesting of Zanthoxylum bungeanum Maxim fruits was due to
two main reasons: (1) The growth of Zanthoxylum bungeanum Maxim trees increased carbon
fixation due to sufficient light and moisture, and (2) due to the lack of garden management
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after harvesting, weeds (mainly ragweed) grew rapidly. Weed growth has been widely
discussed as an important source of carbon fluxes in agroecosystems. For example, two
years of observations in cotton fields in Texas, USA, showed that carbon sinks were stronger
in years that were more conducive to weed growth [67]. Chamizo et al. found that the
complete removal of weeds from an olive orchard resulted in a significant reduction in
carbon uptake [68].

Unexpectedly, correlations existed among the changes in daily NEE of the three
ecosystems. This may be due to similar trends in various environmental factors and other
drivers of carbon fluxes within the same watershed. The weak correlation of NEE between
the cropland and non-timber forest sites may be due to the influence of crop harvesting
processes. In summary, studies on carbon sinks in small watersheds are complex due to a
combination of factors.

4.3. Carbon Sink Functions in the Reshuihe River Watershed

The composition of ecosystems in a region is a crucial factor affecting carbon sinks/
sources [13,69]. In the Reshuihe River watershed, forest, cropland, and non-timber for-
est ecosystems accounted for 61.6%, 13.5%, and 0.27% of the total area of the Reshuihe
watershed, respectively. Based on the upscaling method of carbon fluxes from the three
ecosystems, the annual carbon sink of the watershed was −52.15 Gg C a−1. Thus, the
Reshuihe River watershed is a carbon sink. In the Pallas region of northern Finland, Aurela
et al. conducted a similar study in a small watershed of 105 km2 in size (catchment area
of Pallasjärvi) [13]. They calculated the carbon fluxes from four major ecosystems in the
area (61% coniferous forests, 17% lakes, 13% fells, and 5% lakes) by multiplying the annual
fluxes of each ecosystem by the area of the corresponding land cover class and obtained an
annual carbon flux of +5.3 g m−2 a−1 for the region. This suggests that this small watershed
in Finland, which was dominated by forest ecosystems, acts as a source of carbon. This
highlights the importance of using multi-site eddy covariance observations to accurately
determine the carbon sink function of small watersheds.

4.4. Uncertainty in Carbon Sink Estimates

The fragmented land use in Southwestern China increases the difficulty of studying
carbon sinks in small watersheds. In addition to forest, cropland, and non-timber forest,
the remaining land use types in the Reshuihe River watershed consist mainly of grassland
ecosystems (16.6%) and aquatic ecosystems (2.2%), and the carbon fluxes of these two
ecosystems are the main sources of uncertainty in carbon-balance estimations. Previous
studies have shown that subtropical alpine meadow ecosystems in Southwestern China are
carbon sinks [70]. On the other hand, the carbon balance of terrestrial ecosystems could be
affected by the export and emission of different types of carbon through aquatic systems [71].
A study by Zhang et al. in subtropical rivers in Southwestern China showed that rivers
are a source of carbon for the atmosphere (0.032 ± 0.047 Tg C a−1) [72]. Nevertheless, an
analysis by Webb et al. emphasized that aquatic carbon offsets an average of 9% of NEP
in forest ecosystems, and that aquatic carbon was important in ecosystems with small
NEP [73]. In a study on the impact of aquatic carbon on carbon sinks in watersheds, Song
et al. calculated the terrestrial and aquatic carbon fluxes in a 117 km2 watershed dominated
by grassland ecosystems [69]. They found that, despite the presence of aquatic carbon
emissions, the carbon sink function of the region remained unchanged, and the watershed
continued to maintain a net carbon uptake (−27.7 gC m−2 a−1). Based on previous findings
as such, we concluded that carbon uptake by grassland ecosystems and carbon release
by aquatic ecosystems may not have a large impact on the carbon sink function in our
study area.

In addition, for small watersheds that serve as both natural and social units, direct and
indirect management activities may have impacts on ecosystem carbon exchange [74]. In
the Reshuihe River watershed, we observed that forest ecosystems possess a strong capacity
to absorb carbon, but this sink’s sustainability is affected by various factors. For example,
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fires cause direct carbon loss and reduce post-fire carbon sequestration capacity [75], while
deforestation directly weakens ecosystem carbon sinks [74]. Fortunately, the government
has invested significant resources in reducing the incidence of fires and deforestation [76,77],
which has helped to enhance the ecosystem’s ability to fix carbon. Additionally, widely
implemented reforestation policies have compensated for carbon loss through logging and
fires by promoting new growth [78]. Another concern is the age of the trees. The forests
in our study area are currently experiencing rapid growth and development, resulting
in a high capacity for carbon sequestration. Traditional views suggested that as forests
aged, their carbon sink would cease to accumulate carbon [79]. Nevertheless, numerous
studies have demonstrated that old-growth forests remain important carbon sinks [80,81].
In Southwestern China, Shu et al. discovered that subalpine primeval Abies fabri forests
over 150 years old were significant carbon sinks [82], and Fei et al. found through long-term
monitoring that evergreen old-growth forests were still strongly absorbing carbon [17].
Therefore, the Reshuihe River watershed forests are expected to maintain strong net carbon
sequestration for an extended period of time in the future. Similarly, biomass removal
from croplands and non-timber forests may eventually release some of the CO2 back into
atmosphere as it is consumed or decomposed, which may offset some of the observed net
carbon sink [25,61]. This process occurs not only within watersheds, but also outside water-
sheds due to the marketing and distribution of harvested fruits. Therefore, a harmonized
framework should be developed in the future to study the trans-regional transfer of carbon
in detail. In summary, although many management-related events may affect ecosystem
carbon balance, we remain positive that the Reshuihe River watershed acts as a strong
carbon sink because forest ecosystems, which are less affected by management actions, are
the main source of carbon sinks in the small watershed (Figure 9).

5. Conclusions

In this study, we conducted two years of observations of eddy covariance measure-
ments to understand the carbon fluxes from forest, cropland, and non-timber forest ecosys-
tems in the Reshuihe River watershed in Southwestern China. The results showed that all
three ecosystems were annual net carbon sinks during the study period. The forest site
dominated by Pinus yunnanensis exhibited the strongest carbon sink capacity, followed by
the non-timber forest site planted with Zanthoxylum bungeanum Maxim, and the smallest
carbon sinks were found in the cropland site planted with potatoes and maize, with av-
erage annual NEE values of −540.45 ± 52.35, −371.0, and −82.05 ± 10.45 gC m−2 a−1,
respectively.

Path analysis results showed that PAR was the most important influencing factor
controlling changes in daily NEE in all three ecosystems. SVWC and Tair affected NEE by
regulating GPP and Re. Higher SVWC promoted GPP and Re, favoring net carbon uptake.
A significant decrease in GPP and Re was observed in the cropland when Tair was greater
than 21 ◦C, although this did not have a significant effect on NEE.

By multiplying the annual carbon fluxes of the forest, cropland, and non-timber for-
est sites by the areas covered by the corresponding ecosystems, the annual carbon sink
of the Reshuihe River watershed was found to be −52.15 Gg C a−1. This indicates that
the watershed acted as a net carbon sink. Although there are some uncertainties in this
estimate, based on existing research, we believe that these uncertainties are unlikely to
have a significant impact on the carbon sinks of the watershed. Given the current debates
in estimating carbon sinks in Southwestern China using the top-down (atmospheric inver-
sions) approach, our study of upscaled carbon sink estimation in small watersheds using
multi-site eddy covariance observations provides new insights in accurately estimating
carbon balance in such environment.
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