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Abstract: Digital soil mapping (DSM) around the world is mostly conducted in areas with a certain
relief characterized by significant heterogeneities in soil-forming factors. However, lowland areas
(e.g., plains, low-relief areas), prevalently used for agricultural purposes, might also show a certain
variability in soil characteristics. To assess the spatial distribution of soil properties and classes,
accurate soil datasets are a prerequisite to facilitate the effective management of agricultural areas.
This systematic review explores the DSM approaches in lowland areas by compiling and analysing
published articles from 2008 to mid-2023. A total of 67 relevant articles were identified from Web
of Science and Scopus. The study reveals a rising trend in publications, particularly in recent
years, indicative of the growing recognition of DSM’s pivotal role in comprehending soil properties
in lowland ecosystems. Noteworthy knowledge gaps are identified, emphasizing the need for
nuanced exploration of specific environmental variables influencing soil heterogeneity. This review
underscores the dominance of agricultural cropland as a focus, reflecting the intricate relationship
between soil attributes and agricultural productivity in lowlands. Vegetation-related covariates,
relief-related factors, and statistical machine learning models, with random forest at the forefront,
emerge prominently. The study concludes by outlining future research directions, highlighting the
urgency of understanding the intricacies of lowland soil mapping for improved land management,
heightened agricultural productivity, and effective environmental conservation strategies.

Keywords: geostatistical approach; lowland; low relief; machine learning; SCORPAN; soil mapping

1. Introduction

Soil, as the foundation of terrestrial ecosystems, plays a crucial role in supporting
agriculture, biodiversity, and ecosystem services [1]. In the pursuit of sustainable land
management and informed decision-making, accurate soil information in the form of soil
maps is paramount. Traditionally, soil mapping involved labour-intensive field surveys
and manual data collection methods, which often present limitations in terms of spatial
coverage, resolution, and efficiency [2]. However, the digital revolution has transformed
soil mapping practices, paving the way for innovative approaches that harness the power
of technology, data science, and remote sensing [3].

Digital soil mapping (DSM) has revolutionized the field of soil science by combining
traditional soil survey techniques with modern computing technologies [4,5]. DSM creates
and populates spatial soil information systems using field and laboratory observational
methods coupled with spatial and nonspatial soil inference systems [6]. It combines soil
science, geographic information science, quantitative methods, and cartography within a
framework that utilizes environmental data to predict soil classes and properties [7]. In
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recent years, we observe a substantial increase in DSM activities driven by (i) the increasing
demand for quantitative and spatial soil information, (ii) the development of statistical
models and artificial intelligence combined with computer resources to compute and store
these data, and (iii) enormous advances in easily obtainable environmental variable data
for the rapid production of soil class and property maps [5,8].

McBratney et al. [7] formulated the general framework of DSM which was built on
Jenny’s model (S = CLORPT) of soil formation [9], where S is the soil, and the acronym
CLORPT stands for climate, organisms, relief, parent material, and time. CLORPT factors
are soil-forming factors; however, McBratney et al. [7] added the spatial position “n” to
Jenny’s formulation and proposed the SCORPAN model for soil mapping. This updated
equation provides a spatial model to quantitatively express the relationship between a soil
property or class and the environmental variables for a given spatial location. Based on
the first law of geography and soil genesis theory, geostatistical and soil landscape models
have been extensively explored in local, regional, and global DSM.

However, most DSM studies have focused on areas such as high-relief land [10–12],
where terrain and vegetation exhibit certain spatial variations and correlate with soil spatial
patterns. In this rapidly evolving sector of soil science, one specific terrain or landscape
that demands careful consideration is lowland areas. Lowlands, encompassing floodplains,
deltas, and coastal regions, are dynamic and complex landscapes shaped by complicated in-
teractions between land, water, and ecosystems. Lowlands represent extensive, ecologically
sensitive landscapes that are frequently subjected to agricultural activities, urbanization,
and environmental challenges such as flooding and salinity. Accurate soil information in
these areas is vital for optimizing land use, enhancing crop productivity, managing water
resources efficiently, and mitigating environmental impacts.

To the best of the authors’ knowledge, there has not been any literature review on
DSM activities in lowland areas. Therefore, this article provides a comprehensive review of
various advances in DSM approaches specifically for lowland areas. To comprehensively
assess and synthesize the existing body of literature regarding the application of DSM
approaches for soil mapping in lowland areas, we followed a systematic mapping approach
as explained by James et al. [13]. It is intended that this review of the relevant literature
will assist prospective researchers by identifying knowledge gaps in DSM approaches in
lowlands, thereby guiding the path toward more robust and reliable soil information for
improved land management, agricultural productivity, and environmental conservation.
As the nexus of technology and soil science continues to evolve, embracing the potential of
DSM in lowland areas not only enhances our understanding of these ecologically sensitive
landscapes but also empowers policymakers, land managers, and researchers with the
tools needed to make informed decisions for a sustainable future.

2. Soils in Lowland Areas

Soils in lowland or low-relief areas refer to specific types of soil found in low-lying
regions, such as plains, river valleys, former flat glacial, floodplains, coastal plains, and al-
luvial valleys [14]. These areas are typically characterized by flat topography and relatively
shallow topsoil with high bulk density [15]. They are mostly located between higher eleva-
tion regions and bodies of water, making them essential for agriculture, settlement, and
various environmental functions. Soils in lowland areas exhibit distinctive characteristics
that are important for mapping purposes. The key aspects to consider are as follows.

i. Soil Hydrology: Lowland areas tend to have unique drainage patterns because of
their relatively flat topography and proximity to water bodies, such as rivers, lakes, or
coastal regions. Consequently, soils in lowland areas often exhibit distinct hydrological
properties such as low internal drainage and a higher potential for waterlogging [16].
Understanding these characteristics is crucial for mapping purposes, as they help
identify areas prone to flooding, soil moisture variations, and the overall drainage
capacity of the soil.
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ii. Organic Matter Accumulation: Lowland areas often experience high rates of organic
matter accumulation, which often improve the soils’ structure, mitigating the low
drainage and limited oxygen availability. Waterlogging and limited oxygen may
instead be given by the presence of fine textural soils and/or by the presence of
depressional landforms typical of lowlands, and/or by the presence of shallow wa-
ter tables [17]. As a result, these soils have unique properties and fertility profiles.
The proper mapping of the organic matter content in lowland areas is vital for un-
derstanding nutrient cycling, carbon sequestration potential, and sustainable land
management practices.

iii. Sediment Deposition: Lowland areas often serve as deposition sites for sediments
carried by wind and water bodies, such as rivers, during flooding events [17]. These
sediment deposits can lead to variations in the soil composition, specific properties,
and nutrients across the landscape [18]. Mapping these variations helps to characterize
soil formation processes, identify suitable land use practices, and manage erosion
risks in lowland areas.

iv. Peat Soils: Peat soils may be prevalent in certain lowland areas [19]. These soils were
formed through the accumulation of partially decomposed organic matter. Peat soils
have specific properties such as high water-holding capacity, low bulk density, and
acidic pH. Mapping peat soil distribution in lowland areas is crucial for understanding
carbon storage, wetland conservation, and sustainable land-use planning.

v. Soil Salinity and Alkalinity: Some lowland areas, especially those in coastal regions
or near saltwater bodies, may contain soils with elevated salinity or alkalinity lev-
els [20]. These conditions can affect the growth and productivity of the vegetation and
agricultural crops. Mapping the extent of soil salinity and alkalinity in lowland areas
provides valuable information for site-specific soil management, irrigation practices,
and land suitability assessment.

3. Materials and Methods

The systematic approach discussed by James et al. [13] was followed to compile the
relevant information from the existing published papers with the aid of HubMeta software
(https://hubmeta.com/, accessed date 1 August 2023) [21]. This approach involves a
comprehensive process including team establishment, defining scope and questions, setting
inclusion criteria, evidence search, screening, database creation, optional critical appraisal,
findings description and visualization, and report production. In this study, a systematic
search was conducted across two databases, Web of Science (WoS) and Scopus® (Figure 1).
The aim was to identify fully published peer-reviewed journal articles in the English
language that focus on the digital mapping of soil properties/classes in lowland areas. The
two databases were queried using various search expressions built using standard Boolean
operators. The search was without timespan restriction and, hence, covered publications
from the period from 1991 to June 2023. Search strings were selected in such a way that
most papers of our interest would be included. All search expressions were chosen based
on the following defined keywords query for ‘title’ and ‘keywords’ (TOPIC): (“digital soil
mapping” OR “soil mapping” OR “spatial distribution”) AND (“lowland” OR “low-relief”
OR “plain”) AND “soil map”.

The resulting papers were screened based on the criteria for the inclusion of DSM
studies conducted in lowland or low-relief or plain areas. The exclusion criteria were
as follows: (1) duplicates, (2) articles which did not predict soil properties or classes
specifically in lowland areas, and (3) articles which adopted only geostatistical methods of
DSM without considering any environmental covariates (SCORPAN). After applying the
inclusion and exclusion criteria, only the articles whose focus include the mapping of soil
in lowland or plain or low relief areas were targeted for systematic review.

From the selected papers, relevant information from these articles including the
country, year of publication, target variable, land use, number of soil samples, method
of sampling, validation techniques, environmental covariates, sources of environmental

https://hubmeta.com/
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covariates, DSM predictive approach/model, assessment metric, and the objective of the
paper were recorded and presented in tables and appropriate maps to show the knowledge
gaps and clusters in this research area.
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Figure 1. Schematic overview of the screening process applied to the articles examined for this study.

A total of 774 articles were found—641 in Web of Science and 133 in the Scopus
database—using the search expressions (Figure 1). After the duplicate articles were re-
moved, we investigated the remaining 747 articles to select the articles that met our relevant
criteria. A total of 133 articles were selected after conducting title and abstract screening,
and a total of 67 articles were found to meet all our criteria after completing a full text
review of the articles. The collection of the evidence compiled, also known as the systematic
map, is presented in a tabular format in Table 1 also in Supplementary: Table S1.

Table 1. Summary of remaining reviewed published papers on digital soil mapping in lowland/
plains/low-relief areas.

S/N Reference Target Soil
Variables Land Use

Environmental
Covariate

Combinations
[Source]

DSM Models (Best
Model in

Comparison
Studies Bolden)

Assessment
Metric

Combination

Validation
Approach

Traditional statistical approach

1. Yahiaoui et al.
[22] Soil salinity Cropland S [RS, EC], O [RS],

R Step MLR

2. Nawar et al.
[23] Soil salinity Cropland S [SS, RS] PLSR, MARS R2 and RMSE

Independent
validation

3. Cheng-Zhi
et al. [24] SOM Cropland R FSPW, MLR CCC, MAE,

and RMSE
Independent

Validation

4. [25]

Soil salinity
variable (EC),
clay content

and SOM

Cropland S [MRS] PLSR, MARS R2, RMSE, and
RPD

Data splitting

5. Vaudour et al.
[26]

SOC, pH, CEC,
Iron, Clay,
Sand, Silt,

CaCO3

Cropland S [RS], O [RS] PLSR R2, RMSE, and
RPD

K-fold CV

6. Zhang et al.
[27] SOM Cropland S [RS], O [RS] Step MLR R2, RMSE, and

MAE
Data splitting

7. Buscaroli et al.
[28] Trace elements

Croplands,
Urban and

industrial areas
S [WDXRF] PCA, CA
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Table 1. Cont.

S/N Reference Target Soil
Variables Land Use

Environmental
Covariate

Combinations
[Source]

DSM Models (Best
Model in

Comparison
Studies Bolden)

Assessment
Metric

Combination

Validation
Approach

Traditional statistical approach

8. Tang et al. [29] SOM Croplands S, O [MRS] Step-MLR, PLSR R2 and RMSE Data splitting

9. Yu et al. [30] Soil salinity
Croplands,
grasslands,
woodland

S [RS], O [RS, LU],
R PLSR R2, Bias, RMSE K-fold CV

10. Ma et al. [31] SOM
Croplands,
Paddy field,

forest
O [RS] PLSR R2 and RMSE LOOCV

Geospatial and multivariate geostatistics approach

11. Lagacherie
et al. [32] Clay Vineyard S [HRS] Co-kriging, block

co-kriging RMSE K-fold CV

12. Bilgili [33] Soil salinity
variables Croplands R OK, RK, KED, DK RMSE, RI,

Kappa Data splitting

13. Zhao et al. [34] SOM Paddy field O [RS] OK, RK RMSE, MAE,
ME LOOCV

14. Liu et al. [35] SOC Cropland C, O, R OK, SLR MAE, RMSE,
R2 Data splitting

15 Shabou et al.
[36]

Soil texture
class, Clay

Cropland, fruit
trees S [LS], O [MTD] Cokriging RMSE, R2 Independent

validation

16 Walker et al.
[37]

Clay, CaCO2,
EC, Iron, Sand,

Silt, pH
Vineyard S [LS], O [HS] OK, CoKriging

with CED R2 LOOCV

Statistical machine learning approach

17 Barthold et al.
[38]

Soil nutrient: K
and Mg Forest O, R, P CART - K-fold CV

18. Mosleh et al.
[39]

Sand, silt, clay,
EC, CFs, SOC,

pH and CaCO3

Cropland S [LS], C, O [RS], R,
P, A

ANN, BRT, MLR,
GLM RMSE, ME, R2 Data splitting

19. Mosleh et al.
[40]

Soil taxonomy
classes Cropland S [LS], C, O [RS], R,

P, A
RF, MLR, ANN,

BRT

Kappa, OA,
Adjusted

Kappa, Brier
score

Data splitting

20. Pahlavan-Rad
et al. [41] SOC Cropland S, O [RS, LU], R RF RMSE, and

MAE K-fold CV

21.

Pahlavan-Rad
and Akbari-
moghaddam

[42]

Sand, silt, clay,
pH Cropland O [RS], R RF RMSE, MAE,

and ME

Data splitting,
Independent

validation

22. Mirakzehi et al.
[43]

Soil taxonomy
classes Cropland S [RS], R, O [RS] RF Kappa, OA Data splitting,

K-fold CV

23. Jamshidi et al.
[44]

Soil taxonomy
classes

Cropland,
forest,

grassland
O [LU, RS], R, P DSMART OA, CI Independent

validation

24. Zeng et al. [45] Sand, Clay R [LSDF, RS] RF RMSE, MAE LOOCV

25. Donoghue et al.
[46]

pH, Clay, SOM,
other soil
nutrients

CA

26.

Esfandiarpour-
Boroujeni,

Shamsabadi
et al. [47]

Soil taxonomy
class, soil WRB

class
Cropland S [LS, RS], R, P, A DT, LVQ (ANN) PPE Data splitting
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Table 1. Cont.

S/N Reference Target Soil
Variables Land Use

Environmental
Covariate

Combinations
[Source]

DSM Models (Best
Model in

Comparison
Studies Bolden)

Assessment
Metric

Combination

Validation
Approach

Statistical machine learning approach

27. Fathizad et al.
[48]

SOC, EC, HM,
AS

S [RS], O [RS, LU],
R, P RF MAE, RMSE,

and R2 Data splitting

28.

Esfandiarpour-
Boroujeni,
Shahini-

Shamsabadi
et al. [49]

Soil taxonomy
class, soil WRB

class
Cropland S [LS, RS], R, P, A ANN, DT, RF,

SVM OA, CI Data splitting

29. Goldman et al.
[50]

Soil texture
class

Cropland,
forest, Urban

area
S [LS], R RF Kappa, OA, CI Independent

validation

30. Zare et al. [51] ES, clay, sand,
CEC Cropland S SVM CCC LOOCV

31. Parsaie et al.
[52]

Sand, Silt, Clay,
CaCO3, SOC

Cropland,
rangeland O [RS], R Cubist, RF, DT RMSE, MSE,

R2 Data splitting

32. Wang et al.
[53] SOC Cropland S [RS] RF, ANN, SVM,

PLSR RMSE, RPD Data splitting

33. Abedi et al.
[54]

Soil salinity
variables (EC,

SAR)

Cropland,
Orchards S [RS], R

DT, kNN, SVM,
Cubist, RF,

XGBoost

RMSE, MAE,
R2 K-fold CV

34. Nabiollahi et al.
[20]

pH, Soil
salinity

variables (EC,
SAR)

Croplands S [RS], O [LU, RS],
R, P, A RF CCC, MAE,

RMSE K-fold CV

35. Habibi et al.
[55]

Soil salinity
variables (EC) S [RS], O [RS], R ANN MSE, R2 Data splitting

36. Rainford et al.
[56] SOC

Cropland,
rangeland,

forest, Urban
area

C, O [LU], R, P, A RF RMSE, ME Data splitting

37. Zhang et al.
[57] SOM Cropland S [RS], O [RS], R RF, ANN, SVM ME, RMSE, R2 Data splitting

38. Sothe et al. [58] SOC Forest S, C, R, O [RS, SAR] RF RMSE, MAE,
R2 Data splitting

39. Fathizad et al.
[59] SOC Cropland O [RS] RF, SVM, ANN RMSE, MAE,

R2 K-fold CV

40. Zhang et al.
[60] SOC Cropland S [RS], C, O [RS], R,

P
Cubist, XGBoost,

RF RMSE, R2 Independent
validation

41. Luo et al. [61] SOM Cropland O [RS, MTD] RF RMSE, R2 Data splitting

42. Zeng et al. [62] SOM Cropland C, O [RS], R RF, DL
[LSM-ResNet]

CCC, MAE,
ME, RMSE, R2 Data splitting

43. Sorenson et al.
[63] Soil type class Forest S [RS, SAR], O [RS],

R RF Kappa Independent
validation

44. Xu et al. [64] SOC Cropland S [RS], O [RS,
MTD] RF, Cubist, GBM Bias, RMSE, R2 Data splitting

45. Haq et al. [65] Soil texture
class Cropland O [RS] RF, SVM, LMT OA, F1 score K-fold CV

46. Wang et al.
[66] SOM Paddy field S [VNIR], O [VNIR,

LU] RF RMSE, R2 Data splitting

47. Ge et al. [67] Soil salinity
variables Cropland S [RS], O [RS] Cubist, RF, SVM,

XGBoost
RMSE, R2,

MAE
Data splitting



Land 2024, 13, 379 7 of 22

Table 1. Cont.

S/N Reference Target Soil
Variables Land Use

Environmental
Covariate

Combinations
[Source]

DSM Models (Best
Model in

Comparison
Studies Bolden)

Assessment
Metric

Combination

Validation
Approach

Statistical machine learning approach

48. Lotfollahi et al.
[68] CaCO3

Cropland,
rangeland O [RS], R RF, DT RMSE, R2 Data splitting

49. Liu et al. [69] SOC Cropland C, R RF, SVM Bias, RMSE, R2 K-fold CV

50. Adeniyi et al.
[70]

Sand, Silt, Clay,
pH, SOC,

topsoil depth

Cropland,
paddy field O [LU], R Cubist, GBM, GLM,

RF, SVM, EL CCC, RMSE nestedCV

51. Dasgupta et al.
[71]

Soil
micronutrients Cropland S [RS], C, O [RS], R

EL, SVM, Cubist,
RF, QRF, rpart,

Rpart2, XGBoost,
extraTrees, XCG,
glmStepAIC, C
LASSO, MARS

CCC, RMSE,
MAPE Data splitting

Hybrid model approach

52. Mousavi et al.
[72]

CaCO3, Silt,
Clay, pH, SOC,

Sand
Cropland R, O [RS] RF-RK Bias, CCC,

RMSE, R2 Data splitting

53. Kumar et al.
[73] SOC Forest O [RS], R RK (MLR-OK) RMSE, ME Data splitting

Multi-approach methods

54. Maino et al.
[74]

Soil texture
(Sand, Silt and

Clay)
Cropland S, P [Radiometric

Data] Step-MLR, NLML R2 Data splitting

55. Lamichhane
et al. [75] SOC Cropland S [LS], C, O [LU,

RS], R, P, A, N RK, RF CCC, ME,
RMSE, R2 Data splitting

56. Zhang et al.
[76] SOC Cropland,

forest O [RS] Step-MLR, PLSR,
ANN, OK, SVM RMSE, R2 Data splitting

57. Guo et al. [77] SOC, SBD Cropland O [HRS, RS] ELM, PLSR RPIQ, RMSE,
R2 Data splitting

58. Kaya et al. [78] SOC, Soil
nutrient (P)

Cropland,
Orchards S, C, O [RS], R, P Cubist, RF, RF-RK,

Cubist-RK

NRMSE,
RMSE, MAPE,

CCC
Data splitting

59 Kaya et al. [79] Soil salinity
variable [EC] Cropland O [RS, LU], R, P RF, SVM, RF-RK,

SVM-RK
NRMSE,

RMSE, CCC Data splitting

60. Rahmani et al.
[80] SOM, CEC Cropland R UK, Cubist, RF ME, CCC,

RMSE, R2 Data splitting

61. Wu et al. [81] SOC

Cropland,
Paddy field,
grassland,
woodland

S, C, O [LU, RS], R Cubist, OK, RF,
Step-MLR

MAE, CCC,
RMSE, R2 Data splitting

62. Yan et al. [82] SOM Cropland S [HRS] OK, RF RPD, RMSE,
R2

Independent
validation

63. Chagas et al.
[83] Sand, silt, Clay O [RS] MLR, RF RMSE, R2 Data splitting

64. Samarkhanov
et al. [84]

Soil salinity
variable [EC] Cropland S [RS], O [RS] KNN, MLR, PLSR RMSE, R2 Data splitting

65. Shahrayini &
Noroozi, [85]

Soil salinity
variable [EC,

SAR]

Cropland,
rangeland R, O [RS] Step-MLR, RF RMSE, R2 Data splitting
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Table 1. Cont.

S/N Reference Target Soil
Variables Land Use

Environmental
Covariate

Combinations
[Source]

DSM Models (Best
Model in

Comparison
Studies Bolden)

Assessment
Metric

Combination

Validation
Approach

Multi-approach methods

66. Huang et al.
[86] EC, pH Cropland,

rangeland R [PS] Fuzzy k-means RMSE, ME

67. Huang et al.
[87] EC, pH Cropland,

rangeland R, N MLR, REML, OK MSE

The best performing models in each study were bolden. Description of properties. Target soil variables: electrical
conductivity (EC), sodium absorption ratio (SAR), soil organic carbon (SOC), soil organic matter (SOM), phos-
phorus (P), soil bulk density (SBD), coastal acid sulphate soils (CASS), calcium carbonate (CaCO3), cations and
cation exchange capacity (CEC), total nitrogen (TN), coarse fragments (CF), heavy metals (HM). Environmental
covariates: soil (S), climate (C), organisms (O), relief (R), and parent material (P), age (A), and easting and northing
coordinates/position (N). Sources: legacy soil map (LS), land use (LU), land surface dynamic feedback (LSDF),
hyperspectral remote sensing data (HRS), multispectral remote sensing (MRS), near-infrared spectroscopy (NIR),
remote sensing (RS), synthetic aperture radar (SAR), visible/near-infrared spectroscopy (VNIR), wavelength dis-
persive X-ray fluorescence (WDXRF), moderate resolution imaging spectroradiometer (MODIS) Terra MOD09A1.
Evaluation metrics: coefficient of determination (R2), concordance correlation coefficient (CCC), mean absolute
error (MAE), root mean squared error (RMSE), overall accuracy (OA), and Kappa index. DSM models: artificial
neural network (ANN), boosted regression trees (BRT), clustering analysis (CA), classification and regression trees
(CART), decision trees (DT), deep learning (DL), disaggregation and harmonisation of soil map units through
resampled classification trees (DSMART), extreme learning machine (ELM), ensemble learning (EL), extremely
randomized trees (extraTrees) least absolute shrinkage and selection separator (LASSO), linear regression with
stepwise selection (leapSeq), K-nearest neighbours (KNN), partial least squares regression (PLSR), multivariate
adaptive regression splines (MARS), multiple linear regression (MLR), principal component analysis (PCA),
recursive partitioning and regression trees (rpart), support vector machines (SVM), OK, LSM-ResNet, residual
maximum likelihood (REML), quantile regression forest (QRF), random forest (RF), extreme gradient boosting
(XGBoost), and Gblinear booster (XGB).

4. Results and Discussion
4.1. Emergence of Interest and Growing Importance

Figure 2 exhibits the trend of the number of articles that focused on DSM in lowland
areas. The distribution of selected articles according to the year of publication showed a
consistent upward trend from 2013 to 2022, with the highest number of 16 articles in 2022
and 11 articles published by mid-year 2023.
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The temporal trend analysis of the selected articles demonstrated a growing interest
in the application of soil mapping approaches in lowland areas over the past two decades.
It also indicates the growing recognition of the need for accurate soil characterization
in these environments. Lowland areas are characterized by ecological sensitivity and
challenges related to flooding, salinity, and agricultural productivity. The rising interest
in DSM underscores the importance of understanding soil properties and their spatial
variations in addressing these multifaceted challenges. Moreover, the recent availability of
high-resolution satellite data has contributed to the surge in DSM studies in lowland areas.
For example, until 2014, the global coverage of the SRTM DEM was at a 90 m resolution,
but since then, a 30 m version of the same elevation model was released worldwide.

Figure 3 displays the geographical distribution of the number of articles published
over the period of this study. Out of 67 articles, the study areas of 22 articles were in China,
followed by 18 in Iran, and 5 in the USA. Smaller proportions of articles were distributed
across France, India, Italy, Canada, Brazil, Egypt, Turkey, Algeria, and Tunisia, indicating a
global interest in lowland DSM.
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4.2. Dominant Land Use Categories

Figure 4 shows the common land use of the study areas where the DSM approach
has been used for soil mapping in lowland areas from the published articles. Land use
distribution within the selected articles demonstrated a varied focus. Agricultural cropland
constituted the highest proportion, appearing in 62% of the total articles. The emphasis on
DSM within cropland areas signifies the recognition of the intimate relationship between
soil attributes and agricultural productivity. Accurate soil mapping in croplands aids in
optimizing irrigation, fertilizer application, and crop selection, thereby contributing to effi-
cient resource utilization and yield enhancement. In addition, the focus on woodland/tree
areas (14% of the total articles) reflects the interest in understanding soil dynamics within
these ecologically sensitive areas. DSM within woodland lowland areas helps in assessing
soil erosion risks, determining soil nutrient availability for plant growth, and guiding forest
management practices. This knowledge is vital for maintaining the ecological integrity of
forest ecosystems and promoting sustainable forestry practices.
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4.3. Targeted Soil Variables in Lowland Areas

Figure 5 represent frequency of predicted variables in different DSM articles in lowland
areas. A total of 46% of the articles focused on predicting a single target soil variable and
the corresponding digital soil map. This approach may reflect a pragmatic strategy to
address specific soil-related challenges, e.g., SOC stock, soil salinity, etc. On the other
hand, 38 out of the 67 articles (54%) aimed to predict multiple target soil variables and
generate comprehensive digital soil maps. This emphasis on multifaceted soil variables
signifies the increasing recognition of the interconnectivity between different soil attributes
and the importance of capturing this complexity in mapping efforts. A total of 21% of the
articles focused on mapping SOC-related properties such as SOC density, SOC stock, etc.
Among the studied articles, SOC stood out as the most extensively studied variable. This
prominence likely stems from the crucial role of SOC in determining soil fertility, carbon
sequestration potential, and overall soil health [88,89]. Additionally, SOC content as well
as SOM (which was 13% of the articles) can be a key indicator of land use sustainability
and climate change mitigation strategies [90]. Similarly, the attention given to the mapping
of sand, silt, and clay contents (14% of the articles) reflects the significance of soil texture in
determining soil structure, water-holding capacity, and nutrient retention. Notably, soil
salinity variables (15% of the articles) such as EC and SAR are also addressed, indicating
the importance of understanding soil salt concentrations in lowland areas, where salinity
can significantly impact plant growth, land use and land degradation [91–93]. Nutrient
mapping, encompassing both macro and micronutrients, constitutes only 6% of the studies.
Given the critical role of nutrients in agricultural productivity and ecosystem functioning,
this presents an avenue for future research to investigate nutrient dynamics in lowland soils.
Similarly, the limited attention (8%) directed towards soil class mapping, encompassing soil
texture and taxonomy classifications, underscores an opportunity to more deeply explore
the characterization of soil types within lowland environments. Accurate soil class mapping
aids in informed decision-making related to agriculture, environmental conservation, and
urban development.
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4.4. Environmental Covariates for DSM in Lowland Areas

Relevant environmental covariates can improve the accuracy of DSM [7]. The legacy
soil maps, climatic data, digital elevation models (DEM), geology maps, remote sensing
products, land use map, and geomorphological maps have been used as sources of environ-
mental covariates (SCORPAN factors) in DSM activities in lowland areas are presented in
Table 1. Figure 6 shows the frequency of the SCORPAN factors as covariates to predict a
soil property or class in all the selected articles.

Land 2024, 13, x FOR PEER REVIEW 11 of 23 
 

ecosystem functioning, this presents an avenue for future research to investigate nutrient 
dynamics in lowland soils. Similarly, the limited attention (8%) directed towards soil class 
mapping, encompassing soil texture and taxonomy classifications, underscores an oppor-
tunity to more deeply explore the characterization of soil types within lowland environ-
ments. Accurate soil class mapping aids in informed decision-making related to agricul-
ture, environmental conservation, and urban development. 

 
Figure 5. Percentage of targeted variables in the articles reviewed. 

4.4. Environmental Covariates for DSM in Lowland Areas 
Relevant environmental covariates can improve the accuracy of DSM [7]. The legacy 

soil maps, climatic data, digital elevation models (DEM), geology maps, remote sensing 
products, land use map, and geomorphological maps have been used as sources of envi-
ronmental covariates (SCORPAN factors) in DSM activities in lowland areas are presented 
in Table 1. Figure 6 shows the frequency of the SCORPAN factors as covariates to predict 
a soil property or class in all the selected articles. 

 
Figure 6. Percentage of environmental covariates in the articles reviewed. Figure 6. Percentage of environmental covariates in the articles reviewed.

Among the studied articles, the organism-related covariates (O) stood out to be the
most extensively used (33% of the articles). This underscores the role of vegetation in
shaping soil characteristics. Lowland areas are mostly agricultural areas. Agricultural
practices such as tillage and other human interference weaken the relationship between
vegetation and soil conditions [34,94]. Mapping soils in lowland areas presents specific
challenges, owing to the unique characteristics of these landscapes. However, this review



Land 2024, 13, 379 12 of 22

study shows that vegetative spectral indices such as normalized differential vegetative
index, enhanced vegetative index, soil adjusted vegetative index, etc., derived from remote
sensing imagery such as Landsat 8 or Sentinel 2, are powerful covariates in mapping soils
in lowland areas. Vegetative spectral indices and reflectance band data provide insights
into land cover and vegetation health. Also, land use maps were considered as a good
source of human interference information in lowland areas [70]. In farm-scale mapping,
existing land use practices emerge as a significant governing element [95]. These covariates
are valuable for understanding how plant communities impact soil properties through
factors like root structure, nutrient cycling, and organic matter input in lowland areas.

The integration of relief-related covariates (R) demonstrates the importance of topog-
raphy in influencing soil distribution and properties. It was used in 28% of the articles.
Terrain attributes derived from digital elevation models (DEM) offer terrain information.
The terrain attributes include elevation, the multi-resolution index of valley bottom flatness,
the multi-resolution index of ridge top flatness, wetness index, mass balance index, the
slope length and steepness factor of universal soil loss equation, mid-slope position, terrain
ruggedness index, valley depth, vertical distance to channel network, etc. These indices
are crucial for understanding soil erosion potential, water drainage patterns, and the ac-
cumulation of organic material in different landscape positions [96]. Cheng-Zhi et al. [24]
proposed a technique for calculating fuzzy slope positions by assessing their similarity to
standard slope positions. They employed this method in the digital mapping of soil organic
carbon (SOC) content. Their research demonstrated improved mapping accuracy using the
fuzzy slope position variable, coupled with a restricted set of soil samples, when compared
to the utilization of conventional terrain parameters along with additional soil samples.

The soil-related covariates (S) (14% of the articles) indicate a strong interest in utilizing
soil spectral information from remote sensing as well as proximal sensing techniques like
soil spectrometers and existing soil maps (legacy soil maps) in lowland areas. Soil spectral
indices and reflectance data enable researchers to capture the unique spectral signatures of
soil characteristics. Soil spectral indices include, among others, bare soil index, brightness
index, normalized difference soil index, etc. This approach is particularly effective for
estimating soil attributes like organic matter content, mineral composition, and soil salinity
variables. Some of the commonly extracted environmental covariates from legacy soil
maps include soil type, group, texture, landform, drainage, and physiography. However, it
is essential to consider the spatial scale and cartographic scope of the existing soil maps
before employing them for DSM [97].

Furthermore, climate-related covariates which focus on climatic factors were found
in 8% of the reviewed articles. These covariates were recognized for their significance in
shaping soil properties, especially in lowlands with diverse climatic conditions [35,49,62].
They play a critical role in assessing soil resilience to climate change and its implications
for sustainable land use and agriculture. Parent-related covariates constituted 10% of
the articles and encompassed factors related to soil’s geological and pedological history,
including parent material composition. Their limited use might be due to the perception
that lowland areas often have uniform parent material, although exceptions exist in regions
with complex geological histories. Age-related covariates, accounting for 5% of the articles,
include factors related to soil development and age. While their usage was relatively limited,
they offer valuable insights into soil dynamics, particularly in lowlands with dynamic
histories of sediment deposition and landscape evolution. Lastly, position-related covariates
(N), present in 1% of the articles, represent the spatial positioning of soil sampling points
within lowland landscapes. Despite their infrequent use, these covariates provide essential
information even in apparently uniform lowland environments, as microtopographic
variations can impact soil attributes when combined with other landscape factors [75,87].
The study highlights the importance of tailoring covariate selection to specific research
objectives and the complexities of the lowland landscapes, emphasizing their role in
enhancing the accuracy of DSM in these critical regions.
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Across various studies, the importance of variables in the DSM of lowland areas
varies, reflecting the diversity of landscapes and the specific focus of each study. Terrain
attributes such as channel network base level, valley depth, vertical distance to channel
network, etc. consistently emerge as influential factors (Figure 7). For instance, in studies
by Mosleh et al. [39,40] and Jamshidi et al. [44] terrain attributes were highlighted as the
main predictors for soil properties and classes. Distance from rivers, often associated
with topographic features, appeared critical in studies by Pahlavan-Rad et al. [41,42] and
Mirakzehi et al. [43]. Additionally, spectral indices derived from remote sensing data (RS),
such as NDVI, SAVI, and band information, frequently featured prominently, as seen in
studies by Kumar et al. [73], Abedi et al. [54] and Parsaie et al. [52]. The results underline
the significance of both terrain attributes and remote sensing data in understanding soil
variability in lowland areas. To enhance DSM accuracies, incorporating a combination of
terrain attributes and remote sensing data proves beneficial. Combining the strengths of
both types of variables can provide a comprehensive understanding of soil distribution in
lowland areas.
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4.5. DSM Approaches in Lowland Areas

The successful implementation of DSM approaches in lowland areas requires a ju-
dicious selection of methodologies that account for the unique characteristics of these
landscapes. Leveraging the power of technology and data science, modern DSM techniques
offer the potential to overcome traditional limitations, enhance accuracy, and enable a
broader spatial coverage. The approaches commonly employed in DSM can be generalized
as belonging to four broad categories: (1) traditional statistical approaches [96] such as
MLR, PLSR, etc.; (2) geospatial and multivariate geostatistical approaches such as cok-
riging, block kriging, OK, etc.; (3) statistical machine learning (ML) approaches such as
RF, SVM, Cubist (Cu), DT, DL, etc.; and (4) hybrid model approaches such as RK, RFRK,
etc. [95,98]. A total of 50% of the articles use only statistical ML approaches in their studies,
14% use traditional statical approaches, 13% use geospatial and multivariate geostatistical
approaches, 3% use hybrid approaches, and 20% of the articles use all the approaches for
their comparison studies.

Figure 8 displays the variety of DSM techniques utilized in the articles. RF was the
most frequently used model, with 37 articles in the context of DSM in lowland areas. This
was followed by cubist and DT models at 16. The diversity of predictive models used
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underscores the complexity of soil systems and the importance of selecting appropriate
models for accurate predictions.
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Figure 8 also incorporates the number of articles that assessed different predictive
algorithms, alongside the number of articles in which these algorithms demonstrated
superior performance compared to others. This evaluation was grounded in the RMSE and
error metrics, as indicated by the articles, employing data partitioning, cross-validation,
and independent validation techniques. In most of the multi-approach comparative studies,
statistical machine learning approaches often outperform other methods. However, in
refs. [72,78,79], hybrid techniques which incorporate kriging of ML model residuals [99,100]
were found to outperform ordinary ML models. The emerging role of hybrid models that
combine geostatistical and ML approaches leverage the strengths of both methodologies,
enhancing accuracy and prediction performance. This emphasizes the potential of hybrid
models to capture spatial autocorrelation while benefiting from the predictive power of
machine learning [101].

The diversity of DSM approaches employed, as depicted in Table 1 and Figure 5, is
indicative of the multifaceted nature of soil systems and the recognition that no single
model can effectively capture all variations. Altogether, RF emerges as the most frequently
used model, indicating its adaptability and versatility in predicting soil properties across
various landscapes. A total of 23 comparative studies compare the performance of RF
with others. RF outperformed other predictive models in 16 of them. Cubist/DT models
were the second most common models used in DSM in lowland areas, and 5 out of 15
comparative studies concluded that they are better than other models. MLR and SVM were
used in at least 10 reviewed articles and other models outperformed them in all. Deep
learning (DL) models are promising models that were used by 2 articles and performed
comparatively better than another model in all. Other commonly used and promising
models were RK, MARS which were used by at least 3 articles reviewed and performed
comparatively better than other model in at least two studies.

The application of various algorithms, known as predictive models, is central to estab-
lishing quantitative relationships between input predictors (environmental covariates) and
target soil variables. This process involves modelling a training dataset to regression and/or
classification procedures [102]. In DSM, the utilization of high-level computer-based pro-
gramming languages like R and Python has become prevalent for implementing diverse
ML models. An increasingly prominent subset of ML algorithms in recent years is tree
models [102]. Among these, CART serves as the basic form, constructing a tree-based struc-
ture of predictor variables for decision-making purposes. A more sophisticated iteration of
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CART is the RF, which generates multiple decision trees from input variables instead of a
single tree. The final decision results from an ensemble of these trees [102]. RF stands out for
its capacity to handle sizable datasets, accommodate various data types, capture non-linear
relationships, and process computations more swiftly [103]. The landscape of tree-based
models is further enriched by options like BRT and cubist. Additionally, an extended form
of the RF model, QRF, has found adoption in DSM studies in lowland areas (Table 1). ANN
is another robust ML method for DSM in lowland areas. This technique involves three
layers of neurons: input neurons (predictors), hidden neurons, and output neurons (target
variable). ANN excels in establishing intricate non-linear relationships among covariates
and handling complex datasets [103]. The progression of ANN techniques has given rise
to deep learning (DL), an advanced iteration of neural networks, increasingly applied in
recent DSM efforts in lowland areas. Additionally, ensemble methods have gained traction,
involving the amalgamation of predictions from multiple ML models to produce a more
accurate singular prediction. This ensemble approach has been growing in prominence in
DSM applications in lowland areas [54,70,71].

4.6. Evaluation of DSM Approaches

Figure 9 displays evaluation (validation) techniques used in assessing the level of the
map accuracy. This review identifies that 58% of DSM studies in lowland areas adopted a
data splitting technique for model evaluation. Cross-validation and independent validation
methods were adopted in 28% and 14% of the articles, respectively. Ref. [95] outlined
three distinct evaluation approaches: cross-validation, data splitting, and independent
validation. The data splitting technique involves partitioning the input dataset into training
and testing subsets. These subsets are then employed for model calibration and validation,
respectively. Cross-validation (CV) encompasses omitting either one observed value (leave-
one-out method) or a subset of values (K-fold CV method) or looping an inner and an
outer subset of values (nested CV) [104]. The remaining data are utilized to train the
model for predicting the omitted values, serving as an evaluation measure. Independent
validation necessitates the collection of additional samples through independent sampling
for dedicated evaluation. In each of these approaches, the congruence between predicted
and observed values is measured using appropriate metrics to gauge prediction accuracy.
Nevertheless, the data-splitting technique is categorized as an internal assessment method,
except when samples are acquired through a probability sampling approach [105].
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Evaluation metrics like R2, CCC, MAE, and RMSE are commonly employed for soil
continuous properties. These accuracy measures can fluctuate based on factors such as soil
properties, depths, sample sizes, prediction models, and mapping approaches. Meanwhile,
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metrics like OA and the Kappa index are commonly employed to evaluate soil classification
such as soil taxonomy, soil texture, etc. Hence, effective strategies must be devised to
enhance the precision of soil mapping predictions.

5. General Discussion and Outlook

In lowland areas, it might be tempting to assume that the soil properties remain
uniform across the landscape. However, this assumption overlooks the fact that even
in seemingly homogeneous terrains, there can be intricate variations in soil classes and
properties, and these variations can manifest at various scales [106]. At a fine scale, which
refers to relatively small and localized areas, variations can emerge due to a range of
factors. For instance, micro-depressions in the landscape can collect and retain water differ-
ently than surrounding areas, leading to variations in soil moisture and properties [107].
Similarly, sediment deposition in particular spots, often associated with water bodies,
can result in unique soil characteristics [108]. Hydrological processes, such as seasonal
flooding or changes in groundwater levels, can also influence soil properties in specific
locations [109–111]. These fine-scale variations, although they might appear minor in
the broader context of lowland landscapes, are essential to consider when mapping and
characterizing lowland soils accurately. Neglecting them could lead to oversimplified
soil maps that fail to capture the subtleties of soil properties. Therefore, recognizing and
accounting for these small-scale variations is essential for comprehensive and reliable DSM
in lowland areas.

However, this systematic review has shed light on the evolution and current state of
DSM in lowland areas. The growing interest in this field reflects the recognition of the
crucial role that soil properties and classes play in lowland ecosystems and their impact
on various land use practices. The number of identified articles (67 articles) suggests
a relatively modest literature base, highlighting potential research gaps. Additionally,
there are geographical biases, potentially limiting the generalisability of findings. Some
land use categories remain underrepresented, indicating a need for more diverse studies.
Also, the observed recent increase in publications on DSM in lowlands could be attributed
to the latest advancements in producing high resolution DEMs. The vertical accuracy
of DEMs, which provide crucial information for soil mapping, has only recently seen
significant improvements with new products like LIDAR-based techniques or satellite-
based information such as TerraSAR-X [112,113]. In lowlands, where elevation gradients
are often quite small, these new DEM products provide a higher vertical resolution that can
capture the subtle variations in elevation [114,115], which was a significant challenge in
the past. With these finer-resolution DEMs, it was possible to represent the topography of
lowland regions more accurately, leading to significantly improved soil mapping outcomes.

Furthermore, the existing literature on DSM in lowland areas reveals a significant
knowledge gap concerning the nuanced role of specific environmental variables that could
enhance mapping accuracy. While various studies highlight the importance of relief-
related covariates derived from DEM (terrain attributes) and organism-related and soil
information delineated from the spectral indices of remote sensing sensors, the precise
identification and exploration of certain environmental covariates within these categories
remain underexplored. The variability in lowland landscapes, influenced by factors such
as micro-depressions, sediment deposition, and hydrological processes, suggests that there
might be unique environmental variables contributing to soil heterogeneity. Understanding
and incorporating these specific variables into DSM models is crucial for a more compre-
hensive and accurate mapping of soil properties in lowland areas, ultimately addressing
the intricacies of these dynamic landscapes. Addressing these knowledge gaps holds the
key to advancing the precision of DSM, facilitating improved land management, enhanc-
ing agricultural productivity, and contributing to effective environmental conservation
strategies in lowland areas. Also, the adoption of various DSM approaches, especially
random forest machine learning model and emerging deep learning techniques, reflects the
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advancement of technology and data science in addressing soil variability challenges in
recent decades.

The findings of this review suggest several avenues for future research. First, there
is a need to further investigate the relationship between soil properties and land use
practices, particularly in heterogeneous lowland landscapes. This is essential for sustainable
agriculture, climate resilience, biodiversity conservation, and urban planning, ensuring a
balance between human demands and environmental stewardship. Second, researchers
should explore hybrid models that integrate geostatistical and machine learning techniques,
including advanced approaches like deep learning, to enhance predictive accuracy in
lowland ecosystems due to their inherent complexity. The complexity of spatial and
temporal variations in these ecosystems can challenge traditional geostatistical models, but
machine learning methods, capable of unveiling intricate patterns in both extensive and
limited data, have the potential to enhance predictive accuracy [5,103], and support more
informed ecological management choices in lowland areas. Additionally, further research is
needed to comprehensively investigate how variations in data acquisition, model selection,
and covariate choice may affect the accuracy and applicability of DSM, especially when
transitioning from lowland areas to highlands or hilly areas with clear drainage patterns.

6. Conclusions

This systematic review focused on the dynamic landscape of digital soil mapping in
lowland areas, shedding light on the current state, trends, and knowledge gaps within
this field. Employing a comprehensive systematic approach, the study identified and
analysed 67 relevant articles published between 2008 and June 2023. The emerging trend of
increasing publications, particularly in recent years, underscores the growing recognition
of the pivotal role DSM plays in understanding soil properties in lowland ecosystems.
The identified knowledge gaps highlight the need for a nuanced exploration of specific
environmental variables influencing soil heterogeneity in lowlands. While relief-related
covariates, organism-related factors, and soil information from spectral indices have been
recognized, the precise identification and exploration of unique environmental variables
contributing to soil variability remain underexplored. The systematic map presented in
Table 1 provides a structured compilation of key information from the selected articles,
offering valuable insights into the distribution of studies across countries, land use cate-
gories, targeted soil variables, and employed DSM approaches. The observed dominance
of agricultural cropland as the primary focus of DSM studies in lowlands reflects the inti-
mate relationship between soil attributes and agricultural productivity. The significance of
predicting multiple target soil variables, especially soil organic carbon, soil salinity, and soil
texture, underscores the recognition of the interconnectedness of different soil attributes in
lowland ecosystems. The extensive use of vegetation-related covariates emphasizes the
pivotal role of vegetation in shaping soil characteristics in these areas. Furthermore, the
incorporation of relief-related covariates, including terrain attributes derived from digital
elevation models, highlights the importance of topography in influencing soil distribution
and properties. The systematic evaluation of DSM approaches reveals the prevalence of
statistical machine learning models, with random forest emerging as the most frequently
used model, indicating its versatility in predicting soil properties across diverse lowland
landscapes. This study emphasizes the significance of tailoring DSM approaches to the
unique challenges posed by lowland areas, including limited soil samples, low topographic
variability, and challenges associated with the scale and resolution of covariates. While
data splitting is the most widely adopted technique, this study highlights the need for
consistent evaluation metrics, considering variations in soil properties, depths, sample
sizes, prediction models, and mapping approaches. Looking ahead, this systematic review
suggests several avenues for future research. There is a pressing need to look deeper
into the relationship between soil properties and land use practices, particularly in het-
erogeneous lowland landscapes. Exploring hybrid models that integrate geostatistical
and machine learning techniques, including advanced approaches like deep learning, can
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enhance predictive accuracy in the face of the inherent complexity of lowland ecosystems.
Additionally, a more comprehensive investigation into the variations in data acquisition,
model selection, and covariate choice is crucial for advancing the accuracy and applicability
of DSM, especially during transitions from lowland to highland areas or areas with distinct
drainage patterns. Addressing these research gaps holds the key to advancing the precision
of DSM, facilitating improved land management, enhancing agricultural productivity, and
contributing to effective environmental conservation strategies in lowland areas.
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79. Kaya, F.; Schillaci, C.; Keshavarzi, A.; Başayiğit, L. Predictive Mapping of Electrical Conductivity and Assessment of Soil Salinity
in a Western Türkiye Alluvial Plain. Land 2022, 11, 2148. [CrossRef]

80. Rahmani, S.R.; Ackerson, J.P.; Schulze, D.; Adhikari, K.; Libohova, Z. Digital Mapping of Soil Organic Matter and Cation Exchange
Capacity in a Low Relief Landscape Using LiDAR Data. Agronomy 2022, 12, 1338. [CrossRef]

81. Wu, Z.; Chen, Y.; Yang, Z.; Zhu, Y.; Han, Y. Mapping Soil Organic Carbon in Low-Relief Farmlands Based on Stratified
Heterogeneous Relationship. Remote Sens. 2022, 14, 3575. [CrossRef]

82. Yan, Y.; Yang, J.; Li, B.; Qin, C.; Ji, W.; Xu, Y.; Huang, Y. High-Resolution Mapping of Soil Organic Matter at the Field Scale Using
UAV Hyperspectral Images with a Small Calibration Dataset. Remote Sens. 2023, 15, 1433. [CrossRef]

83. Chagas, C.d.S.; Junior, W.d.C.; Bhering, S.B.; Filho, B.C. Spatial prediction of soil surface texture in a semiarid region using
random forest and multiple linear regressions. CATENA 2016, 139, 232–240. [CrossRef]

84. Samarkhanov, K.; Abuduwaili, J.; Samat, A.; Ge, Y.; Liu, W.; Ma, L.; Smanov, Z.; Adamin, G.; Yershibul, A.; Sadykov, Z.
Dimensionality-Transformed Remote Sensing Data Application to Map Soil Salinization at Lowlands of the Syr Darya River.
Sustainability 2022, 14, 16696. [CrossRef]

85. Shahrayini, E.; Noroozi, A.A. Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic
Factors: A Case Study in Iran. Environ. Model. Assess. 2022, 27, 901–913. [CrossRef]

86. Huang, J.; Nhan, T.; Wong, V.N.L.; Johnston, S.G.; Lark, R.M.; Triantafilis, J. Digital soil mapping of a coastal acid sulfate soil
landscape. Soil Res. 2014, 52, 327–339. [CrossRef]

87. Huang, J.; Wong, V.N.L.; Triantafilis, J. Mapping soil salinity and pH across an estuarine and alluvial plain using electromagnetic
and digital elevation model data. Soil Use Manag. 2014, 30, 394–402. [CrossRef]

88. Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [CrossRef]
89. Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder,

P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [CrossRef]
90. Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to

United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [CrossRef]
91. Thiam, S.; Villamor, G.B.; Faye, L.C.; Sène, J.H.B.; Diwediga, B.; Kyei-Baffour, N. Monitoring land use and soil salinity changes in

coastal landscape: A case study from Senegal. Environ. Monit. Assess. 2021, 193, 259. [CrossRef] [PubMed]
92. Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate

Soil Salinization. Horticulturae 2017, 3, 30. [CrossRef]
93. Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for

its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [CrossRef] [PubMed]
94. Zhu, A.-X.; Liu, F.; Li, B.; Pei, T.; Qin, C.; Liu, G.; Wang, Y.; Chen, Y.; Ma, X.; Qi, F.; et al. Differentiation of Soil Conditions over

Low Relief Areas Using Feedback Dynamic Patterns. Soil Sci. Soc. Am. J. 2010, 74, 861–869. [CrossRef]
95. Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbonl. Adv. Agron. 2013, 118, 1–47. [CrossRef]

https://doi.org/10.1007/s10661-023-11126-8
https://doi.org/10.3390/land12071344
https://doi.org/10.3390/land12020494
https://doi.org/10.1016/j.geoderma.2023.116457
https://doi.org/10.1007/s12665-023-10919-x
https://doi.org/10.1007/s12524-017-0738-y
https://doi.org/10.3390/rs14153814
https://doi.org/10.1016/j.catena.2021.105299
https://doi.org/10.3390/rs11141683
https://doi.org/10.1016/j.geoderma.2021.115118
https://doi.org/10.3390/agriculture12071062
https://doi.org/10.3390/land11122148
https://doi.org/10.3390/agronomy12061338
https://doi.org/10.3390/rs14153575
https://doi.org/10.3390/rs15051433
https://doi.org/10.1016/j.catena.2016.01.001
https://doi.org/10.3390/su142416696
https://doi.org/10.1007/s10666-022-09823-8
https://doi.org/10.1071/SR13314
https://doi.org/10.1111/sum.12122
https://doi.org/10.1002/fes3.96
https://doi.org/10.1016/j.soilbio.2018.01.030
https://doi.org/10.1002/ldr.3270
https://doi.org/10.1007/s10661-021-08958-7
https://www.ncbi.nlm.nih.gov/pubmed/33837853
https://doi.org/10.3390/horticulturae3020030
https://doi.org/10.1016/j.sjbs.2014.12.001
https://www.ncbi.nlm.nih.gov/pubmed/25737642
https://doi.org/10.2136/sssaj2008.0411
https://doi.org/10.1016/B978-0-12-405942-9.00001-3


Land 2024, 13, 379 22 of 22

96. Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Peterson, G.A. Soil Attribute Prediction Using Terrain Analysis. Soil Sci. Soc. Am. J. 1993,
57, 443–452. [CrossRef]

97. Santra, P.; Kumar, M.; Panwar, N.R.; Das, B.S. Digital Soil Mapping and Best Management of Soil Resources: A Brief Discussion
with Few Case Studies. In Adaptive Soil Management: From Theory to Practices; Springer: Singapore, 2017; pp. 3–38. [CrossRef]

98. Zhang, G.-L.; Liu, F.; Song, X.-D. Recent progress and future prospect of digital soil mapping: A review. J. Integr. Agric. 2017, 16,
2871–2885. [CrossRef]

99. Hengl, T.; Heuvelink, G.B.; Stein, A. A generic framework for spatial prediction of soil variables based on regression-kriging.
Geoderma 2004, 120, 75–93. [CrossRef]

100. Hengl, T.; Heuvelink, G.B.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33,
1301–1315. [CrossRef]

101. Keskin, H.; Grunwald, S. Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma 2018, 326, 22–41.
[CrossRef]

102. Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine-learning
techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [CrossRef]

103. Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81,
401–418. [CrossRef]

104. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [CrossRef]
105. Brus, D.; Kempen, B.; Heuvelink, G. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 2011, 62, 394–407. [CrossRef]
106. Hook, P.B.; Burke, I.C. Biogeochemistry in a Shortgrass Landscape: Control by Topography, Soil Texture, and Microclimate.

Ecology 2000, 81, 2686–2703. [CrossRef]
107. Biswas, A.; Chau, H.W.; Bedard-Haughn, A.K.; Si, B.C. Factors controlling soil water storage in the hummocky landscape of the

Prairie Pothole Region of North America. Can. J. Soil Sci. 2012, 92, 649–663. [CrossRef]
108. Zhang, Y.; Xu, M.; Wu, T.; Li, Z.; Liu, Q.; Wang, X.; Wang, Y.; Zheng, J.; He, S.; Zhao, P.; et al. Sources of fine-sediment reservoir

deposits from contrasting lithological zones in a medium-sized catchment over the past 60 years. J. Hydrol. 2021, 603, 127159.
[CrossRef]

109. Chen, X.; Hu, Q. Groundwater influences on soil moisture and surface evaporation. J. Hydrol. 2004, 297, 285–300. [CrossRef]
110. Zhao, S.; Zhao, X.; Li, Y.; Chen, X.; Li, C.; Fang, H.; Li, W.; Guo, W. Impact of deeper groundwater depth on vegetation and soil in

semi-arid region of eastern China. Front. Plant Sci. 2023, 14, 1186406. [CrossRef]
111. Zhang, W.; Wang, X.; Lu, T.; Shi, H.; Zhao, Y. Influences of soil properties and hydrological processes on soil carbon dynamics in

the cropland of North China Plain. Agric. Ecosyst. Environ. 2020, 295, 106886. [CrossRef]
112. Liu, Z.; Zhu, J.; Fu, H.; Zhou, C.; Zuo, T. Evaluation of the Vertical Accuracy of Open Global DEMs over Steep Terrain Regions

Using ICESat Data: A Case Study over Hunan Province, China. Sensors 2020, 20, 4865. [CrossRef] [PubMed]
113. Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models

(ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [CrossRef]
114. Vernimmen, R.; Hooijer, A.; Yuherdha, A.T.; Visser, M.; Pronk, M.; Eilander, D.; Akmalia, R.; Fitranatanegara, N.; Mulyadi, D.;

Andreas, H.; et al. Creating a Lowland and Peatland Landscape Digital Terrain Model (DTM) from Interpolated Partial Coverage
LiDAR Data for Central Kalimantan and East Sumatra, Indonesia. Remote Sens. 2019, 11, 1152. [CrossRef]

115. Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.B. A
high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2136/sssaj1993.03615995005700020026x
https://doi.org/10.1007/978-981-10-3638-5_1
https://doi.org/10.1016/S2095-3119(17)61762-3
https://doi.org/10.1016/j.geoderma.2003.08.018
https://doi.org/10.1016/j.cageo.2007.05.001
https://doi.org/10.1016/j.geoderma.2018.04.004
https://doi.org/10.1016/j.geoderma.2015.11.014
https://doi.org/10.1016/j.apm.2019.12.016
https://doi.org/10.1214/09-SS054
https://doi.org/10.1111/j.1365-2389.2011.01364.x
https://doi.org/10.1890/0012-9658(2000)081[2686:BIASLC]2.0.CO;2
https://doi.org/10.4141/cjss2011-045
https://doi.org/10.1016/j.jhydrol.2021.127159
https://doi.org/10.1016/j.jhydrol.2004.04.019
https://doi.org/10.3389/fpls.2023.1186406
https://doi.org/10.1016/j.agee.2020.106886
https://doi.org/10.3390/s20174865
https://www.ncbi.nlm.nih.gov/pubmed/32872143
https://doi.org/10.3390/rs12213482
https://doi.org/10.3390/rs11101152
https://doi.org/10.1002/2017GL072874

	Introduction 
	Soils in Lowland Areas 
	Materials and Methods 
	Results and Discussion 
	Emergence of Interest and Growing Importance 
	Dominant Land Use Categories 
	Targeted Soil Variables in Lowland Areas 
	Environmental Covariates for DSM in Lowland Areas 
	DSM Approaches in Lowland Areas 
	Evaluation of DSM Approaches 

	General Discussion and Outlook 
	Conclusions 
	References

