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Abstract: The Three-River Headstreams Region (TRHR) serves as the cradle of China’s three ma-
jor rivers—the Yangtze, Yellow, and Lancang—rendering its water conservation (WC) capacity
quintessentially significant for Asian water resource security. This study integrated the InVEST
model and random forest model to holistically elucidate the spatiotemporal characteristics and
factors influencing WC in the TRHR from 1980 to 2018. The results revealed that the WC growth rate
was 5.65 mm/10a in the TRHR during the study period, yet pronounced regional disparities were
observed among different basins, especially with the Lancang River Basin (LRB), which exhibited
a decrease at a rate of 5.08 mm per decade despite having the highest WC. Through Theil–Sen
trend analysis, the Mann–Kendall abrupt change test, and the cumulative deviation method, me-
teorological, vegetative, and land use abrupt changes in approximately 2000 were identified as the
primary drivers for the abrupt surge in WC within the TRHR. Furthermore, precipitation and the
aridity index were the core feature variables affecting WC. However, a positive transition in land
use patterns post-2000 was also revealed, and its favorable effect on WC was not as significant as
the abrupt climatic changes. This study offers new perspectives on managing multidimensional
spatiotemporal data and contributes to laying the groundwork for machine learning applications
in water conservation. Additionally, it potentially provides useful references for decision-making
processes related to ecosystem security.

Keywords: InVEST model; random forest; regional disparities; spatial–temporal analysis; water
conservation capacity

1. Introduction

Water conservation (WC), a vital component of ecosystem services, is crucial for
maintaining ecological equilibrium and ensuring water supply [1–3]. There are numerous
methods to quantify WC, including the water balance method, water storage capacity
method, and rainfall storage method, along with various estimation models, such as the
InVEST model, the SWAT model, and the cellular automata model. Currently, the InVEST
model is a comprehensive tool for evaluating multiple ecosystem services and has been
extensively utilized in assessing WC [4,5]. Its widespread application is attributed to
the ease of data acquisition, flexible parameter adjustment, and spatial expressiveness of
evaluation results [6–8]. The InVEST model has been extensively utilized across various
regions. J.W. Redhead simulated the water yield in 22 river basins in the United Kingdom
using the InVEST model and compared the results with data from the UK National River
Flow Archive, demonstrating the model’s ability to accurately evaluate WC [9]. Pessacg
Natalia applied the InVEST model to simulate the water yield in the Chubut River Basin
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in Argentina and found that the spatial distribution of precipitation had a significant
impact on WC [10]. In addition, the InVEST model has yielded numerous achievements
in the areas of WC and water yield in various regions of China, such as the Yellow River
Basin (YRB) [11–13], Loess Plateau [14], Qinghai–Tibet Plateau [15,16], Yangtze River Basin
(YZRB) [17], Danjiang basin [18], Poyang Lake [19], and Dongting Lake [20].

Previous studies predominantly employed conventional methodologies, such as corre-
lation analysis, principal components analysis, or cluster analysis, to explore the drivers
behind WC changes [18,20] or utilized scenario-based simulations to gauge the responses
of WC to climate and land use alterations [21,22]. However, these methods may have
difficulty in dealing with the complexity and multidimensionality of the data, especially
when confronted with large-scale spatial data. By harnessing tools such as ArcGIS and
Python, we now navigate spatial data more adeptly, streamlining data acquisition, extrac-
tion, and analysis. For instance, machine learning (ML) models, with their innate ability to
adapt to data intricacies and model nonlinear interactions, have uncovered new avenues
for in-depth analyses of complex ecosystems [23]. While machine learning has made sig-
nificant advances in other areas [24–26], its application in WC assessment and ecosystem
services remains comparatively unknown [25]. There have been exploratory studies using
machine learning models to evaluate the impact of ecological fallow projects on the water
conservation capacity of the YRB, but these studies have limited data and insufficient
model accuracy [11]. Utilizing ArcGIS, we generated a large amount of spatial sample
data, meeting the input data requisites for any ML model, offering a fresh perspective
for original data generation, and propelling the use of ML in spatial analyses within the
ecosystem services domain.

The TRHR, a global ecological hotspot and a pivotal ecological service hub in the
world, offers invaluable insights into WC studies [26–29]. Diverse methodologies have
yielded inconsistent findings on WC trends, influenced by differing study durations and
regions. Naveed Ahmed, for example, reported a 22.7% and 12.5% decline in WC capacities
in the Yellow and Yangtze River source regions, respectively, between 1961 and 2000,
linked to alpine ecosystem degradation [30]. In contrast, Yao Pan’s research observed a
southeast TRHR decline but an uptick elsewhere over the past 30 years [31]. While some
analyses exist on the spatial–temporal dynamics of WC, the role of vegetation shifts is
underexplored [32]. Comprehensive discussions of the various factors influencing WC are
scant. Furthermore, a focus on long-term changes is often missing, with fragmented and
early time-series studies [33]. Given the expansive and intricate landscape of the TRHR
and the interplay between natural and anthropogenic factors leading to pronounced WC
disparities, delving into these spatial–temporal dynamics is crucial.

In this context, our study endeavors to harness time trend analysis and ML, particularly
the random forest model, to evaluate the WC in the TRHR and delve into its association
with meteorological factors, vegetation, and land use, among others. By analyzing a large
amount of spatiotemporal sample data, we aim to propose a novel, more accurate, and
comprehensive method for assessing the factors influencing the WC dynamics, with the
aspiration of furnishing strong support for the assessment and management of WC.

2. Materials and Methods
2.1. Study Area

The TRHR, located in southern Qinghai Province, China, encompasses the headwaters
of the Yangtze, Yellow, and Lancang Rivers, extending across an area of 375.8 thousand
square kilometers (Figure 1). Dominated by a complex terrain, the region descends from
northwest to southeast, with elevations ranging between 1966 and 6837 m and an average
altitude exceeding 4000 m. It is characterized by a plateau continental climate, manifesting
distinct wet and dry seasons, concurrent water and heat periods, prolonged sunlight, and
high annual solar radiation. Yearly average temperatures oscillate between −7.75 ◦C and
9.06 ◦C, with an annual precipitation span of 161.14 to 723.43 mm [27]. As the cradle of the
YZRB, YRB, and LRB, the region hosts a dense river network with over 180 rivers, consti-
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tuting 4.40% of the total area, and an annual runoff volume of 324.17 × 103 m3, alongside
a multiyear average flow rate of 1022.3 m3/s [34,35]. The diverse topography engenders
widespread lakes and marshes, abundant snow mountains and glaciers, with wetlands
spanning approximately 73.3 thousand km² and over 1800 lakes. Soil exhibits a vertical
zonal distribution, including nine soil orders, such as semileached, calcic, initial, and alpine
soils, with alpine meadow soil being predominant. Vegetation primarily consists of cold-
resistant grasslands and meadows, covering 47.06% and 16.55% of the area, respectively.
The region encompasses 22 counties across five autonomous prefectures (Figure 1) [36].
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Figure 1. (a) The location of the TRHR on the Tibetan Plateau; (b) subdivisions of subbasins in the
InVEST model; (c) geographical map of the TRHR along with the distribution of hydrological and
meteorological stations. Abbreviation: The Three-River Headstreams Region (TRHR).

2.2. Data Sources and Processing Methods

Figure 2 and Table 1 delineate the data sources utilized for WC computation, valida-
tion, and contribution. A selection of observational data from 86 meteorological stations,
encompassing the study area and its vicinity, was employed (Figure 1). Spatial interpola-
tion via the splina and lapgrd modules in ANUSPLIN version 4.3 yielded annual average
temperatures, ensuring that the degrees of freedom postinterpolation remained below half
of the interpolating stations, corroborating the validity and scientific rigor of the spatially
interpolated data [37]. Annual precipitation spatial data were generated using kriging
interpolation. Specialized meteorological interpolation software ANUSPLIN version 4.3
employed a DEM-corrected spatial interpolation method reflecting the vertical variation in
temperature and reference crop evapotranspiration.

The manual interpretation of eight epochs of land cover maps was derived from
Landsat-MSS/TM/ETM satellite imagery. Based on the TRHR’s natural geographic and
cover characteristics, a reclassification of land use types was conducted after operations
such as clipping, projecting, and reclassification, culminating in nine land use types
(Table A1). A polygon-linking approach on the 1:100,000 scale Second National Soil Survey
maps and 8595 soil profile diagrams, coupled with NC format conversion, was utilized to
craft 30 m precision soil data incorporating soil depth, soil clay, silt, gravel, and organic
matter content information [38].



Land 2024, 13, 352 4 of 33

Land 2024, 13, x FOR PEER REVIEW 4 of 36 

cover characteristics, a reclassification of land use types was conducted after operations 

such as clipping, projecting, and reclassification, culminating in nine land use types (Table 

A1). A polygon-linking approach on the 1:100,000 scale Second National Soil Survey maps 

and 8595 soil profile diagrams, coupled with NC format conversion, was utilized to craft 

30 m precision soil data incorporating soil depth, soil clay, silt, gravel, and organic matter 

content information [38]. 

Based on the GLOBMAP Leaf Area Index (LAI) Version 3 Description, the LAI was 

obtained with a spatial resolution of 8 km from 1981 to 2018 [39,40]. The National Tibetan 

Plateau Scientific Data Center supplied the normalized difference vegetation index 

(NDVI) data spanning the years 1982 to 2015 (Dataset 1) [41], while the Chinese Academy 

of Sciences Resource and Environment Science and Data Center provided the NDVI data 

for the interval 1998 to 2018 (Dataset 2). Due to the distinct sensors of the two datasets, a 

consistency check was imperative, revealing a significant correlation coefficient of 0.851 

(p < 0.05). Dataset 2 (1998–2018), with a higher spatial resolution, was selected as the ref-

erence, and Dataset 1 (1982–2015) was used to extend the NDVI data sequence for the 

TRHR from 1982 to 2018. The terrain index was obtained through ArcGIS spatial analysis 

[42]. The runoff velocity coefficients, which vary with land use change over periods, were 

adopted from recent studies [18]. The soil saturated hydraulic conductivity in the study 

area was computed using NeuroTheta software version 1.0. 

Figure 2. The method for the InVEST model and the flowchart for assessing changes in water con-

servation. The graph was drawn with Figdraw. Abbreviations: Leaf Area Index (LAI), the aridity 

index (FRACTP), the normalized difference vegetation index (NDVI). 

Figure 2. The method for the InVEST model and the flowchart for assessing changes in water
conservation. The graph was drawn with Figdraw. Abbreviations: Leaf Area Index (LAI), the aridity
index (FRACTP), the normalized difference vegetation index (NDVI).

Table 1. Data sources for modeling and attribution of WC.

Data Type Description Source Format

Climate data

Meteorological parameters such as average temperature (◦C),
maximum temperature (◦C), minimum temperature (◦C), average

relative humidity (%), average wind speed (m/s), and precipitation
from 86 meteorological stations from 1980 to 2020.

China Meteorological Data Service Center
(http://data.cma.cn/, accessed on

2 February 2023)
Raster

Annual runoff Annual runoff data and cross-sectional area of three hydrological
stations, including Zhimen Da, Xiangda, and Tangnaihai. Hydrological stations Point

DEM Digital elevation model with a spatial resolution of 30 m, derived by
splicing and organizing the latest SRTM V4.1 data.

China Geographic Data Cloud Platform
(https://www.gscloud.cn/home,

accessed on 2 February 2023)
Raster

Land use
Eight periods of land use/cover data from 1980 to 2018, with

projection coordinate system of Krasovsky_1940_Albers and spatial
resolution of 30 m.

Chinese Academy of Sciences Resource
and Environment Science Data Center
(https://www.resdc.cn/, accessed on

5 February 2023)

Raster

Soil data

Soil texture parameters including clay, sand, and silt content as well
as organic matter content (%) from three layers of soil with depth

ranges of 4.5–9.1 cm, 16.6–28.9 cm, and 49.3–82.9 cm. The arithmetic
mean of the three parameters is used as the soil texture

parameter value.

National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/home, accessed

on 7 February 2023)
Raster

LAI Leaf Area Index data from 1981 to 2018 with a spatial resolution of
8 km and projection coordinate system of Krasovsky_1940_Albers.

Chinese Academy of Sciences Resource
and Environment Science Data Center
(https://www.resdc.cn/, accessed on

10 February 2023)

Raster

NDVI Annual NDVI raster data from 1982 to 2018.

National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/home, accessed
on 12 February 2023), Chinese Academy of

Sciences Resource and Environment
Science Data Center

(https://www.resdc.cn/, accessed on
15 February 2023)

Raster

Abbreviations: Digital Elevation Model (DEM), Leaf Area Index (LAI), Normalized Vegetation Index (NDVI).

Based on the GLOBMAP Leaf Area Index (LAI) Version 3 Description, the LAI was
obtained with a spatial resolution of 8 km from 1981 to 2018 [39,40]. The National Tibetan

http://data.cma.cn/
https://www.gscloud.cn/home
https://www.resdc.cn/
https://data.tpdc.ac.cn/home
https://www.resdc.cn/
https://data.tpdc.ac.cn/home
https://www.resdc.cn/
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Plateau Scientific Data Center supplied the normalized difference vegetation index (NDVI)
data spanning the years 1982 to 2015 (Dataset 1) [41], while the Chinese Academy of Sciences
Resource and Environment Science and Data Center provided the NDVI data for the interval
1998 to 2018 (Dataset 2). Due to the distinct sensors of the two datasets, a consistency check was
imperative, revealing a significant correlation coefficient of 0.851 (p < 0.05). Dataset 2 (1998–2018),
with a higher spatial resolution, was selected as the reference, and Dataset 1 (1982–2015) was
used to extend the NDVI data sequence for the TRHR from 1982 to 2018. The terrain index
was obtained through ArcGIS spatial analysis [42]. The runoff velocity coefficients, which vary
with land use change over periods, were adopted from recent studies [18]. The soil saturated
hydraulic conductivity in the study area was computed using NeuroTheta software version 1.0.

2.3. Dataset Generation via ArcGIS

ArcGIS software version 10.8 was utilized to construct a 10 km sampling grid within
the study area, yielding 11,650 sample points. Subsequently, yearly WC and natural factor
values were extracted to these points and exported to an Excel spreadsheet, generating an
initial natural factor database. Different land class grid data were converted into polygon
files and buffers for sample points were created, and then the area of different land classes
for each sample point was computed through intersection tabulation. During the dataset
preprocessing phase, null and anomalous values within the area data of different land
use types were averaged, culminating in a ML analysis dataset encompassing 9356 spatial
points. The final dataset included 16 feature factors, such as annual precipitation (P),
average annual temperature (TEM), reference crop evapotranspiration (ET0), actual evapo-
transpiration (AET), Leaf Area Index (LAI), normalized difference vegetation index (NDVI),
and land use and cover change (LUCC), aiming to quantify their impacts on WC (Table 2).
Among them, AET = Kc × ET0, where Kc is the actual crop coefficient (dimensionless) [43].

Table 2. List of indicator types and abbreviations.

Type Indicator Abbreviation Unit

Climate

Annual Precipitation P mm
Average Annual Temperature TEM ◦C

Reference Crop
Evapotranspiration ET0 mm

Actual Evapotranspiration AET mm

Vegetation Leaf Area Index LAI -
Normalized Vegetation Index NDVI -

Land Use Type Land Use and Cover Change LUCC km2

2.4. Methods
2.4.1. The InVEST Water Yield Model and Water Conservation Computation

The water yield module accounts for many factors, including precipitation, evapotranspi-
ration, land use type, and plant biophysical characteristics, to obtain the water yield for each
grid within the study region and aggregates them to ascertain the water yield for each subbasin
within the area [44]. The principles and formulas for the water yield model are in Appendix A.1.

The WC of the TRHR was obtained by considering the topographic index, flow rate
coefficient, and soil saturation hydraulic conductivity. The WC was calculated as follows:

WC = min
(

1,
249

Velocity

)
× min

(
1,

0.9 × TI
3

)
× min

(
1,

Ks
300

)
× Yield(x) (1)

where WC indicates water conservation, Velocity indicates the flow rate coefficient, TI represents
the dimensionless topographic index, Ks is saturated hydraulic conductivity, calculated using
Australian NeuroTheta software version 1.0, and Yield(x) is the water yield.

TI = ln
(

α

tan β

)
(2)
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where α indicates the catchment area per unit contour length at any point of the flow
through the slope, and tan β is the slope at that point.

2.4.2. Trend Analysis

Initially, this paper employs the Mann–Kendall (M-K) abrupt change analysis method
to scrutinize the abrupt features of WC within the TRHR. Following this process, the results
computed from the Mann–Kendall abrupt analysis method are validated and supplemented
using the cumulative deviation method. The M-K abrupt detection does not necessitate
that the sample adhere to a particular distribution pattern and is unaffected by a few outlier
values. Through Python programming, the M-K abrupt detection curve was obtained, with
the specific curve principle elaborated in Appendix A.2.

The cumulative distance adjustment (CDA) method is another approach for identifying
sudden breakpoints between a value and the multiyear average based on the trend of a curve
over time. The moment of abrupt change in cumulative distance levels, signifying a different
trend from prior observations, marks the time of abrupt changes in time-series data.

Li =
n

∑
i=1

(Ri − R) (3)

In this equation, Li stands for cumulative distance from mean value, Ri denotes the
element value of the ith year, and R signifies the multiyear average of the element.

The Theil–Sen Trend Analysis is a nonparametric test method utilized in this study for
examining the trend variations in WC in TRHR before and after abrupt changes, without
necessitating normal distribution and linear trend assumptions, effectively mitigating
outliers and missing data noise interference.

β = median(
xj − xi

j − i
), 1 < i < j < n (4)

In the formula, β represents the median slope of all data pairs, where the sign indicates
the direction of the trend. A positive β signifies an ascending trend in the series, while a
negative value denotes a descending trend. The symbols xj and xi specifically represent
the magnitudes of the data at the jth and ith positions in the time series, respectively.

2.4.3. Correlation and Cluster Analysis

The Pearson correlation coefficient r (−1 ≤ r ≤ 1) is obtained by dividing the covariance
of two sample data by their standard deviations. It is used to evaluate the degree of linearity
between variables and is considered significant at p < 0.05 [45,46]. The Pearson correlation
coefficient was used to scrutinize the correlation between the nonnull raster data values of each
driver under temporal variation and WC across various regions to assess their response to WC.

Systematic cluster analysis was used to discover the dependencies between the factors.
Initially, the driving factors were standardized. To quantify the similarity between factors, a
distance metric was needed. The widely used Euclidean distance was applied while employing
the efficient Ward’s linkage method for clustering the samples based on the minimal increase in the
sum of squares of the dissimilarities among them [47]. This approach enabled the determination
of the drivers’ similarity to the water content and the categorization of each driver [48].

2.4.4. Machine Learning Model

The random forest (RF) embodies a sophisticated ensemble learning technique, enhancing
the model’s generalization capacity and accuracy through the amalgamation of predictions from
multiple decision trees [49]. Within this ensemble structure, each tree is trained on a unique
dataset acquired via bootstrap sampling, ensuring diversity throughout the training process [23].
Moreover, the model escalates its resilience against overfitting by selecting the optimum feature
from a random subset of features during each node split. In this study, the scikit-learn library’s
random forest model was employed, delineating the data into training and testing sets. The
model was trained with predefined parameters (e.g., n estimators = 100, denoting 100 trees), and
the inherent feature importance attribute was utilized to evaluate the significance of each feature.
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In this endeavor, an incremental mean squared error (IncMSE)-based approach was
adopted to assess the contribution of each feature to model prediction [50]. Furthermore,
the annual indicators’ significance was ranked and iteratively appended to the model input
in a sequential manner. During this phase, a fivefold cross-validation was executed to
appraise the impact of different feature combinations on model predictive performance [51].
Cross-validation curves unveiled how the model’s accuracy oscillates with the variation in
input indicator quantity, aiding in identifying the optimum regression point.

3. Results
3.1. Water Conservation Simulation Results
3.1.1. The Validation Process for the InVEST Model

The water yield module in the InVEST model necessitates the vector boundaries of the
area and its subwatersheds; there were 389 subwatersheds in this study. The biophysical
coefficient table indicates the main parameters needed for the model, including land
attribute parameters, such as LULC, vegetation cover, root depth, and Kc, as shown in
Table 3. In this study, we validated the water yield model with the annual runoff modulus
of the hydrological station. Validation points were selected at the ZhiMenDa, XiangDa,
and TangNaiHai hydrological stations located on the main streams of the Yangtze, Yellow,
and Lancang rivers, respectively. The Zhang coefficient was calibrated using the actual
annual runoff modulus from 1980 to 2010 compared with the simulated annual water yield
by the InVEST model, with the specific simulation results shown in Figure 3a. The results
indicated that the model’s water yield simulation was optimal when the Zhang coefficient
was 13.2, with a relative error in the model validation results of less than 5% (Figure 3b).

Table 3. Biophysical coefficients in the TRHR.

Land Use LUCODE Kc Root Depth/mm Vegetation Cover

Cropland (CL) 1 0.67 400 1
Forest Land (FL) 2 1 800 1

High-Coverage Grassland (HCG) 3 0.65 500 1
Medium-Coverage Grassland (MCG) 4 0.60 400 1

Low-Coverage Grassland (LCG) 5 0.56 300 1
Water Bodies (WB) and Wetland (WL) 6 and 9 0.9 1 0

Built-up Land (BL) 7 0.239 1 0
Unused Land (UL) 8 0.4 200 0
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3.1.2. Simulated Results of Water Yield and Water Conservation

The average annual water yield of the TRHR from 1980 to 2018 was 137.83 mm,
and the average annual WC was 50.36 mm, as shown in Figure 4. Within the respective
catchment areas, the LRB led in WC, outpacing the intermediate-producing YRB and
surpassing the YZRB, which recorded the minimal WC. From 1980 to 2018, the aggregate
water conservation volume of the TRHR amounted to 18.933 billion cubic meters. The WC
trend increased from north to south, mirroring the climatic transition from the plateau
subarctic arid zone in the north to the plateau subarctic humid zone in the south (Figure 4b).
The WC values by land type were as follows: Forest Land (113.36 mm), High-Coverage
grassland (94.93 mm), Medium-Coverage Grassland (63.68 mm), Low-Coverage Grassland
(51.59 mm), cropland (40.17 mm), Built-Up land (34.19 mm), and Unused Land (31.56 mm).
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Figure 4. (a) The average annual water yield distribution from 1980 to 2018 in the TRHR. (b) The
average annual water conservation distribution from 1980 to 2018 in the TRHR. (c) The average
annual water conservation in different land types. Abbreviations: Yangtze River Basin (YZRB),
Yellow River Basin (YRB), Lancang River Basin (LRB), Unused Land (UL), Low-Coverage Grassland
(LCG), Medium-Coverage Grassland (MCG), Forest Land (FL), Built-up Land (BL), Cropland (CL),
High-Coverage Grassland (HCG).

3.2. Trend Analysis of Water Conservation and Natural Factors
3.2.1. Trend Variation of Water Conservation and Natural Factors

The annual average WC in the TRHR demonstrated a fluctuating growth trend. Initially,
in the early 1980s, the TRHR exhibited higher WC levels, which then commenced a descent,
gradually elevating from 1990 onward. However, a noticeable decline was observed between
2005 and 2015, following which a significant upward trend emerged, peaking at 71.53 mm in
2018. Throughout the span of 1980–2018, the TRHR’s annual average precipitation stood at
400.03 mm, with a growth rate of 14.755 mm per decade. The alteration tendencies of precipita-
tion and WC were notably analogous (Figure 5). The regional annual average temperature in the
TRHR increased at a rate of 0.417 ◦C per decade, slightly surpassing the average temperature
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increment in global high-altitude areas. Between 2000 and 2010, a marked augmentation in
ET0 was witnessed, while a slight decrement was noted during other periods, albeit the overall
increase was significant. The LAI had an ascendant trajectory, with a growth rate of 0.052/10a
for the 39 years. The NDVI predominantly ranged between 0.2 and 0.8, showcasing a significant
upward trend post-2003 (Figure 5f).
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Figure 5. Time series variation in water conservation and natural factors from 1980 to 2018.
(a–f) represent the time series of WC, P, TEM, ET0, LAI and NDVI, respectively. Abbreviations:
Three-River Headstreams Region (TRHR), Yangtze River Basin (YZRB), Yellow River Basin (YRB),
Lancang River Basin (LRB), Water conservation (WC), Annual Precipitation (P), Average Annual
Temperature (TEM), Reference Crop Evapotranspiration (ET0), Leaf Area Index (LAI), Normalized
Vegetation Index (NDVI).

3.2.2. Fluctuations in Water Conservation across Various Land Use Types

The variations in WC among different land cover types exhibited a similar underly-
ing trend (Figures 6 and 7). FL had the most pronounced fluctuations in WC, with the
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magnitude of variations relative to the mean ranging from 20.06% to 42.21%. GL with
high, moderate, and low vegetation cover followed, with variations in WC relative to the
mean falling within the range of 24.74% to 55.01%. CL experienced comparatively smaller
fluctuations, while BL and UL exhibited relatively stable WC variations. However, in all
cases, the magnitude of variations in WC volume relative to the mean surpassed 100%
(Figure 7) (Table 4). WC functionality was more stable in land categories characterized by
thick soil layers, well-developed plant root systems, and high coverage. On the other hand,
cultivated lands possessed relatively shallow root systems and soil layers that were deeply
impacted by human activities, leading to lower water retention capabilities. Built-up lands
and other land categories exhibited lower vegetation cover rates, with a considerably large,
exposed area, hence lacking the capacity to store precipitation.
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Figure 7. Water conservation trend over time for different land categories. Abbreviations: Water con-
servation (WC), Unused Land (UL), Low-Coverage Grassland (LCG), Medium-Coverage Grassland
(MCG), Forest Land (FL), Built-up Land (BL), Cropland (CL), High-Coverage Grassland (HCG).
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Table 4. Water conservation (in billion m3) of different land types in different years.

Land Use Type 1980 1990 1995 2000 2005 2010 2015 2018

CL 0.042 0.052 0.052 0.037 0.104 0.073 0.067 0.177
FL 2.391 1.947 2.232 2.044 3.234 2.118 1.809 3.443

HCG 1.623 1.374 1.396 1.319 2.647 1.981 1.510 3.074
MCG 6.339 4.827 5.816 5.571 8.815 6.500 4.788 9.139
LCG 7.544 5.321 7.592 6.997 9.289 7.741 5.209 10.119
BL 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.006
UL 0.196 0.079 0.084 0.156 0.351 0.065 0.036 0.227

Abbreviations: Unused Land (UL), Low-Coverage Grassland (LCG), Medium-Coverage Grassland (MCG), Forest
Land (FL), Built-up Land (BL), Cropland (CL), High-Coverage Grassland (HCG).

Grasslands, the predominant land use type in the TRHR (Figure 6) (Table 5), con-
tributed significantly to WC, boasting a high per-unit area WC capacity (Figure 7). Con-
sequently, grasslands were the primary contributors to WC in the TRHR, accounting for
approximately 84.90% to 87.78% of the total WC capacity (Table 4). Although FL exhibited
the highest per-unit area WC capacity, its land coverage was relatively small, contributing
approximately 11.46% to 14.31% to the overall WC capacity. CL, BL, and UL contributed
0.23% to 0.68%, 0.01% to 0.02%, and 0.27% to 1.44%, respectively.

Table 5. Land use transfer matrix in the TRHR from 1980 to 2018.

Land Use Type
2018 (km2) Outgoing

AreaCL FL HCG MCG LCG WB BL UL

1980
(km2)

CL 1859.89 1.93 26.74 38.00 79.42 84.62 17.54 8.29 256.53
FL 8.99 15,517.96 213.32 386.40 260.10 16.54 2.38 10.33 898.07

HCG 248.85 132.29 18,857.80 397.03 416.10 110.85 9.55 366.74 1681.42
MCG 276.10 391.04 1619.80 87,847.45 2905.52 197.22 38.67 1136.85 6565.20
LCG 108.44 244.32 687.21 3563.09 130,061.69 498.20 44.63 3765.51 8911.40
WB 19.40 4.96 19.65 101.12 529.48 18,151.49 2.52 377.30 1054.44
BL 6.14 0.30 3.12 3.41 3.21 1.56 131.91 0.29 18.02
UL 15.00 33.61 248.59 1996.25 18,437.08 1222.20 9.43 56,297.68 21,962.17

Incoming Area 682.93 808.44 2818.42 6485.31 22,630.91 2131.21 124.71 5665.31 41,347.25

Abbreviations: Unused Land (UL), Low-Coverage Grassland (LCG), Medium-Coverage Grassland (MCG), Forest
Land (FL), Built-up Land (BL), Cropland (CL), High-Coverage Grassland (HCG), Water Bodies (WB).

3.2.3. Mutations in Water Conservation and Natural Factors

The cumulative distance leveling method revealed that the WC underwent a mutation
in approximately 2000 (Figure 8). The WC trends in the TRHR before and after the mutation
point were analyzed with Theil–Sen trend analysis and the Mann–Kendall significance
test. Between 1990 and 2000, the WC exhibited an overall nonsignificant rate of decrease of
−1.20 mm/5a and a decrease in area of 65.57%, primarily concentrated in the YRB and LRB
(Figure 8a). Conversely, from 2000 to 2018, the WC demonstrated an overall nonsignificant
rate of increase of 1.75 mm/5a and an increase in area of 65.11%, mainly in the northern
YRB (Figure 8b). Notably, the WC, P, TEM, ET0, LAI, and NDVI also experienced mutations
from 1997–2005 (Figure 8c–h). This finding implies that abrupt alterations in climatic and
vegetation factors could trigger sudden changes in WC.
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Figure 8. (a,b) Trends in β slope in water concentration from 1980 to 2000 and from 2000 to 2018.
(c–h) The cumulative distance leveling levels of WC, P, TEM, ET0, LAI, and NDVI, where the lowest
point of the cumulative distance parity curve is the mutation node. Abbreviations: Yangtze River
Basin (YZRB), Yellow River Basin (YRB), Lancang River Basin (LRB).
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3.3. Correlation Analysis between Driving Factors and Water Conservation

Spatially, precipitation (P), temperature (TEM), actual evaporation (AET), LAI, and
NDVI were positive drivers of WC, while ET0 was a negative driver of WC. The temperature
in the YRB had a generally positive correlation with WC, although the response of WC to
temperature varied across different regions (Figure 9b). Regions with negative correlations
were concentrated in the humid area, while regions showing positive correlations were
mainly concentrated in the plain and plateau landforms in the arid region with relatively
low elevations. The driving effect of temperature on WC may be related to the climate zone
and topography. In most areas, WC exhibited a negative correlation with reference crop
evapotranspiration, which has been increasing over the past 39 years, particularly in the
LRB (Figure 9c). This result indicated that the decrease in WC in the LRB was closely linked
to the increase in reference crop evapotranspiration. Vegetation LAI and NDVI positively
impacted WC and were predominantly distributed in the upstream and midstream areas
of the YZRB and YRB (Figure 9d–f). The LAI and NDVI negatively impacted WC in the
semihumid region of the southern section of the TRHR, reflecting the distinct effects of
vegetation on WC in different climatic zones.
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Figure 9. Spatial distribution of correlation coefficients between WC and each natural factor in the TRHR.
(a–f) are the correlation coefficients between WC and P, TEM, ET0, AET, LAI, and NDVI, respectively. (g) is
the percentage of correlation. (h) is the legend. Abbreviations: Yangtze River Basin (YZRB), Yellow River
Basin (YRB), Lancang River Basin (LRB), Water conservation (WC), Annual Precipitation (P), Average
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Average Annual Temperature (TEM), Reference Crop Evapotranspiration (ET0), Leaf Area Index
(LAI), Normalized Vegetation Index (NDVI), Actual Evapotranspiration (AET).

In addition to analyzing the contributions of various factors to WC, we further explored
the correlations and clustering scenarios among meteorological factors, vegetation cover,
and land use types with WC (Figure 10). Precipitation (P), LAI, and NDVI are highly
correlated with WC (Figure 10). Concurrently, precipitation and WC are categorized
together and are tightly associated with NDVI and LAI. Precipitation is a principal driver
augmenting WC, whereas FRACTP and ET0 inhibit the increase in WC (Figure 10).
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Figure 10. Cluster and correlation analysis of the mean value of the main drivers influencing average
water conservation. Abbreviations: Unused Land (UL), Low-Coverage Grassland (LCG), Medium-
Coverage Grassland (MCG), Forest Land (FL), Built-up Land (BL), Cropland (CL), High-Coverage
Grassland (HCG), Water Bodies (WB), Annual Precipitation (P), Average Annual Temperature (TEM),
Reference Crop Evapotranspiration (ET0), Leaf Area Index (LAI), Normalized Vegetation Index
(NDVI), Actual Evapotranspiration (AET).

3.4. Random Forest to Assess the Importance of Each Driving Factor on Water Conservation

According to the random forest model, precipitation (P) remained the most influential
variable on WC across the years, consistently ranking first in importance. Following closely
was the aridity index (FRACTP) (Figure 11). The significance order of other factors tended
to shift over time. Within the random forest model, AET, FL, and LAI alternately secured
the third, fourth, and fifth positions, while occasionally, LCG ranked fifth importance. TEM,
HCG, and ET0 maintained their standings at the sixth, seventh, and eighth, whereas UL
and NDVI often occupied the ninth and tenth spots. MCG, BL, WB, CL, and WL all ranked
lower, with importance values below 0.01. Disparities existed in the predictive performance
of different yearly models, with the years 1990 and 2015 exhibiting better performance,
whereas 2005 and 2018 showed poorer performance. The model showcased a mean squared
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error of 0.1887 and a high coefficient of determination R2 of 0.9999, indicating the random
forest’s robust capacity for precise multiyear WC prediction (Figure 11).
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Figure 11. The importance and MSE of features by the random forest in different years. (a–e) represent
the feature importance in 1990, 2018, 1980–2000, 2000–2018, 1980–2018 and 1980–2018, respectively.
(f) is the MSE for Random Forest. Abbreviations: Annual Precipitation (P), Average Annual Tempera-
ture (TEM), Reference Crop Evapotranspiration (ET0), Leaf Area Index (LAI), Normalized Vegetation
Index (NDVI), Actual Evapotranspiration (AET).

The fivefold cross-validation curves revealed that as the number of considered driving
factors increased, the model’s predictive performance generally increased. However, more
factors do not always equate to better performance, as an excess can escalate the model’s
computational complexity, possibly leading to insufficient model fitting. Additionally,
substantial information overlap among selected variables may prompt model overfitting.
The optimal regression point in the random forest’s fivefold cross-validation, except for the
year 2000, which requires 16 indicators, necessitated only the higher-ranking importance
factors for ML regression to attain the best regression outcome in other years (Figure A8).

4. Discussion
4.1. Variability in Water Conservation across Different Source Regions

The WC fluctuations in the TRHR show similarities. The LRB, being the richest in precipi-
tation and highest in temperature among the regions, exhibits the highest WC, with a decline in
fluctuations (Figure 5). The abundant precipitation, higher vegetation coverage, and predom-
inant silty loam and loess soil textures in the LRB enhance soil water retention, contributing
to its higher WC (Figure 5). These findings are consistent with those of Jian Xue et al., who
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observed that WC in the headwaters of the LRB surpasses that in both the Qilian Mountains
and the TRHR [16]. However, it is noteworthy that, unlike our current observations, they did
not report a declining trend in the WC of the LRB. Considering the relatively lower latitude of
the LRB, the extent of temperature rise here is less than that in other source regions. Our spatial
correlation analysis reveals that the temperature rise in the northern parts of the LRB could
have adverse effects, possibly leading to a decrease in WC (Figure 9). Additionally, the ET0 in
the LRB has significantly risen compared to that in the YZRB and YRB, negatively impacting
WC and exacerbating the declining trend in the LRB (Figure 5). Notably, regions where WC
is negatively correlated with NDVI are primarily located in the LRB (Figure 9). This specific
area, characterized by shrubland and sparse forest ecosystems, is interspersed with medium- to
high-coverage meadow grasslands [52,53]. Hoek van Dijke noted that due to higher canopy
closure and biomass, the water consumption in these forested areas often surpasses that in
other ecosystems [54]. This implies that without adequate rainfall supply, the WC function
of forests could be inhibited [55–58]. Given the rapid vegetation growth in the LRB without
a significant increase in precipitation, we speculate that this situation might be a key factor
causing the decline in WC in this region.

The YRB exhibits the most prominent increase in WC among the three source regions
(Figure 4). In contrast, the YZRB has the lowest WC and the slowest growth (Figure 5). The
trend of ET0 in the YRB is not significant, implying less water consumption by the ecosystem in
this region. Numerous studies have revealed that ecological protection policies such as the Grain
for Green Program have progressively increased the area of grasslands and forests, protecting
and restoring the desert ecosystems of the Yellow River and thereby enhancing the region’s
WC [11]. This concurs with our observation that the YRB has the most significant increase in
LAI and NDVI, and in most parts of the YRB, factors such as temperature and vegetation are
positively correlated with WC (Figure 9). The collective alteration of these factors places the
YRB at the pinnacle of the WC growth rate among the TRHR.

4.2. Analysis of the Abrupt Changes in Water Conservation

An analysis of the abrupt change nodes of WC in the TRHR in conjunction with climatic,
vegetation, and land use factors discerned that WC, precipitation, temperature, evapotran-
spiration, LAI, and NDVI all exhibited abrupt changes between 1997 and 2005, indicating a
pronounced association between these environmental factors and WC trends. Meanwhile,
in 1999, China implemented the Returning Farmland to Forest and Grassland Program. In
addition, all 16 indicators were needed for the five-fold cross-validation in 2000 to attain the
best regression results. This situation implies that abrupt alterations in environmental factors,
such as climate, vegetation, and land use changes, could trigger sudden changes in WC.

Under the influence of land use, especially after the implementation of the Returning
Farmland to Forest and Grassland Program in 1999, there was a significant positive shift in
land use types (29,494.44 km2) (Figure 6) (Table 5). Surprisingly, the impact on WC was not
significantly enhanced. According to the ML regression results, the contribution of land use
type transitions to WC ranked fourth from 1980 to 2000 but fell to sixth from 2000 to 2018
and 1980 to 2018. This finding implies that despite the positive shift in land use patterns,
its impact on WC weakened over time [59], which seemingly contradicts the findings of
Guanyu Jia, who observed a key promotional effect of ecological retirement projects on
WC in the YRB from 2000 to 2018 [11]. Our analysis suggests that while land use change
exerted some influence on WC, the abrupt alterations in climate and vegetation after 2000
had a more prominent impact. This finding does not refute the efficacy of the Returning
Farmland to Forest and Grassland Program; it simply suggests that its impact might have
been relatively diminished under the severe onslaught of climate and vegetation alterations.

4.3. Comprehensive Analysis of the Factors Affecting Water Conservation

Precipitation is the primary replenishment source in the TRHR, promoting vegetation
growth in the TRHR, reducing soil and water loss, and thereby enhancing the WC ability
of this region. Especially in this high-altitude region, a significant temperature rise leads
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to more snow and ice melting [60]. Although temperature elevation is conducive to plant
development, potentially increasing WC, its correlation is not as pronounced as precipitation [61].
This situation may be due to the increased evapotranspiration caused by temperature rise, a
process that possibly offsets the hydrological effects of glacier melting increasing WC due to
temperature elevation [35,62,63]. The warming and moistening climate trend contributed to
enriching the forest ecosystems of the TRHR and accelerating meadow development. With
the recovery of forests and grasslands, the amount of precipitation directly hitting the ground
decreases, which also weakens the impact of raindrops on the soil surface, thereby increasing soil
infiltration rates [64,65] (Figure 7). Furthermore, forests can enhance vegetation root depth and
improve soil organic matter and structure, rendering better conservation capacity (Figure 7) [66].
The implementation of the Grain for Green Project since 1999 has increased the coverage of
grasslands and forests, enhancing the positive effects of natural factors on WC in the TRHR.

While natural factors such as precipitation promote WC, other factors such as refer-
ence crop evapotranspiration and unused land are negatively correlated with WC. In the
Qinghai–Tibet Plateau region, due to strong convection or topography-induced upper-level
convection, evaporation recycling is relatively active [60,67–69]. TEM and WB are closely
positively correlated with reference crop evapotranspiration (Figure 10), and with climate
warming and water body increases, their evaporation effect might be further intensified.
Overall, in the context of climate warming and humidification, the execution of precise
regional climate regulation and ecological protection projects are crucial for enhancing WC.

5. Conclusions

This study systematically dissected the temporal and spatial unfolding of WC within
the TRHR from 1980 to 2018. A multidimensional analytical lens revealed the cardinal
drivers underpinning the fluctuation in regional WC. The salient conclusions are articu-
lated below:

(1) The InVEST model was employed, and an average WC of 50.36 mm was computed for
the TRHR during the period 1980–2018, with a total WC amounting to 189.33 billion
m3, exhibiting a nonsignificant increasing trend. However, discernable disparities
in WC alterations were observed among different basins. The LRB, with the highest
WC, exhibited a declining fluctuation, possibly due to rapid vegetation augmentation
and inconspicuous precipitation increments in this zone. Due to higher precipitation,
lower potential evapotranspiration, and elevated vegetation cover, the YRB displayed
the most pronounced WC augmentation.

(2) Between 1980 and 2018, temporal junctures of abrupt environmental factor changes
and abrupt WC changes were closely aligned, especially in approximately 2000, when
WC transitioned from gradual diminution to noticeable augmentation. Moreover,
post-2000, despite the positive transition in land use patterns, its favorable impact on
WC progressively attenuated.

(3) Precipitation emerged as the predominant driver for WC enlargement, while FRACTP
and ET0 impeded WC enlargement. Grasslands made the most significant contribu-
tion to WC in the TRHR, accounting for approximately 84.90% to 87.78%.
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Appendix A. Methods

Appendix A.1. The InVEST Water Yield Model and Calculation of Water Conservation

The water yield module accounts for many factors, encompassing precipitation, evap-
otranspiration, land use type, and plant biophysical characteristics, with the aim of com-
puting the water yield of every subbasin situated within a study locale [44]. The equation
employed for computing the water yield is as follows:

Yield(x) =
(

1 − AET(x)
P(x)

)
× P(x) (A1)

where Yield(x) represents the water yield, AET(x) denotes the actual annual evapotranspi-
ration, and P(x) denotes the annual precipitation in mm.

The vegetation evapotranspiration of land use types, AET(x)/P(x), was computed by
employing the Budyko water–heat coupled equilibrium assumption formula suggested by Fu
et al. [70]. PET(x) represents the potential evapotranspiration in millimeters, andω(x) denotes a
nonphysical parameter that characterizes the combined climate and soil properties [71]. PET(x)
denotes the prospective evapotranspiration, as defined by the following equation:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−

[
1 +

(
PET(x)

P(x)

)ω(x)
] 1

ω(x)

(A2)

PET(x) = kc(lx)ET0(x) (A3)

kc(lx) =

{ LAI
3 (LAI ≤ 3)
1 (LAI > 3)

(A4)

where ET0 is the reference crop evapotranspiration in mm. The evapotranspiration coefficient
of various land use types is denoted by kc(lx), and LAI is the mean Leaf Area Index of the
growing season, defined as the monthly average of the Leaf Area Index during May–September.

ω(x) in the InVEST model is computed using the empirical equation suggested by Donohue:

ω(x) = Z
AWC(x)

P(x)
+ 1.25 (A5)

where Z represents the Zhang empirical coefficient, and AWC(x) denotes the effective
soil water content in mm, determined by the minimum values of plant available water
content (PAWC), maximum soil root burial depth (rest.layer.depth), and plant root depth
(root.depth), calculated as follows:

AWC(x) = min(rest.layer.depth, root.depth)× PAWC (A6)

PAWC = 54.509 − 0.132sand − 0.003sand2 − 0.055silt − 0.006silt2 − 0.738clay + 0.007clay2

−2.688OM + 0.501OM2 (A7)

This study calculated the daily ET0 value in the TRHR using the Penman–Monteith
formula and accumulated it to obtain the annual reference crop evapotranspiration [72,73].
The particular formula is delineated as follows:

ET0 =
0.408∆(Rn − G) + γ 900

Tmean+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(A8)



Land 2024, 13, 352 19 of 33

where ET0 denotes the day-by-day potential evapotranspiration, ∆ denotes the slope of
the saturation water vapor pressure curve, G denotes the soil heat flux, Rn denotes the net
surface radiation, Tmean denotes the average daily temperature at a height of 2 m, γ denotes
the wet and dry gauge constants, u2 denotes the wind speed at a 2 m height, es denotes the
saturation water pressure, and ea denotes the actual water vapor pressure.

Appendix A.2. M-K Mutation Detection Methods

The M-K mutation detection method is articulated through the following computa-
tional steps:

Initially, construct a statistic for the sequence {xi}, t = 1, 2, . . . , m(m ≤ n). Secondly,
set m = 1, 2, . . . , n, compute the statistic U(dm), and plot. At this juncture, U(dm) (when m
is fixed) asymptotically follows the N(0, 1) distribution. Thirdly, reverse the sequence {xi}
to form the sequence {x′t}, repeat the preceding two steps to obtain the statistic U′(dm),
and set U′(dm) = −U′(dm), m′ = n − m + 1. Lastly, plot U(dm) and U′(dm) on the same
graph, identify the intersection of the two lines, and if the U value at this point satisfies
|U| < 1.96, the hypothesis of a mutation point can be accepted with a test confidence level
of α = 0.05

dm =
m

∑
i=1

i−1

∑
j=1

rij (A9)

U(dm) = [dm − E(dm)]/
√

Var(dm) (A10)

E(dm) = m(m − 1)/4 (A11)

Var(dm) = m(m − 1)(2m + 5)/72 (A12)

Appendix A.3. Land Use Transfer Matrix

The land use transfer matrix was used to scrutinize the spatial distribution and mutual
transfer features of discrete land categories in the TRHR in each phase [74]. This model
is primarily presented in the form of a two-dimensional matrix, and its mathematical
representation is as follows:

Sij =

S11 . . . S1n
...

. . .
...

Sn1 · · · Snn

 (A13)

where Sij represents the region where the ith land use category has been converted into
the jth land use category, and when i = j, it refers to the area that has not undergone any
transformation itself, measured in km2. Moreover, the parameter n presents the number of
distinct land use categories in the TRHR.

Table A1. Land use types after reclassification in the TRHR.

No. Land Use Type Description

1 Cropland (CL) Refers to paddy fields as no dry lands were found in the study area.
2 Forest Land (FL) Encompasses forested areas, shrublands, sparse forests, and other forms of woodland.

3 High-Coverage Grassland (HCG) Denotes natural grasslands, mowed grasslands, and improved grasslands with vegetation cover
exceeding 50%.

4 Medium-Coverage Grassland (MCG) Refers to natural and improved grasslands with vegetation cover ranging from 20% to 50%.
5 Low-Coverage Grassland (LCG) Refers to natural grasslands with vegetation cover ranging from 5% to 20%.

6 Water Bodies (WB) Refers to natural terrestrial waters and hydraulic facilities, mainly including rivers, lakes,
beaches, reservoirs, and permanent glaciers and snowfields.

7 Built-up Land (BL) Refers to land used for urban and rural residential areas, as well as other built-up areas such as
industrial parks and transportation facilities.

8 Unused Land (UL) Refers to land that is not currently used, including sandy, desert, saline–alkali, bare, rocky,
swampy, and other unusable land, such as high-altitude deserts and tundras.

9 Wetland (WL) Wetlands, characterized by low-lying areas inundated with water, are teeming with diverse
vegetation and extensive mudflats.
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Appendix A.4. Fitting between the Scatter of Natural Factors and Water Conservation

A second-order regression of scatter plots was conducted on the mean values of
each natural factor from 1980 to 2018, subsequently producing marginal histograms. The
quadratic regression curves of precipitation and NDVI regarding water conservation show
a similar concave growth trend. This indicates that as precipitation and NDVI increase,
the rate of increase in WC accelerates. Meanwhile, as the Leaf Area Index (LAI) rises, the
increase in WC tends to level off. With increasing temperatures, WC initially rises, peaking
at 1.38 ◦C, after which it begins to decline. The trends for Actual Evapotranspiration (AET)
mirror those of temperature, exhibiting a turning point at 384.84 mm. The scatter points of
the six natural factors were more dispersed around the fitted curves, suggesting that there
is a great deal of variability in the relationship between the factors and the WC, and that
the relationships need to be further explored.
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The scatterplot visualizes the relationship, highlighting the turning point with a red ‘x’. Marginal
histograms offer distributions of natural factors and water conservation.



Land 2024, 13, 352 21 of 33

Appendix B. Establishment of the InVEST Model

The data inputs for the InVEST model encompass annual precipitation, annual refer-
ence crop evapotranspiration, soil depth, available water content in vegetation, land use
types, a biophysical coefficient table containing parameters such as evapotranspiration
coefficients for different land classes and root depths for various vegetation types, as well
as vector boundaries for basins and subbasins.
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(a–h) are the distribution of average annual water conservation in 1980, 1990, 1995, 2000, 2005, 2010,
2015 and 2018, respectively.
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Figure A8. The importance and MSE of feature by the random forest in different years. (a–k) represent
the feature importance in 1980, 1990, 1995, 2000, 2005, 2010, 2015, 2018, 2000–2018, 1980–2000 and
1980–2018, respectively. (l) is the MSE for Random Forest.
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Figure A9. The importance and MSE of feature by the XGBoost in different years. (a–k) represent
the feature importance in 1980, 1990, 1995, 2000, 2005, 2010, 2015, 2018, 2000–2018, 1980–2000 and
1980–2018, respectively. (l) is the MSE for XGBoost.
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Figure A10. Cluster analysis and correlation analysis of the main drivers of water conservation in
different years. (a–h) represent the analysis results in 1980, 1990, 1995, 2000, 2005, 2010, 2015 and
2018, respectively.
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Table A2. Abbreviations and Symbols.

Abbreviations and Symbols Meanings Units

AET Actual Evapotranspiration mm
AWC Effective soil water content mm

BL Built-up Land -
CDA Cumulative distance adjustment -
CL Cropland -

DEM Digital Elevation Model -
es Actual water vapor pressure kPa

ET0 Reference Crop Evapotranspiration mm
FL Forest Land -

FRACTP Aridity Index -
G Soil heat flux MJ·m−2·d−1

HCG High-Coverage Grassland -
IncMSE Incremental mean squared error consistent with element units

Kc Actual crop coefficient -
Ks Saturated hydraulic conductivity cm/d

LAI Leaf Area Index -
LCG Low-Coverage Grassland -

Li Cumulative distance from mean value consistent with element units
LRB Lancang River Basin -

LUCC Land use and cover change km2

MCG Medium-Coverage Grassland -
M-K Mann–Kendall -
ML Machine Learning -

NDVI Normalized Difference Vegetation Index -
OM Organic matter content in soil %

P Annual Precipitation mm
PAWC Minimum values of plant available water content mm

PET Potential evapotranspiration mm
r Pearson correlation coefficient -
R Multiyear average of the element consistent with element units

RF Random forest -
Ri Element value of the ith year consistent with element units
Rn Net surface radiation MJ·m−2·d−1

Sij
Region where the ith land use category has been converted into

the jth land use category -

Tmean Average daily temperature at a height of 2 m ◦C
TEM Average Annual Temperature ◦C

TI Dimensionless topographic index -
TRHR Three-River Headstreams Region -

u2 Wind speed at a 2 m height m/s
UL Unused Land -

Velocity Flow rate coefficient -
WB Water Bodies -
WC Water conservation mm
WL Wetland -

Yield Water yield mm
YRB Yellow River Basin -

YZRB Yangtze River Basin -
Z Zhang empirical coefficient -

α
Catchment area per unit contour length at any point of the flow

through the slope km2

β Slope angle ◦

γ Wet and dry gauge constants kPa/◦C
ω Plant-available water coefficient -
△ Slope of the saturation water vapor pressure curve kPa/◦C
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